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In this paper we perform a global analysis of the dynamics of the Chen system

ẋ = a(y − x), ẏ = (c− a)x− xz + cy, ż = xy − bz,

where (x, y, z) ∈ R3 and (a, b, c) ∈ R3. We give the complete description of its dynamics on the
sphere at infinity. For six sets of the parameter values the system has invariant algebraic surfaces.
In these cases we provide the global phase portrait of the Chen system and give a complete
description of the α– and ω–limit sets of its orbits in the Poincaré ball, including its boundary
S2, i.e. in the compactification of R3 with the sphere S2 of the infinity. Moreover, combining
the analytical results obtained with an accurate numerical analysis, we prove the existence of a
family with infinitely many heteroclinic orbits contained on invariant cylinders when the Chen
system has a line of singularities and a first integral, which indicates the complicated dynamical
behavior of the Chen system solutions even in the absence of chaotic dynamics.

Keywords : Chen system, integrability, Poincaré compactification, dynamics at infinity, hetero-

clinic orbits, singularly degenerate heteroclinic cycles, invariant manifolds.

1. Introduction and statement of the main results

The Chen system is the three-parameter family of quadratic polynomial differential equations given by

ẋ = P = a(y − x), ẏ = Q = (c− a)x− xz + cy, ż = R = xy − bz, (1)

with the state variables (x, y, z) ∈ R3 and the parameters (a, b, c) ∈ R3. As usual the dots denote differen-

tiation with respect to the time t.
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System (1) was firstly studied in [Chen and Ueta, 1999]. It exhibits chaotic phenomena for suitable

choices of the values of the real parameters a, b and c. In this way, some important properties of system

(1) are similar to the properties of the well-known Lorenz system [Lorenz, 1963]

ẋ = ry − x− yz, ẏ = σ(x− y), ż = −bz + xy. (2)

For instance, one can easily check that: Systems (1) and (2) are invariant under the change of vari-

ables (x, y, z) 7−→ (−x,−y, z), consequently if (x(t), y(t), z(t)) is a solution of system (1) or (2), then

(−x(t),−y(t), z(t)), its symmetric with respect to the z–axis, is also a solution. In [Lu et al., 2002] the

authors introduce a unified chaotic system containing the Lorenz and the Chen systems as dual systems at

the two extremes of its parameter spectrum. This unified system represents the transition from the Lorenz

to the Chen system and is chaotic over the entire range of the parameter.

Let R[x, y, z] be the ring of the real polynomials in the variables x, y and z. We say that F = F (x, y, z) ∈
R[x, y, z] is a Darboux polynomial of system (1) if it satisfies (∇F ) · (P,Q,R) = kF, where k = k(x, y, z)

is a real polynomial of degree at most 1, called the cofactor of F (x, y, z), and ∇F denotes the gradient

of F . If the cofactor is zero, then F (x, y, z) is a polynomial first integral of system (1). If F (x, y, z) is a

Darboux polynomial, then the surface F (x, y, z) = 0 is an invariant algebraic surface; i.e. if an orbit of

system (1) has a point on this surface, then the whole orbit is contained in it. The following proposition

gives a summary on the invariant algebraic surfaces of system (1), it is due to Lu and Zhang [Lu and

Zhang, 2007].

Proposition 1.1. If a = 0 then the phase portrait of system (1), restricted to each plane x =constant is

determined by a linear differential system. If a 6= 0 then system (1) has the invariant algebraic surfaces

Fi = 0, i = 1, ..., 6, given in Table 1 (see Figures 1 and 2).

Table 1. Darboux polynomials of system (1). Fi = Fi(x, y, z) = 0, for 1 ≤ i ≤ 5 and F6 = α,

with α > −a2 correspond to invariant algebraic surfaces of the Chen system.

Case a 6= 0, b, c Darboux polynomial

(a) b = 2a F1 = x2 − 2az

(b) a = −b = c F2 = y2 + z2

(c) a = b = −c F3 = 2x2 + y2 + z2

(d)
3a+ c = 0

b = 0
F4 = x4 + 4

3cx
2z − 4

9c
2y2 − 8

9c
2xy − 16

9 c
2x2

(e)
a+ c = 0

b = 4a
F5 = x4 + 4cx2z − 4c2y2 + 8c2xy + 8c2x2 + 48c3z

(f) b = c = 0 F6 = y2 + z2 + 2az

Proposition 1.1 will be used in the next sections for studying the global dynamics of system (1). Observe

that the invariant algebraic surface

F4 = x4 +
4

3
cx2z − 4

9
c2y2 − 8

9
c2xy − 16

9
c2x2 = 0

has a regular part and a singular part (given by the z–axis).

In the recent work [Llibre and Valls, 2011] the authors characterized all the the parameter values for

which the Chen system (1) has a polynomial first integral. More precisely they proved that system (1) with
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(a) (b)

Fig. 1. Geometrical representation of the invariant algebraic surfaces of the Chen system: (a) F1 = 0, with a = 1; (b) F4 = 0,

with c = 1.

(a) (b)

Fig. 2. Geometrical representation of the invariant algebraic surfaces of the Chen system: (a) F5 = 0, with c = 3; (b) F6 = 0,

with a = −1.

a 6= 0 has a first integral if and only if b = c = 0 and, in this case, the first integral is a polynomial in the

variable y2 + z2 + 2az, corresponding to the case (f) of Table 1. This is an interesting case which shall be
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treated in details in Theorem 1.3 ahead.

As any polynomial differential system, the Chen system (1) can be extended to an analytic system on a

closed ball of radius one, whose interior is diffeomorphic to R3 and its boundary, the 2–dimensional sphere

S2, plays the role of the infinity. This closed ball is denoted by D3 and called the Poincaré ball, because the

technique for doing such an extension is precisely the Poincaré compactification for a polynomial differential

system in R3, which is described in details in [Cima and Llibre, 1990] and a summary of it is given in Section

3 ahead. By using this compactification technique the dynamics of system (1) at infinity was studied and

we have obtained the following result.

Theorem 1.1. For all values of the parameters a, b, c the phase portrait of system (1) on the sphere at

infinity is as shown in Figure 3; i.e. it has two centers at the endpoints of the x–axis, the period annulus of

these centers end at the circle defined by the infinity of the plane {x = 0}, which is filled of singular points.

x

y

z

Fig. 3. Phase portrait of system (1) at the infinity of the Poincaré ball (i.e. on the Poincaré sphere S2).

It is important to note that the dynamics at infinity does not depend on the parameter values. In this

paper we study the dynamics of Chen system (1) in the cases (a), . . . , (f) given in Table 1 on the whole

space R3, including the behavior on the sphere at infinity, that is in the Poincaré ball.

The dynamics of Chen system on the invariant algebraic surfaces was studied in [Cao et al., 2008],

where all the cases of Proposition 1.1, except the case (f), were considered. In such a work the authors

gave a dynamical description of the solutions of system (1) in the projections of the invariant algebraic

surfaces (a), . . . , (e) onto the (x, y)–plane. In this way some dynamical aspects are missed. For instance, the

dynamics on invariant straight lines and planes, which project orthogonally on the (x, y)–plane as points

and straight lines respectively, do not appear in the analysis made in [Cao et al., 2008]. Moreover, the

authors analyze the dynamics on the invariant surfaces extended to infinity on the Poincaré disc, after the

projection of these surfaces on the xy–plane. However this analysis does not correspond completely to the

analysis of the solutions on the real invariant algebraic surfaces when they are considered in the whole

space R3. Also some dynamical objects as heteroclinic orbits, connecting two singular points on a line of

singularities, which were numerically detected by us and are described more precisely ahead in this note,

were not described in [Cao et al., 2008].
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The global study of how the invariant algebraic surfaces of the Chen system and the solutions on them

reach the infinity, which completes the analysis presented in [Cao et al., 2008], is done here by using the 3–

dimensional compactification technique of Poincaré. Similar global analysis for other quadratic polynomial

differential systems in the compactification of R3 were presented in [Buzzi et al., 2007; Llibre and Messias,

2009; Llibre et al., 2008, 2010; Messias, 2009].

Our main results are stated below.

Theorem 1.2. For all values of the parameters a, b, c the z–axis is an invariant set of system (1). The

flow in this invariant straight line is as follows: if b > 0 then the origin (0, 0, 0) is a global attractor along

the z–axis; if b < 0 then the origin is a global repeller; and if b = 0 all points on the z–axis are singular.

Furthermore the global phase portraits of the Chen system (1) with a 6= 0 and having the invariant algebraic

surfaces given in Table 1 are described below.

(a) Assume that b = 2a, then system (1) has the invariant algebraic surface F1 = x2−2az = 0 (see Figures 1

(a) and 8 for a < 0 – similar figures take place for a > 0). The boundary at infinity of the surface F1 = 0

is the half great circle {x = 0, z ≤ 0}. The finite singular points on F1 = 0 are described in Section 2,

providing 20 different global phase portraits in the Poincaré ball. These phase portraits restricted to the

invariant algebraic surface F1 = 0 are described in Figures 9, 10 and 11.

(b) Assume that a = c = −b, then system (1) has the invariant algebraic surface F2 = y2 + z2 = 0, which

reduces to the x–axis, see Figure 12. The boundary of this surface at infinity is given by the endpoints of

the x–axis. The origin is the unique finite singular point, providing 2 different global phase portraits on

the Poincaré ball. These phase portraits restricted to the invariant algebraic surface F2 = 0 are described

in Figure 12.

(c) Assume that a = b = −c, then system (1) has the invariant algebraic surface F3 = 2x2 + y2 + z2 = 0,

which reduces to the point (0, 0, 0), see Figure 13. The origin is the only finite singular point, providing

2 different global phase portraits, a global attractor and a global repellor, respectively.

(d) Assume that 3a+ c = 0, b = 0, then system (1) has the invariant algebraic surface F4 = x4 +4/3cx2z−
4/9c2y2 − 8/9c2xy − 16/9c2x2 = 0, see Figures 1 (b) and 14. The boundary at infinity of the surface

F4 = 0 is the end of the plane x = 0. The z–axis is contained in this surface and it is formed by (non-

hyperbolici) singular points of the Chen system. The flow restricted to the surface F4 = 0 is integrable.

The phase portrait restricted to the invariant algebraic surface F4 = 0 is described in Figure 14.

(e) Assume that c = −a and b = 4a, then system (1) has the invariant algebraic surface F5 = x4 +4cx2z−
4c2y2 + 8c2xy + 8c2x2 + 48c3z = 0, see Figures 2 (a) and 15, for c > 0. The boundary at infinity of the

surface F5 = 0 is the end of the plane x = 0. The origin is the only finite singular point, providing 2

different global phase portraits on the Poincaré ball.

(f) Assume that b = c = 0, then system (1) has the polynomial first integral F6 = y2 + z2 + 2az and,

consequently, F6 = constant is a family of invariant algebraic surfaces, consisting of enclosed cylinders,

see Figures 2 (b) and 15–18. The boundary at infinity of the surfaces F6 = constant is given by the

endpoints of the x–axis. The finite singular points are (0, 0, z), with z ∈ R, that is, the z–axis is a line

of (non-hyperbolic) singularities.

Combining the analytical result stated in case (f) of Theorem 1.2 with an accurate numerical analysis

of system (1) with b = c = 0, which is presented in Section 5 ahead, we can state the following result.

Theorem 1.3. Consider system (1) with a > 0 and b = c = 0. In this case the phase space is foliated by
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the invariant cylinders

Cα = {(x, y, z) | y2 + (z + a)2 = α+ a2, with x ∈ R and α > −a2} (3)

surrounding the line {x ∈ R, y = 0, z = −a}, each one having two singular points, given by the roots of

z2 + 2az − α = 0. One of these singular points is a stable focus (or node) and the other one is a saddle.

The 1-dimensional unstable manifolds of the saddle point tend asymptotically to the stable focus (or node),

forming two heteroclinic orbits (see Figure 4 (a)). Furthermore, the 1-dimensional stable manifolds of the

saddle and the orbits contained in the 2-dimensional stable manifold of the focus (or node), except the

unstable manifolds of the saddle, are contained in the invariant cylinder Cα and go to infinity in backward

time, tending asymptotically to the singular points at infinity, located at the endpoints of the x–axis (see

Figure 4 (b)). Consequently these singular points at infinity are unstable. Furthermore, if α = −a2 in (3)

we have y = 0, z = −a, hence system (1) has the invariant straight line {x ∈ R, y = 0, z = −a}, containing
the singular point (0, 0,−a), which is globally stable along this line.

(a)

x

z

y

(b)

Fig. 4. (a) Heteroclinic orbits of the Chen system with b = c = 0: the unstable manifolds of a saddle connect to a stable

focus; (b) Invariant cylinder containing a saddle and a focus with its invariant manifolds. See also Figures 16–18 in Section 5.

From Theorem 1.3, which is proved in Section 4, it follows that system (1) with a > 0 and b = c = 0

has a family with infinitely many pairs of heteroclinic orbits, each one contained in one of the cylinders Cα

given in (3) (see Figures 4 and 15–18). As far as we know this type of heteroclinic orbits, connecting two

singular points belonging to a line of singularities, has appeared for the first time in the paper [Kokubu

and Roussarie, 2004], where it was called a singularly degenerate heteroclinic cycle. Later on it was shown

that this kind of cycles appear in families with infinitely many heteroclinic orbits in the standard Lorenz

system [Messias, 2009] and in other quadratic systems [Llibre et al., 2008; Mello et al., 2008; Messias et al.,

2008], which also happens for the Chen system as stated in Theorem 1.3.
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We say that a set V ⊆ D3 is invariant by the flow of system (1) if for any p ∈ V the whole orbit

passing through p is contained in V . The sphere of the infinity always is an invariant set. Let ϕ(t) = ϕ(t, p)

be the solution of the compactified system (1) passing through the point p ∈ D3, defined on its maximal

interval Ip = R, because D3 is compact. Then the α–limit set of ϕ is the invariant set

α(ϕ) = {q ∈ D3 : ∃ {tn} such that tn → −∞ andϕ(tn) → q asn → ∞}.

In a similar way, the ω–limit set of ϕ is the invariant set

ω(ϕ) = {q ∈ D3 : ∃ {tn} such that tn → ∞ andϕ(tn) → q asn → ∞}.

A function I(x, y, z, t) is an invariant of system (1) if dI/dt = 0 on the trajectories of the system.

It is easy to see that if F (x, y, z) is a Darboux polynomial of system (1) with constant cofactor k, then

I = F e−kt is an invariant.

The following theorem gives a complete description of the α– and ω–limit sets in the Poincaré ball,

including its boundary S2, for the Chen system having the invariant algebraic surfaces of Table 1.

Theorem 1.4. Consider ϕ(t) = (x(t), y(t), z(t)), t ∈ R, an orbit through the point p ∈ D3 of the Chen

system (1) satisfying one of the conditions (a),...,(e) of Table (1). Then the α– and ω–limit sets of ϕ(t),

denoted by α(ϕ) and ω(ϕ), respectively, are contained in the set {Fi = 0} ∪ S2. More specifically, if the

cofactor ki > 0 then we have the following possibilities:

(a) p ∈ S2 ⇒ α(ϕ), ω(ϕ) ⊂ S2;
(b) p ∈ (D3 \ S2) ⇒ α(ϕ) ⊂ {Fi = 0};
(c) p ∈ (D3 \ S2), Fi(p) = 0 ⇒ ω(ϕ) ⊂ {Fi = 0};
(d) p ∈ (D3 \ S2), Fi(p) 6= 0 ⇒ ω(ϕ) ⊂ S2;

and if ki < 0 then

(e) p ∈ S2 ⇒ α(ϕ), ω(ϕ) ⊂ S2;
(f) p ∈ (D3 \ S2) ⇒ ω(ϕ) ⊂ {Fi = 0};
(g) p ∈ (D3 \ S2), Fi(p) = 0 ⇒ α(ϕ) ⊂ {Fi = 0};
(h) p ∈ (D3 \ S2), Fi(p) 6= 0 ⇒ α(ϕ) ⊂ S2.

If system (1) satisfies the condition (f) of Table 1 and ϕ(t) = (x(t), y(t), z(t)) is an orbit through the

point p ∈ D3 with F6(p) = α, then the whole orbit ϕ(t), t ∈ R is contained in F6 = α.

The aim of this paper is to prove the results stated above. It is organized as follows. In Section 2 we

summarize the results related to the dynamics and bifurcation of finite singularities. In Section 3 we prove

Theorem 1.1 by using the Poincaré compactification for a polynomial vector field in R3. In Section 4 we

prove Theorems 1.2, 1.4 and 1.3. Based on the analytical results proved, we performed a numerical study

of system (1), which is presented in Section 5.

2. Dynamics of finite singularities

We start this section with the proof of Proposition 1.1, which is due to Lu and Zhang [Lu and Zhang,

2007].
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2.1. Proof of Proposition 1.1

If a = 0, Chen system (1) becomes

ẋ = 0, ẏ = cx− xz + cy, ż = xy − bz.

Thus H(x, y, z) = x is a first integral and the flow on each level H−1(h) is determined by the linear

differential system

ẏ = ch− hz + cy, ż = hy − bz.

For a 6= 0 we have ∇Fi · (P,Q,R) = kiFi, where each Fi, i = 1, . . . , 6, is a Darboux polynomial with

corresponding cofactor ki, and they are given by:

(a) F1(x, y, z) = x2 − 2az and k1(x, y, z) = −2a;

(b) F2(x, y, z) = y2 + z2 and k2(x, y, z) = 2a;

(c) F3(x, y, z) = 2x2 + y2 + z2 and k3(x, y, z) = −2a;

(d) F4(x, y, z) = x4 + 4
3cx

2z − 4
9c

2y2 − 8
9c

2xy − 16
9 c

2x2 and k4(x, y, z) = 4/3c;

(e) F5(x, y, z) = x4 + 4cx2z − 4c2y2 + 8c2xy + 8c2x2 + 48c3z and k5(x, y, z) = 4c.

Observe that all the cofactors are constants.

In what follows we shall study the local stability at the singular points of the Chen system for the

parameters satisfying the conditions of Table 1. It is obvious that in each case the singular points are

contained in the invariant algebraic surfaces Fi = 0, i = 1, . . . , 5 and F6 = α, with α > −a2.

2.2. Singular points in the case b = 2a

Consider Chen system (1) satisfying the case (a) of Table 1, that is b = 2a and a 6= 0. Then we have the

following possibilities.

2.2.1. Subcase 2c− a = 0

The unique singular point is (0, 0, 0). The eigenvalues are

λ1 = −2a, λ2 =
c− a+

√
∆

2
, λ3 =

c− a−
√
∆

2
,

where ∆ = c2 + 6ac− 3a2. We have

(a1) If a > 0 then λ1 < 0, λ2 = 0 and λ3 < 0;

(a1’) If a < 0 then then λ1 > 0, λ2 > 0 and λ3 = 0.

2.2.2. Subcase (2c− a)a < 0

The only singular point is (0, 0, 0). The eigenvalues satisfies the following:

(b1) If a < 0, ∆ ≥ 0 and c− a > 0, then λ1 > 0, λ2 > 0 and λ3 > 0;

(b2) If a < 0, ∆ ≥ 0 and c− a < 0, then λ1 > 0, λ2 < 0 and λ3 < 0;

(b3) If a < 0, ∆ < 0 and c− a > 0, then λ1 > 0, λ2 = u+ iv and λ3 = u− iv with u, v > 0;

(b4) If a < 0, ∆ < 0 and c− a < 0, then λ1 > 0, λ2 = −u+ iv and λ3 = −u− iv with u, v > 0;

(b1’) If a > 0, ∆ ≥ 0 and c− a > 0, then λ1 < 0, λ2 > 0 and λ3 > 0;

(b2’) If a > 0, ∆ ≥ 0 and c− a < 0, then λ1 < 0, λ2 < 0 and λ3 < 0;
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(b3’) If a > 0, ∆ < 0 and c− a > 0, then λ1 < 0, λ2 = u+ iv and λ3 = u− iv with u, v > 0;

(b4’) If a > 0, ∆ < 0 and c− a < 0, then λ1 < 0, λ2 = −u+ iv and λ3 = −u− iv with u, v > 0.

The cases ∆ ≤ 0, c− a = 0 and ∆ > 0, c− a = 0 are impossible if (2c− a)a < 0.

2.2.3. Subcase (2c− a)a > 0

There are 3 singular points

(0, 0, 0), and (±
√

2a(2c− a),±
√
2a(2c− a), 2c− a).

The eigenvalues associated to (0, 0, 0) are classified according the following conditions:

(c1) If a < 0, ∆ ≥ 0 and c− a > 0, then λ1 > 0, λ2 > 0 and λ3 < 0;

(c2) If a < 0, ∆ > 0 and c− a = 0, then λ1 > 0, λ2 > 0 and λ3 < 0;

(c3) If a < 0, ∆ ≥ 0 and c− a < 0, then λ1 > 0, λ2 > 0 and λ3 < 0;

(c4) If a < 0, ∆ < 0 and c− a > 0, then λ1 > 0, λ2 = u+ iv and λ3 = u− iv with u, v > 0;

(c5) If a < 0, ∆ < 0 and c− a < 0, then λ1 > 0, λ2 = −u+ iv and λ3 = −u− iv with u, v > 0;

(c1’) If a > 0, ∆ ≥ 0 and c− a > 0, then λ1 < 0, λ2 > 0 and λ3 < 0;

(c2’) If a > 0, ∆ > 0 and c− a = 0, then λ1 < 0, λ2 > 0 and λ3 < 0;

(c3’) If a > 0, ∆ ≥ 0 and c− a < 0, then λ1 < 0, λ2 > 0 and λ3 < 0;

(c4’) If a > 0, ∆ < 0 and c− a > 0, then λ1 < 0, λ2 = u+ iv and λ3 = u− iv with u, v > 0;

(c5’) If a > 0, ∆ < 0 and c− a < 0, then λ1 < 0, λ2 = −u+ iv and λ3 = −u− iv with u, v > 0.

The eigenvalues associated to (±
√

2a(2c− a),±
√
2a(2c− a), 2c− a) are

η1 = −2a, η2 =
c− a+

√
∆1

2
, η3 =

c− a−√
∆1

2
,

where ∆1 = c2 − 18ac+ 9a2. The eigenvalues satisfy the following:

(d1) If a < 0, ∆1 ≥ 0, c− a > 0, then η1 > 0, η2 > 0 and η3 > 0;

(d2) If a < 0, ∆1 ≥ 0, c− a < 0, then η1 > 0, η2 < 0 and η3 < 0;

(d3) If a < 0, ∆1 < 0, c− a < 0, then η1 > 0, η2 = −u+ iv and η3 = −u− iv with u, v > 0;

(d4) If a < 0, ∆1 < 0, c− a > 0, then η1 > 0, η2 = u+ iv and η3 = u− iv with u, v > 0;

(d5) If a < 0, ∆1 < 0, c− a = 0, then η1 > 0, η2 = iv and η3 = −iv with v > 0;

(d1’) If a > 0, ∆1 ≥ 0, c− a > 0, then η1 < 0, η2 > 0 and η3 > 0;

(d2’) If a > 0, ∆1 ≥ 0, c− a < 0, then η1 < 0, η2 < 0 and η3 < 0;

(d3’) If a > 0, ∆1 < 0, c− a < 0, then η1 < 0, η2 = −u+ iv and η3 = −u− iv with u, v > 0;

(d4’) If a > 0, ∆1 < 0, c− a > 0, then η1 < 0, η2 = u+ iv and η3 = u− iv with u, v > 0;

(d5’) If a > 0, ∆1 < 0, c− a = 0, then η1 > 0, η2 = iv and η3 = −iv with v > 0.

The case ∆1 ≥ 0, c− a = 0 is impossible for a 6= 0.

2.3. Singular points in the case a = −b = c

The only singular point is (0, 0, 0). The corresponding eigenvalues are λ1 = −a, λ2 = a and λ3 = a. Thus

we have only two cases:

(a1) If a > 0 then λ1 < 0 and λ2 = λ3 > 0;

(a2) If a < 0 then λ1 > 0 and λ2 = λ3 < 0.
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2.4. Singular points in the case a = b = −c

The only singular point is (0, 0, 0). The corresponding eigenvalues are λ1 = −a, λ2 = −a +
√
2a2i and

λ3 = −a−
√
2a2i. Thus we have only two cases:

(a1) If a > 0 then λ1 < 0, λ2 = −u+ iv and λ3 = −u− iv with u, v > 0;

(a2) If a < 0 then λ1 > 0, λ2 = u+ iv and λ3 = u− iv with u, v > 0.

2.5. Singular points in the case b = 0, c = −3a

The singular point are (0, 0, z0), z0 ∈ R. The corresponding eigenvalues are λ1 = 0, λ2 = −2a+
√
−3a2 − az

and λ3 = −2a−
√
−3a2 − az. Thus we have the following cases:

(a1) If a > 0, z0 < −7a then λ2 > 0 and λ3 < 0;

(a2) If a > 0, z0 = −7a then λ2 = 0 and λ3 < 0;

(a3) If a > 0, −7a < z0 < −3a then λ2 < 0 and λ3 < 0;

(a4) If a > 0, z0 = −3a then λ2 < 0 and λ3 < 0;

(a5) If a > 0, z0 > −3a then λ2 = −u+ iv and λ3 = −u− iv with u, v > 0;

(a1’) If a < 0, z0 > −7a then λ2 > 0 and λ3 < 0;

(a2’) If a < 0, z0 = −7a then λ2 > 0 and λ3 = 0;

(a3’) If a < 0, −3a < z0 < −7a then λ2 > 0 and λ3 > 0;

(a4’) If a < 0, z0 = −3a then λ2 > 0 and λ3 > 0;

(a5’) If a < 0, z0 < −3a then λ2 = u+ iv and λ3 = u− iv with u, v > 0.

2.6. Singular points in the case b = 4a, c = −a

The only singular point is (0, 0, 0). The corresponding eigenvalues are λ1 = −4a, λ2 = −a +
√
2a2i and

λ3 = −a−
√
2a2i. Thus we have only two cases:

(a1) If a > 0 then λ1 < 0, λ2 = −u+ iv and λ3 = −u− iv with u, v > 0;

(a2) If a < 0 then λ1 > 0, λ2 = u+ iv and λ3 = u− iv with u, v > 0.

2.7. Singular points in the case b = c = 0

System (1) has a line of singularities contained in the z–axis. The corresponding eigenvalues are

λ1 =
−a+

√
a2 − 4a(a+ z)

2
, λ2 =

−a−
√
a2 − 4a(a+ z)

2
and λ3 = 0.

Consider a > 0. Then the singular point (0, 0, z) is locally a saddle point if z < −a, a stable focus if

z > −(3/4)a and a stable node if −a < z ≤ −(3/4)a. The singular point (0, 0,−a) is more degenerate: it

has two zero eigenvalues; there exists an invariant line parallel to the x–axis passing through (0, 0,−a) and

this point is a global attractor along this line, in the case a > 0. In fact, for z = −a the Chen system (1)

reduces to

ẋ = −a, ẏ = 0 ż = 0.

This case will be better analyzed in Section 4.
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3. Poincaré compactification and the proof of Theorem 1.1

In this section we present the formulas concerning the Poincaré compactification for a polynomial differen-

tial system in R3 with degree 2. Poincaré introduced this compactification for polynomial vector fields in

R2. Its extension to Rn for n > 2 can be found in [Cima and Llibre, 1990] and some applications in [Llibre

et al., 2008, 2010]. More precisely we consider the polynomial differential system

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

or equivalently its associated polynomial vector field X = (P,Q,R). This polynomial system is extended to

an analytic system on a closed ball of radius one, whose interior is diffeomorphic to R3 and its boundary,

the 2–dimensional sphere S2; plays the role of the infinity. This closed ball is denoted by D3 and called the

Poincaré ball. We consider 6 open charts on S2

(a) U1 = {(x, y, z) : x > 0} and V1 = {(x, y, z) : x < 0},
(b) U2 = {(x, y, z) : y > 0} and V2 = {(x, y, z)) : y < 0},
(c) U3 = {(x, y, z) : z > 0} and V3 = {(x, y, z) : z < 0}.

The phase portrait on U1 is the central projection of the phase portrait of the system

u̇ = w2(−uP +Q), v̇ = w2(−vP +R), (4)

where u, v are the coordinates of the tangent plane TS2(1,0,0) at (1, 0, 0) ∈ S2, and P,Q and R are the

polynomial functions evaluated at (1/w, u/w, v/w). Moreover we make w = 0 in order to get the points at

the infinite sphere (see figure 5).

x
y

z

u u

v

v

v
U3

U2
U1

u

Fig. 5. Local charts related to the Poincar compactification: U1 : y = u
w , z = v

w ; U2 : x = u
w , z = v

w ; and U3 : x = u
w , y = v

w .

The charts V1, V2 and V3 are diametrically opposed.

The flow on U2 is determined by the system

u̇ = w2(−uQ+ P ), v̇ = w2(−vQ+R), (5)



February 13, 2012 11:42 LMS˙ChenSystem˙IJBC

12

where u, v are the coordinates of the tangent plane TS2(0,1,0) at (0, 1, 0) ∈ S2, and the polynomial functions

P,Q and R are evaluated at (u/w, 1/w, v/w). Moreover we made w = 0 in order to get the points at the

infinite sphere.

The flow on U3 is determined by the system

u̇ = w2(−uR+ P ), v̇ = w2(−vR+Q), (6)

where u, v are the coordinates of the tangent plane TS2(0,0,1) at (0, 0, 1) ∈ S2, and P,Q and R are evaluated

at (u/w, v/w, 1/w). Moreover we consider w = 0.

The expression for the extend differential system in the local chart Vi, i = 1, 2, 3 is the same as in Ui

multiplied by (−1).

3.1. Proof of Theorem 1.1

From system (4) the expression of the Poincaré compactification of system (1) in the local chart U1 is given

by

u̇ = −au2w + auw + cw − aw − v + cuw,

v̇ = −auvw + avw + u− bvw.
(7)

For w = 0 (which corresponds to the points on the sphere S2 of the infinity) (7) reduces to

u̇ = −v, v̇ = u, (8)

from which follows that system (1) has the canonical linear center in the local chart of the Poincaré sphere

which has the endpoint of the x–axis at the origin. The flow in the local chart V1 is the same as the flow

in the local chart U1 reversing appropriately the time, since the compactified vector field in V1 coincides

with the vector field in U1 multiplied by −1. Hence system (1) also has the canonical linear center in the

local chart V1 of the Poincaré sphere. See figure 1.

From system (5) the expression of the Poincaré compactification of system (1) in the local chart U2 is

given by

u̇ = −cu2w + au2w + u2v − cuw + aw − auw,

v̇ = −cuvw + auvw + uv2 − cvw + u− bvw.
(9)

For w = 0 (which corresponds to the points on the sphere S2 of the infinity) (9) reduces to

u̇ = u2v, v̇ = uv2 + u. (10)

System (10) is integrable, since H(u, v) =
v2 + 1

u2
is a first integral. The phase portrait has the v–axis

formed by singular points. As before, the flow in the local chart V2 is the same as the flow in the local

chart U2 reversing appropriately the time. See figure 7.

From system (6) the expression of the Poincaré compactification of system (1) in the local chart U3 is

given by

u̇ = −u2v + buw + avw − auw,

v̇ = −uv2 + bvw + cuw − auw − u+ cvw.
(11)

For w = 0 (which corresponds to the points on the sphere S2 of the infinity) (11) reduces to

u̇ = −u2v, v̇ = −uv2 − u. (12)
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System (12) is equal to system (10), reversing the time hence its phase space is as shown in figure 7. As

before, the flow in the local chart V3 is the same as the flow in the local chart U3 reversing appropriately

the time.

u

v

u

v

U1 V1

Fig. 6. Dynamics of system (1) on the sphere of the infinity in the local charts U1 and V1.

u

v

u

v

U2 V2

Fig. 7. Dynamics of system (1) on the sphere of the infinity in the local charts U2 and V2. The v–axis is filled of singular

points.

4. The proofs of Theorems 1.2, 1.3 and 1.4

The following result, which will be used through this section, is proved in [Llibre et al., 2008].

Lemma 4.1. Let f(x, y, z) = 0 be an algebraic surface of R3 of degree m. The extension of this surface to

the boundary of the Poincaré ball is contained in the curve defined by

wmf
( x

w
,
y

w
,
z

w

)
= 0, w = 0.
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4.1. Proof of Theorem 1.2

Denote Z = {(0, 0, z) : z ∈ R} the z–axis. For any (0, 0, z0) ∈ Z the solution of the Chen system (1) is

ϕ(t) = (0, 0, z0e
−bt). Thus the whole orbit passing through (0, 0, z0) is contained in Z. Moreover if b > 0

then limt→+∞ ϕ(t) = (0, 0, 0), and if b < 0 then limt→−∞ ϕ(t) = (0, 0, 0). This proves the first part of the

statement of Theorem 1.2. The cases (a), . . . , (f) are treated below.

Case (a) In this case the invariant algebraic surface is F1 = x2 − 2az = 0 where a 6= 0 and b = 2a. Then

the graphic of the invariant algebraic surface x2 − 2az = 0 is a parabolic cylinder filled by the parallel

parabolas z = x2/2a. The singular points of Chen system are contained in this surface. Suppose that a < 0.

This parabolic cylinder in the Poincaré ball D3 is a surface for which the endpoint of each parabola is the

point (x, y, z) = (0, 0,−1) of the sphere S2 at infinity.

According to Lemma 4.1 the boundary of the surface on the sphere S2 of the infinity is given by the

system

x2 − 2ayw = 0, w = 0.

Simplifying the expression we get x = 0. It means that the boundary at infinity of the surface F1 = 0 is

the half great circle x = 0, z ≤ 0. For a > 0 we have an analogous result.

A complete analysis of the dynamics of the Chen system on the parabolic cylinders z = x2/2a projected

onto the (x, y)–plane can be found in [Cao et al., 2008]. In Table 2 we have the classification of the singular

points.

Table 2. Singular points of system (1) on the surface x2 − 2az = 0.

c− a ∆1 ∆ a(2c− a) Singularities Figure

= 0 1 saddle, 2 centers (9)

6= 0 0 1 unstable node (9)

< 0 ≥ 0 < 0 1 stable node

> 0 ≥ 0 < 0 1 unstable node (9)

< 0 < 0 < 0 1 stable focus

> 0 < 0 < 0 1 unstable focus (10)

< 0 ≥ 0 > 0 1 saddle, 2 stable nodes

> 0 ≥ 0 > 0 1 saddle, 2 unstable nodes (10)

< 0 < 0 > 0 1 saddle, 2 stable foci

> 0 < 0 > 0 1 saddle, 2 unstable foci (11)

Case (b) In this case the invariant algebraic surface is F2 = y2 + z2 = 0, whose graphic is the x–axis.

There is only one singular point of Chen system and it is contained in this surface. Suppose that a > 0.

The boundary of the surface on the sphere S2 of the infinity is formed by the two centers (±1, 0, 0). The

singular point is stable.

Case (c) In this case the invariant algebraic surface is F3 = x2 + y2 + z2 = 0, which reduces to the origin

(0, 0, 0).

Theorem 1.4 implies that if a > 0 then the related cofactor is negative and (0, 0, 0) is a global attractor;

and if a < 0 then related cofactor is positive and then (0, 0, 0) is a global repellor.
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y

y

(a) (b)

Fig. 8. The invariant algebraic surface x2 − 2az = 0 with a < 0 in R3 (a) and its compactification to the Poincaré ball (b).

(a) (b)

Fig. 9. Dynamics of the Chen system on the invariant algebraic surface x2 − 2az = 0 with a < 0 and c − a = 0 (a) and

c− a > 0, ∆ ≥ 0, a(2c− a) < 0 (b).

Case (d) In this case the invariant algebraic surface is

F4 = x4 +
4

3
cx2z − 4

9
c2y2 − 8

9
c2xy − 16

9
cx2 = 0.

The boundary of this surface on the sphere S2 of the infinity is the great circle x = 0 and the two

endpoints of the z–axis. A complete analysis of the dynamics of the Chen system on the invariant algebraic

surface projected onto the (x, y)–plane can be found in [Cao et al., 2008]. They proved that the projected

system has the first integral H(x, y) = x2 + 4a2y2x2 − 8a2yx, which completely determine the phase

portrait. Furthermore, there exists a line of singularities contained in the z–axis. The singular point (0, 0, z)

is a saddle normally hyperbolic to the z–axis if z < −7a; it is a normally hyperbolic stable node if
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(a) (b)

Fig. 10. Dynamics of the Chen system on the invariant algebraic surface x2 − 2az = 0 with a < 0 and (a) c− a > 0, ∆ < 0,

a(2c− a) < 0 and (b) c− a < 0,∆1 ≥ 0, a(2c− a) > 0.

Fig. 11. Dynamics of the Chen system on the invariant algebraic surface x2 − 2az = 0 with a < 0 and c − a > 0, ∆1 < 0,

a(2c− a) > 0.

−7a ≤ z ≤ −3a; and it is a normally hyperbolic stable focus if z > −3a.

Case (e) In this case the invariant algebraic surface is

F5 = x4 + 4cx2z − 4c2y2 + 8c2xy + 8c2x2 + 48c3z = 0.

The boundary of this surface on the sphere S2 of the infinity is the great circle {x = 0}. The singular point
(0, 0, 0) belongs to this surface. A complete analysis of the dynamics of the Chen system on the invariant
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x
y

z

Fig. 12. Dynamics of the Chen system on the invariant algebraic surface y2 + z2 = 0 with a < 0. The bold line is the z–axis,

which is also invariant.

x
y

z

Fig. 13. Dynamics of the Chen system on the invariant algebraic surface x2 + y2 + z2 = 0. The bold line is the z–axis, which

is also invariant.

(a) (b)

Fig. 14. Invariant algebraic surface x4 + 4
3 cx

2z − 4
9 c

2y2 − 8
9 c

2xy − 16
9 c2x2 = 0 on the Poincaré ball, for c > 0 and the

projected phase portrait.

algebraic surface projected onto the (x, y)–plane can be found in [Cao et al., 2008]. They proved that if

c < 0 then the projected system has a stable focus at the origin, while for c > 0 the projected system has
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an unstable focus at the origin.

x

y

z

x

z

y

Fig. 15. Invariant algebraic surface x4 + 4cx2z − 4c2y2 + 8c2xy + 8c2x2 + 48c3z = 0, for c > 0, in R3 and in the Poincaré

ball.

Case (f) In this case the invariant algebraic surfaces are given by F6 = y2 + z2 + 2az = α, with α > −a2,

which consists of a family of invariant cylinders surrounding the line {(x, y, z) | y = 0 and z = −a}. The
boundary of these cylinders on the sphere S2 of the infinity consist of the endpoints of the x–axis. There

is a line of singularities at the z–axis (the normal hyperbolicity of these singular points are studied in

Subsections 2.6 and 4.2). This completes the proof of Theorem 1.2.

4.2. Proof of Theorem 1.3

For b = c = 0 and a > 0 system (1) reduces to

ẋ = a(y − x), ẏ = −ax− xz, ż = xy, (13)

which has the first integral F (x, y, z) = y2 + z2 + 2az, since

(∇F ) · (P,Q,R) = (0, 2y, 2z + 2a) · (ay − ax, −ax− xz, xy) = 0.

Consequently the cylinders

Cα = {(x, y, z) | y2 + (z + a)2 = α+ a2, with x ∈ R and α > −a2}, (14)

surrounding the invariant straight line {x ∈ R, y = 0, z = −a} are invariant algebraic surfaces of system

(13). This system has the singular points (0, 0, z), z ∈ R, i.e. the z–axis is filled of singular points. Then in

each invariant cylinder Cα there exist two singular points, given by the intersection of Cα with the z–axis,

which are given by the roots of

z2 + 2az − α = 0, α > −a2.

We study the local (normal) stability of these singular points. The Jacobian matrix of system (13) at the

singular point (0, 0, z) is given by




−a a 0

−z − a 0 0

0 0 0


 ,
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which has the eigenvalues

λ1,2 = −a

2
±

√
a2 − 4a(a+ z)

2
, λ3 = 0.

Then the singular point (0, 0, z) is locally a normally hyperbolic saddle if z < −a and it is locally a normally

hyperbolic stable focus or node if z > −a (a node if −a < z ≤ −(3/4)a and a focus if z > −(3/4)a). Note

that for z = −a and y = 0 system (13) reduces to

ẋ = −ax, ẏ = 0, ż = 0,

which has the invariant straight line {x ∈ R, y = 0, z = −a} containing the singular point (0, 0,−a),

which is globally stable along this line.

The invariant straight line {x ∈ R, y = 0, z = −a} and the invariant cylinders Cα have their

boundaries at infinity as the negative and positive endpoints of the x–axis, which by the considerations

above are unstable singular points. The invariant cylinders Cα does not contain periodic orbits of system

(13). In fact, isolating y from the expression of Cα and substituting it in system (13) we have that the flow

restricted to Cα is given by

ẋ = −ax± a
√
α+ a2 − (z + a)2,

ż = ±x
√
α+ a2 − (z + a)2,

(15)

from which we obtain

ẋ = −ax+
aż

x

or, equivalently,

d

dt

(
1

2
x2 − az

)
= −ax2. (16)

Suppose that (x(t), z(t)) is a periodic solution of system (15). Then the function

1

2
x(t)2 − az(t)

is also periodic, hence its derivative must assume positive and negative values. But from (16) it follows that

this derivative takes only negative values, which is a contradiction. Therefore system (13) has no periodic

orbits on the cylinders Cα.

From the considerations above, applying the Poincaré–Bendixson Theorem for the flow defined on the

cylinders Cα, it follows that the 1–dimensional unstable manifolds of a saddle point must tend asymptot-

ically to a stable focus (or node), having this point as their ω–limit set, forming two heteroclinic orbits

(see Figure 4). Furthermore, the 1–dimensional stable manifolds of the saddle and the orbits contained

in the 2–dimensional stable manifold of the focus (or node), except the unstable manifolds of the saddle,

are contained in the invariant cylinder and go to infinity in backward time, tending asymptotically to the

singular points at infinity, located at the endpoints of the x–axis, thus having these points as their α–limit

sets (see again Figure 4).

The proof of Theorem 1.3 is complete.

4.3. Proof of Theorem 1.4

Suppose that ki < 0. Consider q ∈ ω(ϕ). Suppose that q is not in S2. Thus there exists tn → ∞ and c ∈ R
such that ϕ(tn) → q, Fi(ϕ(tn)) =

c

e−kitn
→ 0 and Fi(ϕ(tn)) → Fi(q). It follows that Fi(q) = 0 and then
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q ∈ {Fi = 0}. Suppose now that q ∈ α(ϕ) and q is not in S2. Thus there exists tn → −∞ and c ∈ R such

that ϕ(tn) → q and Fi(ϕ(tn)) · e−kitn → Fi(q) · 0 = c. Thus c = 0 and then Fi(ϕ(t)) · e−kit = 0, for any

t ∈ R. It implies that Fi(ϕ(t)) = 0, for any t ∈ R. Analogously we prove the case ki > 0.

5. Numerical simulations

From the cases described in Theorem 1.2 we can highlight the case (f), for which system (1) has a line of

singularities contained in the z–axis. As stated in Theorem 1.3, the phase space is foliated by the invariant

cylinders y2 + z2 + 2az = α, with α > −a2, each one having two singular points of system (1). One of

these singular points is a stable focus (or node) and the other one is a saddle. The numerical simulations

performed indicate clearly that the unstable 1–dimensional manifolds of a saddle connect to a stable focus,

forming a heteroclinic trajectory (see Figure 4); on the other hand, the 1–dimensional stable manifolds of

the saddle and the orbits contained in the 2–dimensional stable manifold of the focus (or node), except the

unstable manifolds of the saddle, go to infinity in backward time (see again Figure 4). In the Figures 16

to 18 we present some more numerical solutions of system (1) with b = c = 0 and a > 0, confirming the

statements of Theorem 1.3.

(a) (b)

Fig. 16. (a) Two stable foci of system (1) with b = c = 0 and a > 0 contained on two different invariant cylinders shown in

(b), obtained following the solutions in (a) backwards in time.

The family of cylinders described above shrink into the invariant straight line {y = 0, z = −a}, where
the dynamics is trivial as it was described in Section 2.
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(a) (b)

Fig. 17. (a) Two heteroclinic orbits connecting a saddle point with a stable focus; (b) its projection onto the yz–plane,

showing that they are contained on the invariant cylinder given by F6 = α.

(a) (b)

Fig. 18. (a) Following in backward time the stable manifolds of a saddle shown in Figure 17 (a), showing that these manifolds

are contained on a cylinder F6 = α.
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(a) (b)

Fig. 19. Three pairs of heteroclinic orbits connecting saddle points on the z–axis to stable foci; (b) its projection onto the

yz–plane, showing that they are contained on three different invariant cylinders given by F6 = α with different values of α.
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