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We show techniques of analyzing complex dynamics of cellular automata (CA) with chaotic
behaviour. CA are well known computational substrates for studying emergent collective be-
haviour, complexity, randomness and interaction between order and chaotic systems. A number
of attempts have been made to classify CA functions on their space-time dynamics and to
predict behaviour of any given function. Examples include mechanical computation, λ and Z-
parameters, mean field theory, differential equations and number conserving features. We aim to
classify CA based on their behaviour when they act in a historical mode, i.e. as CA with mem-
ory. We demonstrate that cell-state transition rules enriched with memory quickly transform a
chaotic system converging to a complex global behaviour from almost any initial condition. Thus
just in few steps we can select chaotic rules without exhaustive computational experiments or
recurring to additional parameters. We provide analysis of well-known chaotic functions in one-
dimensional CA, and decompose dynamics of the automata using majority memory exploring
glider dynamics and reactions.
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1. Introduction

In this paper we consider a simple tool to extract complex systems from a family of chaotic discrete
dynamical system. We will employ a technique — memory based rule analysis [Alonso-Sanz & Martin,
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2003], [Alonso-Sanz, 2008], [Alonso-Sanz, 2009], [Alonso-Sanz, 2009a], of using past history of a system to
construct its present state and to manipulate its future.

We focus on one-dimensional CA. CA are well known computational substrates for studying emergent
collective behaviour, complexity, randomness and interaction between order and chaos. A number of efforts
have been made to classify CA functions on their space-time dynamics and to predict behaviour of any given
function. Examples include mechanical computation, λ and Z-parameters, mean field theory, differential
equations and number conserving features. We aim to base CA classification on their behaviour in a
historical mode, i.e. as CA with memory [Alonso-Sanz, 2008].

We study elementary CA (ECA) where each function evaluates a central cell with their two neigh-
bourhoods (left and right) and every cell takes a value of its binary alphabet. ECA are introduced and
extensively studied by [Wolfram, 1984], [Wolfram, 2002]. In ECA there is a set of functions determining
global chaotic behaviour where global configurations are chaotic, many configurations have many ancestors,
and attractors are dense [Wuensche & Lesser, 1992].

ECA is a one-dimensional array of finite automata, each automaton takes two states and updates its
state in discrete time depending on its own state and states of its two closest neighbours, all cells update
their state synchronously. A general classification of ECA was introduced in [Wolfram, 1994], as follows:

• class I. CA evolving to a homogeneous state.
• class II. CA evolving periodically.
• class III. CA evolving chaotically.
• class IV. Include all previous cases, as well known as class of complex rules.

In this classification class IV is of particular interest because the rules of the class exhibit non-trivial
behaviour with rich diversity of patterns emerging and non-trivial interactions between travelling localiza-
tions, or gliders, e.g. ECA Rule 54 [Mart́ınez et al., 2006].

In present paper we aim to transform a chaotic evolution rule to a complex system by using memory

chaotic ECA
memory−−−−−−→ complex ECA

and derive a new classes of CA functions with historic evolution.
We believe that by employing historic evolution we are able to explore hidden properties of chaotic

systems, and select chaotic rules with homogeneous dynamics.

2. Basic notation

2.1. One-dimensional cellular automata

One-dimensional CA is represented by an array of cells xi where i ∈ Z (integer set) and each x takes a
value from a finite alphabet Σ. Thus, a sequence of cells {xi} of finite length n represents a string or global
configuration c on Σ. This way, the set of finite configurations will be represented as Σn. An evolution is
represented by a sequence of configurations {ci} given by the mapping Φ : Σn → Σn; thus their global
relation is following

Φ(ct)→ ct+1 (1)

where t is time steps and every global state of c is defined by a sequence of cell states. Also the cell states in
configuration ct are updated at the next configuration ct+1 simultaneously by a local function ϕ as follows

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r)→ xt+1

i . (2)

Following [Wolfram, 1984], [Wolfram, 2002] one can represents any CA with two parameters (k, r).
Where k = |Σ| is a number of states, and r is a radius of neighbourhood. Thus ECA are defined by
parameters (2, 1). There are Σn different neighbourhoods (where n = 2r + 1) and kk

n
different evolution

rules.
In computer experiments we are using automata with periodic boundary conditions.
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2.2. Cellular automata with memory

Conventional cellular automata are ahistoric (memoryless). A new state of a cell depends on the neigh-
bourhood configuration solely at the preceding time step of ϕ (see Eq. 2).

CA with memory extends standard framework of CA by allowing every cell xi to remember some
period of its previous evolution [Alonso-Sanz, 2008].

Thus to implement a memory we design a memory function φ, as follows:

φ(xt−τi , . . . , xt−1i , xti)→ si (3)

such that τ < t determines the degree of memory backwards and each cell si ∈ Σ is a state function of the
series of states of the cell xi with memory up to time-step. To execute the evolution we apply the original
rule as follows:

ϕ(. . . , sti−1, s
t
i, s

t
i+1, . . .)→ xt+1

i .

In CA with memory, while the mapping ϕ remains unaltered, historic memory of all past iterations is
retained by featuring each cell as a summary of its past states from φ. Therefore cells canalize memory to
the map ϕ.

classic ECA (ahistoric) ECA with memory

φm:τ

t − τ

...

{si}

t

ϕ

t

ϕ

...

t − 1

t + 1

t + 1

temporal ring storing memory

Fig. 1. Cellular automata with memory in cells.

For example, let us consider memory function φ as a majority memory:

φmaj → si (4)

where in case of a tie given by Σ1 = Σ0 in φ, we shall take the last value xi. So φmaj represents the classic
majority function for three variables [Minsky, 1967], hence we have:

φmaj : (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1)→ x

on cells (xt−τi , . . . , xt−1i , xti) and define a temporal ring before calculating the next global configuration c.
The representation of a ECA with memory [Mart́ınez et al., 2010] is given as follows:

φCARm:τ (5)
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where CAR is a decimal notation of a particular ECA rule and m the kind of memory given with a specific
value of τ . Thus the majority memory (maj) working in ECA Rule 86 checking tree cells (τ = 3) of history
is simply denoted as: φR86maj:3. Figure 1 depicts in detail the memory effect working on ECA.

Note that memory is a simple function but its global behaviour Φ can be predicted from its local
function φ and ϕ.

3. Classes of ECA by polynomials

3.1. Mean filed approximation

Mean field theory is a proven technique for discovering general statistical properties of CA without analyzing
evolution spaces of individual rules [McIntosh, 2009].

The method assumes that elements of the set of states Σ are independent, uncorrelated between each
other in the rule’s evolution space ϕ. Therefore we can study probabilities of states in neighbourhood in
terms of probability of a single state (the state in which the neighbourhood evolves), thus probability of a
neighbourhood is the product of the probabilities of each cell in the neighbourhood.

In this way, it was proposed to explain Wolfram’s classes by a mixture of probability theory and de
Bruijn diagrams in [McIntosh, 1990], resulting in a classification based on mean field theory curve:

• class I: monotonic, entirely on one side of diagonal;
• class II: horizontal tangency, never reaches diagonal;
• class IV: horizontal plus diagonal tangency, no crossing;
• class III: no tangencies, curve crosses diagonal.

Thus for one dimension all cell neighbourhoods must be considered as:

pt+1 =
k2r+1−1∑
j=0

ϕj(X)pvt (1− pt)n−v (6)

such that j is a number of relations from neighbourhoods and X ∈ Σ represent of cells xi−r, . . . , xi, . . . , xi+r.
Thus n represents the number of cells in neighborhood, v indicates how often state one occurs in the
neighborhood, n−v shows how often state zero occurs in the neighborhood, pt is a probability of cell being
in state one, qt is a probability of cell being in state zero (such that q = 1− p).

4. Complex dynamics emerging from chaotic ECA

4.1. Chaotic ECA

Let us consider two cases of classic ECA with chaotic behaviour to demonstrate our results: the evolution
rules 86 and 101.

We need to provide their mean filed approximation to verify that both function have a chaotic global
behaviour before selecting the memory.

The local rule ϕ corresponding to rule 86 is following:

ϕR86 =

{
1 if 110, 100, 010, 001
0 if 111, 101, 011, 000

.

Initially ϕR86 has produces states zero and one with the same probability. There is an equilibrium of
states in Φ. On the other hand, ϕR86 determines a surjective correspondence and therefore every config-
uration has at least one ancestor and no Garden of Eden configurations [Amoroso & Cooper, 1970]. Of
course this rule is the reflection of well-known ECA rule 30 [Wuensche & Lesser, 1992].

The local function for rule 101 is following:

ϕR101 =

{
1 if 110, 101, 010, 000
0 if 111, 100, 011, 001

.
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(a) (b)

Fig. 2. Chaotic global behaviour in ECA evolution rules (a) ϕR86 and (b) ϕR101 evolving over an array of 295 cells in 295
generations. Both evolutions start in configurations with the same random initial density of 50%.

In this case, ϕR101 has the same probability as ϕR86 to produce states one and zero. However ϕR101 is
not a surjective rule and therefore has the Garden of Eden configurations, i.e., not all configurations have
ancestors.

To classify global behaviour properly of ϕR86 and ϕR101 we should calculate their mean field polyno-
mials. Mean field polynomial for ϕR86 is:

pt+1 = 3ptq
2
t + p2t qt (7)

and for ϕR101 we have:

pt+1 = 2p2t qt + ptq
2
t + q3t . (8)

The polynomial for ϕR86 satisfies the mean field classification (Sect. 3). Where rules in CA class III do
not have tangencies and therefore the curve crosses the identity. Consequently, ϕR86 evolves with a chaotic
global behaviour (see Fig. 3(a)).

This mean field polynomial has an stable fixed point when Eq. 7 is f = 0.5. This value relate the
existence of densities where the population of cells in state one is preserved with few changes. Also such
fixed point confirm its initial probability since ϕR86. Of course, if there are extreme densities of zeros and
ones then next time the configuration will be filled of states zeros only, a homogeneous global state.

Mean field curve for ϕR101 (see Fig. 3(b)) presents another characteristic. Again the curve does not
cross the identity and its global behaviour Φ should then be chaotic. Its stable fixed point f = 0.5 relates
to the initial probability estimated since ϕR101. The curve displays what would happen if some initial
configuration c0 is dominated by state one, at the next step will be dominated by states zero and therefore
this behaviour should repeat periodically. Such phenomenon also is balanced with its 50% of density to
each step.

Finally Fig. 2 displays two evolutions with typical chaotic behaviour in ECA. First evolution (a)
displays the chaotic global evolution of ϕR86 since a random initial condition with a 50% of density. That
confirm an evolution without some order or pattern defined. Second evolution (b) displays the chaotic
global behaviour for ϕR101 with the same parameters.

Now we will select a kind of memory and uncover “hidden” properties of chaotic ECA’s.
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ϕR86

0 1

1

(a)

ϕR101

0 1

1

(b)

Fig. 3. Mean field curves for (a) ϕR86 and (b) ϕR101 respectively.

4.2. Filtering evolutions

Filters selected in CA are a useful tool for understand “hidden” properties of CA. This tool was amply
developed by Wuensche in a context of automatic classification of CA. The filters were derived from
mechanical computation techniques [Hanson & Crutchfield, 1997] and analysis of cell-state frequencies
[Wuensche, 1999].

Others derivations deducing filters relate as tiling, were reported for ECA rule 110 [Mart́ınez et al.,
2006], and rule 54 [Mart́ınez et al., 2006]. However in general such filters are not widely exploited in CA
studies. We consider the tile representation to identify filters as block of cells in one or two dimensions.
We explain each tile filtering ϕR86 and ϕR101 in the Sec. 4.3.

4.3. Complex dynamics emerging from ϕR86 and ϕR101 with majority memory

Firstly we should consider a kind of memory, in this case the majority memory φmaj (see Eq. 4) and then
a value for τ . This value represents the number of cells backward to consider in the memory (as we saw in
Sec. 2.2).

Implementing the majority memory φmaj we can select some ECA and experimentally explore its
effect. Figures 4 and 5 show outcomes of selecting memory τ working on ϕR86 and ϕR101 respectively. The
result is a new family of ECA but now with majority memory, they are the rules: φR86maj:3, . . . , φR86maj:∞,
and φR101maj:3, . . . , φR101maj:∞.

As a characteristic while the memory is working on φR86maj and φR101maj a periodic background was
more evident and it can be represented as a tile. These filters work as well on the original rules ϕ, see
Fig. 4 and 5.

The memory effect produces an emergency of patterns. The patterns interact quickly (in time-scale of
CA development) with each other. In fact, for φR86maj and some values of τ the original behaviour changes
its dynamics dramatically. Following our previous findings [Mart́ınez et al., 2010], in press] we consider
only even values that offer better global dynamics. Thus the new rule φR86maj:8 displays particles travelling
in different velocities on a periodic background (see Fig. 4).

The second case φR101maj displays more attractive result. These three rules support stationary and mo-
bile particles, travelling and colliding, some collisions can be interpreted as solitonic reaction [Adamatzky,
2002] (see Fig. 5).
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τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

τ = 10 τ = 11 τ = 12 τ = 13

τ = 14 τ = 15 τ = 16 τ = 17

τ = 18 τ = 19 τ = 20 τ = 21

ϕR86 τ = 4τ = 3

Fig. 4. Majority memory φR86maj:τ working in ϕR86 with τ values of 3 to 21, respectively. The first one is the original
ECA rule 86 evolution. All snapshots evolve with the same random initial condition of 50% over an array of 300 cells to 300
generations, all evolutions are filtered.
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τ = 4 τ = 5

τ = 6 τ = 7 τ = 8 τ = 9

τ = 10 τ = 11 τ = 12 τ = 13

τ = 14 τ = 15 τ = 16 τ = 17

τ = 18 τ = 19 τ = 20 τ = 21

ϕR101 τ = 3

Fig. 5. Majority memory φR101maj:τ working in ϕR101 with τ values of 3 to 21, respectively. The first one is the original
ECA rule 101 evolution. All snapshots evolve with the same random initial condition to 50% over an array of 300 cells to 300
generations, all evolutions are filtered.
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Also on all evolutions a filter was selected to clarify evolutions and patterns.1 Filters really are useful
to recognize periodic dominant patterns of objects moving into such local universes.

The first two-dimensional tile working in φR86maj is represented as tφ86
=

[
101
101

]
. Also this tile works

on the original evolution rule as shows the Fig. 4. Tile reported for φR101maj is determined for the two-

dimensional tile tφ101
=

[
100
100

]
. So this filter works on the original evolution rule as well as shows the Fig. 5.

The effect of memory producing new evolution rules is preserved in some way. Initially the existence of
a filter that can evolve on all different function, that is not rare because the memory only read the history
and process the new generation with the original rule.

4.4. Coding particles

4.4.1. Self-organization by structure formation

Patterns as particles and non-trivial behaviour emerging in these new CA with memory φR86maj and
φR101maj , naturally conduce to well-know problems as self-organization.

g1 g2 g3 g4 g5

Fig. 6. Set of particles G emerging and living in φR101maj:4.

Considering the evolution rule φR101maj:4, we have done a classification of particles in this local universe
(see Fig. 6). The universe is not bigger compared with other complex rules. However that all particles in
φR101maj:4 can be produced from other particles in binary collisions. Such self-organization by structure
formation [Kauffman, 1993] is demonstrated in the following set of reactions between particles:

gi → gj = gk

such that i 6= j 6= k and i, j, k ∈ GφR101maj:4
.

Figure 7 presents the set of reactions necessary to produce every particle:

a) g4 − b3 − g5 = g1
b) g1 − b2 − g4 = g2
c) g1 − b4 − g4 = g3
d) g1 − b6 − g5 = g4
e) g3 − b3 − g4 = g5
f) g3 − b2 − g4 = ∅

Of course, they are not all possibilities to get every particle and a organization of several particles
could be produce even more complex behaviour imitating physical, biological, chemical or computational
phenomena: wave propagation, reaction-diffusion, morphogenesis, particle collision, fluid-dynamics, (tissue)

1All evolutions simulated to ECA and ECA with memory they are calculated with OSXLCAU21 system, available from
http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html

http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html
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g5g4g3g2g1 ∅
Fig. 7. Self-organization by particle collisions. The set GφR101maj:4

is produced. CA evolution is filtered.

grown, pattern formation, self-reproduction, self-assembly, artificial life, synthetic constructions (engineer-
ing), tessellation, differential equations, soliton solutions, formal languages, or unconventional computing
[Adamatzky, 2002], [Bar-Yam, 1997], [Margenstern, 2007], [Mitchell, 2009], and [Morita, 1998].

4.4.2. Generator pattern

Figure 8 shows the evolution of CA from a single cell in state 1, the automaton is governed by rule
φR86maj:8. A fuse pattern is organized by stream of gliders (left) emitted periodically every 62 steps and a
fixed periodic pattern (right) growing with a velocity of −1

4 .
The above examples of CA with memory are just two simple cases showing the memory effect on

traditional chaotic functions. Another cases were developed for the ECA rules 30 and 126 in [Mart́ınez et
al., 2010].

4.4.3. Implementing basic computing functions

We can employ the particles codification to represent solutions of some basic computing functions. Let us
consider the rule φR86maj:8. We want to implement a simple substitution function addToHead working on
two strings w1 = A1, . . . , An and w2 = B1, . . . , Bm, where n,m ≥ 1. For example, if w1 = AAA, w2 = BBB
and w3 = w1w2 then the addToHead(|w2|) will yield: w3 = w2w1 (see schematic diagram of Fig. 10).

To implement such function in φR86maj:8 we must represent every data ‘quantum’ as a particle. Gliders
g1 and g2 are coded to reproduce a soliton reaction.2 Another problem is synchronize several gliders and
obtain the same result with multiple collisions.

The codification is not sophisticated however a systematic analysis of reactions is required. We known
than a periodic gap and one fixed phase between particles is sufficient to reproduce the addToHead function
for any string AnBm.

Figure 9 shows fragments of evolutions of φR86maj:8 from an initial condition coded by gliders, repre-
senting the string AAAAAAAAAAAABBBBBBBBBBBB. Using function addToHead we produce the
final string BBBBBBBBBBBBAAAAAAAAAAAA after 6,888 generations. The first snapshot in Fig. 9
shows its initial configuration and the first 400 steps, the middle snapshot mainly presents how the string
w1 across the string w2 preserving the information (soliton reaction), and the third snapshot shows the
final global configuration so given the string w2w1 processed in parallel with φR86maj:8.

2These gliders are a reflection of φR30maj:8, because ECA rule 86 is the reflection of rule 30, and consequently their gliders
emerging with memory can be coded in a similar way [Mart́ınez et al., 2010].
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Fig. 8. Stream of particles and fuse patterns emerging from a single cell in state 1 with φR86maj:8. These patterns exhibit
unlimited growth.

5. Discussion

We have demonstrated that elementary cellular automata (ECA) with memory offer a powerful approach
to discovering complex dynamics based on particles and non-trivial reactions between the particles. Such
problem has been substantiated by a number of different techniques, e.g. number-conservation [Boccara &
Fukś, 2002], [Imai et al., 2004], exhaustive search [Eppstein, 2002], tiling [Mart́ınez et al., 2006], [Margen-
stern, 2007], de Bruijn diagrams [Mart́ınez et al., 2008], Z-parameter [Wuensche, 1999], genetic algorithms
[Das et al., 1994], mean field theory [McIntosh, 1990] or from a differential equations point view [Chua,
2007]. Thus the memory function φ offers a more easy way to get similar and, in some cases, more strong
results reporting new complex rules in ECA with memory.

We have enriched some classic chaotic ECA rules with majority memory and demonstrated that by
applying certain filtering procedures we can extract rich dynamics of travelling localizations. Therefore,
we can deduce a relation on chaotic systems decomposed in complex dynamics as a self-contained set.
Generally a relation of sets of complex dynamics can be self-contained describing Φ as attractors, like a
set diagram (Fig. 11 [Adamatzky et al., 2006]).

This way, the most bigger set in Fig. 11 ‘all orbits’ corresponds to complex dynamics and the ‘unstable’
set represents the chaotic systems. Indeed there is a number of properties between orbits and characteristics
that cannot be inferred directly. However the memory plays a role of a powerful tool to discover such
properties. Finally, the memory function φ can be applied to any CA or dynamical system.
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AAAAAAAAAAAAABBBBBBBBBBBB

BBBBBBBBBBBBAAAAAAAAAAAAA

Fig. 9. A simple substitution system processing the word A12B12 to B12A12 with φR86maj:8. The final production is reached
on 6,888 generations by synchronization of multiple soliton reactions.
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A     A     A     B     B     B

B     B     B     A     A     A
Fig. 10. Schematic diagram adding the string w2 to head of the list w3.

Fig. 11. Classes of global behaviour.
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