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Modeling the dynamics of persistent infections presents several challenges. These diseases are
characterized by long latency periods, which makes it compulsory to consider populations of
varying sizes. In this paper, we discuss a model for the spreading of persistent infections in
homogeneous, well-mixed, populations. We first derive the equations describing the system’s
dynamics and find the epidemic threshold by means of a stability analysis. Analytical solutions
are then shown to agree with results obtained with numerical simulations. The present model,
although simple, open the path to more complex approaches to the spreading of persistent
infections.
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1. Introduction

Epidemic spreading processes constitute a vast field of intense research since nearly a century [Anderson
& May, 1992; Daley & Gani, 1999; Murray, 2002]. The mathematical models developed in this period
to describe disease dynamics have become invaluable tools for health authorities. These theoretical tools
have been at the root of many of their decisions about strategies of vaccination, prevention and profilaxis
[Anderson & May, 1992; Daley & Gani, 1999; Murray, 2002; Strogatz, 2001]. As time goes by, these models
have suffered a gradual process of sophistication, incorporating the influence of new parameters of the
substrate populations on top of which the epidemics take place [Hufnagel et al., 2004; Guimerá et al.,
2005; Colizza et al., 2006] and considering each time more subtle and precise dynamics [Li et al., 1999;
Gómez-Gardeñes et al., 2008]. The improvement of computational platforms with ever-increasing complex-
ity aimed at providing models with high accuracy and predictive power necessary implies the gathering of
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information regarding both population structure and disease specificities. The task of improving the qual-
ity and accessibility of the actual information required for an optimal description of epidemic processes is
challenging, but in the last few years, the topological characterization of contact networks on top of which
epidemics take place has actually stirred up the discipline [Boccaletti et al., 2006; Eubank et al., 2004;
Colizza et al., 2007; Gómez-Gardeñes et al., 2008; Colizza & Vespignani, 2008; Meloni et al., 2009]. This
has been feasible thanks to the use of new computational methods, and the incorporation of data coming
from such diverse sources as simple statistical surveys [Liljeros et al., 2001], mobile phone calls registers
[González et al., 2008], bank note mobility patterns [Brockmann et al., 2006], global transport networks
[Colizza & Vespignani, 2008] and geo-demographical distribution of population [Ferguson et al., 2005].

Despite of all the progresses made, epidemic modeling has not gained in accuracy for all diseases. In
fact, as a consequence of its greater -and grateful- mathematical simplicity, the SIR (susceptible-infected-
recovered) and SIS (susceptible-infected-susceptible) models are the frameworks for which highest levels
of accuracy and sophistication have been achieved, both at a theoretical, general level [Pastor-Satorras &
Vespignani, 2001; Lloyd & May, 2001; Moreno et al., 2002, 2003] or within more precise, applied scenarios
[Meloni et al., 2009; Gómez-Gardeñes et al., 2008; Ferguson et al., 2005]. Moreover, the current degree of
modeling sophistication corresponds to short-cycle diseases, whose main feature consists in that individuals
become infectious suddenly after becoming infected [Murray, 2002]. These are the cases of diseases that
typically transmit from one person to another like respiratory virus and influenzas, two highly topical
examples being SARS and H1N1 (influenza A). The fact that the cycle of infection is short-lived allows a
most efficient reconstruction of the contact maps between infectious and susceptible individuals and a key
theoretical and computational approximation, common to most of current models: the total population
size can be assumed to be constant during the outbreak.

Persistent diseases −for which infected individuals can enter into asymptomatic, latent states for a not
negligible periods before developing clinical symptoms− are the paradigmatic, opposite scheme to short
cycle diseases, both regarding the mathematical and computational challenges that its modeling represents,
and the relative less sophisticated models currently available [Li et al., 1999; Murphy et al., 2002; Sanz
et al., 2010]. However, the global impact of persistent diseases -mostly in underdeveloped countries- is
everything but a small problem, evidencing the need for a global research effort. Specifically, the most
threatening persistent pathogen is the tuberculosis (TB) bacillus. Mycobacterium tuberculosis (M.tb) is an
extraordinarily successful pathogen that currently infects approximately one-third of the global population,
causes 8 million new cases of tuberculosis annually and is the responsible of more than 2 million deaths
per year [Bleed et al., 2001]. TB prevalence was diminishing for decades [Wilson, 1990; Styblo et al., 1969;
Daniel et al., 1994], but the tendency was alarmingly inverted in the last years due to the proliferation of
multi-drug resistant strains, the coexistence with other deadly diseases such as AIDS and the progressive
lack of effectiveness of the main preventive tool since 1921: the BCG vaccine.

In this work, we present a new model adequately designed for describing the transmission of tuberculosis
on a well mixed population, −i.e. in which all the individuals have the same probability of contacting
each other per unit time− whose total volume can vary in time. The extremely long typical periods that
characterize latency in tuberculosis disease [Murphy et al., 2002] force us to consider open populations, and
so, a SEIR-like (susceptible-exposed-infectious-recovered) approach [Hethcote, 2000] results more adapted
to the TB case. Within this context, proportions of susceptible, latent and sick individuals with respect to
the varying population size appear in the model as more suitable variables from a mathematical point of
view, rather than numbers of individuals of each type -the most abundant approach commonly found in
the literature [Li et al., 1999; Murphy et al., 2002; Blower et al., 1995]-. On the other hand, and contrary to
other persistent diseases, in tuberculosis infection, latency is not a necessary step in the infection cycle. In a
non vanishing proportion of cases, infected individuals become infectious suddenly after contagious, just as
for a SIR-like process. This phenomenology, -called primoinfection- is not usually taken into account in pure
SEIR models, which nevertheless have been mathematically characterized into great detail, also for varying
population sizes [Hethcote, 2000; Li et al., 1999]. Our model is therefore a SEIR epidemiological model
with primoinfection formulated in terms of densities and assuming a well mixed population. The model so
derived can be understood as a lineal combination of a somehow generalized variable-population SIR model
plus a classical SEIR model similar to that studied in [Li et al., 1999]. In what follows, we focus on the
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analytical characterization of the epidemic threshold of the model, that adequately reduces to those of the
SIR and SEIR cases when the adequate parameters are turned off. We also perform numerical simulations
on randomly rewired networks simulating the aerial spreading of the disease within a demographically
homogeneous area and show that they agree with the stationary proportions of susceptible, latent and sick
individuals analytically predicted by the model.

2. The model

As we have already pointed out, the main feature of the tuberculosis’ infection cycle is its long latency pe-
riod. In this sense, after entering the organism, the pathogen reaches the bloodstream, and it is phagocyted
−but not killed− by the macrophages of the human immune system. At this point, the bacillus is forced
by the phage to interrupt its growth process and to sporulate, maintaining its metabolism in a basal state
that traduces in a latency state for the host, who neither suffer any clinical symptom, nor is infectious. This
latency period lasts in average as much as 500 years [Murphy et al., 2002], a time that obviously exceeds
human life expectancy. This means that most tuberculosis carriers die because of reasons not related with
the disease, even without being aware of their infected condition.

The active phase of the illness arrives when the bacillus enters in the reproductive phase. This can
occur suddenly after the contagious as a consequence of the macrophages incapacity to force the bacillus’
sporulation. This situation leads to primoinfection and occurs in a 5% to 10% of cases [Comstock, 1982;
Styblo, 1986]. The other possibility consists of the rupture of the dynamical equilibrium between the
pathogen and the host that ultimately defines the latency state. When this occurs, −usually related to
suppressive episodes of the immune system such as AIDS infection or chemotherapy in cancer patients− the
bacillus leaves out its spores and reproduces up to the lysis of the phage. In both cases, actively reproductive
bacteria freely flow into the bloodstream and migrate, typically to the lungs, where their uncontrolled
growth cause the tubercle lesions from which the disease takes its name. At this point, the pathogens reach
the sputum, making the host infectious. Although other tissues are susceptible of becoming the pathogen’
substrate −mostly nervous and osseous tissues− pulmonary tuberculosis is not only the statistically most
relevant variety, but also the unique responsible of the aerial spreading of the bacillus.

Taking into account the above features of TB, we have constructed our model by dividing the population
into three subsets, depending on the state of the individuals in relation to the disease: uninfected −class
U−, latent carriers −class L− and tuberculosis patients −class T− who are simultaneously infected and
infectious. For simplicity, we assume that all individuals that enter into the active phase of the disease
are infectious, hypothesis that is equivalent to neglect the proportion of extra-pulmonary tuberculosis. Let
β be the number of contacts per unit time. In a population made up of N individuals, with U healthy
individuals and T tuberculosis patients, the closure relationship N = U+L+T is complete when the latent
carriers L, who neither can transmit the bacillus nor can suffer a contagious, are also taken into account.
So, we have that the number of contacts per unit time between healthy and infectious individuals is βT U

N .
Denoting by λ the probability that a healthy individual gets infected after contacting an infectious subject,
the number of new contagions per unit time in our population reads as λβT U

N .
As noted before, for the tuberculosis case, once an individual catch the bacillus there are two possibil-

ities: either the newly infected subject get sick (and therefore infectious as well) or he enters into latency.
We assume that the former transition occurs with probability p and therefore the latter takes place with
probability p. In terms of our model, this amounts to consider a flux from the healthy to the latent state
U → L of volume (1 − p)λβT U

N per unit time, and the complementary primoinfection flux U → T that
corresponds to pλβT U

N individuals per unit time.
Once the contagion dynamics is defined, we also consider that the population size varies concurrent

to the disease spreading. To take this variation into account, we add to the model demographical fluxes
−births and deaths not related with the disease−. Hence, bN new individuals per unit time are added to
the population −all of them healthy− and µN are removed (i.e., deceased individuals are homogeneously
distributed among the three classes). According to this scheme, b represents the birth rate of the population
and µ its natural death rate. Finally, latent individuals go to the active phase at a relapse rate r that
represents, essentially, the inverse of the mean latency period. This implies a flux of rL individuals per
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Fig. 1. Flux diagram of our model for TB spreading. Labels represent the possible transitions between the compartments
in which the whole population is divided according to the individuals’ state. The model assumes a well mixed population of
varying size. Parameters are introduced in the main text.

unit time abandoning the latency class and entering into the active phase. Moreover, sick individuals die
at a rate µtb. Figure 1 shows the flux diagram of the different transitions that define our epidemic model.
The corresponding mathematical description is given by the following system of ODEs, in which the last
equation corresponds to the temporal evolution of the whole population:

dU(t)
dt

= bN(t)− λβU(t)
T (t)
N(t)

− µU(t),

dL(t)
dt

= (1− p)λβU(t)
T (t)
N(t)

− (µ+ r)L(t),

dT (t)
dt

= pλβU(t)
T (t)
N(t)

+ rL(t)− (µ+ µtb)T (t),

dN(t)
dt

= (b− µ)N(t)− µtbT (t). (1)

2.1. Reformulation in terms of densities

The description of the dynamical system in terms of the number of individuals is nevertheless not an
optimal choice. To evaluate the impact of the spreading process on a population of varying size, it is more
reasonable -and mathematically kinder- to study the temporal evolution of the densities of healthy, latent
and sick individuals, rather than the number of individuals of each type. In order to do that, we define the
respective densities as:

u(t) =
U(t)
N(t)

,

l(t) =
L(t)
N(t)

,

t(t) =
T (t)
N(t)

. (2)

In this way, we recover a non-dimensional closure relationship u+ l + t = 1. Taking into account that

du(t)
dt

=
1

N(t)

(
dU(t)
dt
− udN(t)

dt

)
,

dl(t)
dt

=
1

N(t)

(
dL(t)
dt
− l dN(t)

dt

)
,

dt(t)
dt

=
1

N(t)

(
dT (t)
dt
− tdN(t)

dt

)
, (3)

the temporal evolution of the system in terms of densities is finally given by:
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du

dt
= b− (λβ − µtb)ut− bu,

dl

dt
= (1− p)λβut+ µtblt− (b+ r)l,

dt

dt
= pλβut+ µtbt

2 − (b+ µtb)t+ rl. (4)

This kind of approach is specially suitable for open populations [Li et al., 1999; Sanz et al., 2010],
though it is not the only possible choice [Murphy et al., 2002; Hethcote, 2000]. Note that in the previous
equations the natural death rate does not appear anymore.

2.2. Epidemic threshold

State-of-the-art epidemiological models are aimed at reproducing actual epidemic outbreaks as accurately
as possible. Their final goal is to anticipate the course of an outbreak or even make predictions in real time,
which will provide health authorities with new means to fight disease contagion. However, compartmental
models in epidemiology share, despite of particularities of each model, a common dynamical outcome
[Anderson & May, 1992; Daley & Gani, 1999; Murray, 2002]. Typically, in these kind of models the
parameter (phase) space is divided in two regions. In one of them, an initially healthy population remains
macroscopically unaffected after the addition of a small fraction of infectious individuals, while, in the
other, the disease is able to spread to affect a macroscopic fraction of the population. That is, there are
two asymptotic, absorbing states: the disease-free regime and an active phase. The critical epidemic point or
epidemic threshold divides the two regions of the phase space. The determination of the epidemic threshold
is one of the key goals of epidemiology, for this would allow designing efficient vaccination campaigns and
other countermeasures [Hethcote, 2000]. This will also be our main objective. To this end, let us first
characterize the fixed points of the dynamics described in (2), which have to verify:

du∗

dt
= 0 = b− (λβ − µtb)u∗t∗ − bu∗,

dl∗

dt
= 0 = (1− p)λβu∗t∗ + µtbl

∗t∗ − (b+ r)l∗,

dt∗

dt
= 0 = pλβu∗t∗ + µtbt

∗2 − (b+ µtb)t∗ + rl∗. (5)

In Eq. (5). only two the equations are independent due to the closure relationship u+ l + t = 1. The
trivial solution for the system (5) is the fixed point corresponding to a disease free population: (u∗, l∗, t∗) =
(1, 0, 0). In order to look for not trivial fixed points, we can work out u∗ from the first equation in (5) to
obtain:

u∗ =
b

(λ− µtb)t∗ + b
, (6)

which, after substitution in the third equation in (5) gives

dt∗

dt
= 0 = t∗

h
µtb(λβ − µtb)t∗

2
+ [µtbb− (µtb + b+ r)(λβ − µtb)]t∗ + [λβ(pb+ r)− (r + b)(µtb + b)]

i
. (7)

This equation is quadratic except for the common factor t∗, which in turns guarantees stationarity of
the disease free fixed point. So, we could write down explicitly the analytical expressions of the additional
two solutions t∗1 and t∗2 of the quadratic trinomial. However, if we call:

µtb(λβ − µtb)t∗2 + [µtbb− (µtb + b+ r)(λβ − µtb)]t∗ + [λβ(pb+ r)− (r+ b)(µtb + b)] = ζt∗2 + ηt∗ + Θ, (8)

we can more easily determine the sign of the three coefficients ζ, η and θ depending on the possible
values of λβ:
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Region 1: 1→ 2 Region 2: 2→ 3 Region 3: 3→ 4 Region 4:

λβ < λβ1 λβ = λβ1 λβ1 < λβ < λβ2 λβ = λβ2 λβ2 < λβ < λβ3 λβ = λβ3 λβ3 < λβ

ζ - 0 + + + + +
η + + + 0 - -
θ - - - - - 0 +
ζ - 0 + + + + +

t∗1 + t∗2 = −η/ζ + N.d. - 0 + + +
t∗1t

∗
2 = θ/ζ + N.d. - - - 0 +

Phase portrait

• Main term ζ = 0←→ λβ = (λβ)1 = µtb.
• First order term η = 0←→ λβ = (λβ)2 = µtb

µtb+2b+r
µtb+b+r

.

• Independent term Θ = 0←→ λβ = (λβ)3 = (r+b)(µtb+b)
pb+r .

which, noting that for any parameter combination, it is verified that

(λβ)1 < (λβ)2 < (λβ)3, (9)

allows us to construct the following sign table for the phase portrait description of the model’s dynamics:

Let us focus firstly on the point t∗ = 1, that apparently can appear as a dynamical attractor for the
physically meaningful range 0 ≤ t ≤ 1 in all the regions, with a basin of attraction that corresponds, for
regions 2 to 4, to values of t that are greater than the largest solution of Eq. (7), that is, when ζ > 0 (i.e.
λβ > µtb):

t∗max =
−η +

√
η2 − 4ζθ

2ζ
, (10)

or with minus sign before the root, when ζ < 0. In region 1, the basin of this hypothetical disease free
attractor corresponds to the values of t > t∗min, where we denote by t∗min the smallest solution of (7).
Note that, provided that t < 1, entering the basin of attraction leads to ṫ > 0 until t = 1. However, we
should also consider the temporal evolution of N . More precisely, it is easy to see that, when proportion
of infectious individuals exceeds the threshold:

tlimit =
b− µ
µtb

, (11)

the spreading process is able to cause a demographical decay in the population, i.e., Ṅ < 0. This behavior
continues to be so until the annihilation of the whole population. Therefore, as it can be seen from Table
1, when the proportion of sick individuals is greater than t∗min −in region 1− or t∗max −in regions 2 to 4−,
the proportion of sick individuals grows up indefinitely. This growth of the density of infectious individuals
eventually causes that the whole population dies out. Therefore, the point t = 1 is everything but an stable
point of the dynamics, as it leads to population’s extinction. So, at least in regions 1 to 3, the only −also
stable− possible fixed point corresponds to the disease free state, i.e., to t∗ = l∗ = 0.

The situation is different in region four, where there exist an additional stable stationary value for
t∗ > 0. Hence, in this region, the previous fixed point t∗ = l∗ = 0 is unstable and the transition between
regions three and four defines the epidemic threshold, which is given by the condition:

(λβ) = (λβ)c =
(r + b)(µtb + b)

pb+ r
. (12)
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Fig. 2. t∗ values at stationarity vs the spreading rate. The figure shows the predicted values of t∗ from the model and
those obtained from MC simulations. Error bars correspond to two times the standard deviations for the 100 realizations
carried out for each numerical point. Results were obtained for an initial population of No = 1000 individuals distributed as
(uo, lo, to) = (0.5, 0.4, 0.1). The rest of parameters are those discussed in the main text.

As a matter of fact, there is a simpler way to obtain the threshold Eq. 12. The condition for the singularity
of the Jacobian matrix in the vicinity of the disease-free fixed point reduces to:∣∣∣∣∣∣

−b 0 −(λβ − µtb)
0 −(b+ r) (1− p)λβ
0 r −(b+ µtb) + pλβ

∣∣∣∣∣∣ = 0, (13)

that leads to the same threshold in Eq. 12., or expressed as it is usually found in the literature:

(λ)c =
1
β

(r + b)(µtb + b)
pb+ r

. (14)

Finally, it is worth noticing that the result Eq. 14 reduces to the well-known threshold for the SIR model
[Murray, 2002] when we take b = µ = 0 and p = 1. In turn, when taking p = 1.

2.3. Numerical simulations.

In this section, we compare the analytical, stationary proportions predicted by the model −those that
constitute the solution of the system Eq. (5) and that can be easily derived by explicitly working out t∗ at
(7) and substituting it into (6)− with the results of numerical Montecarlo (MC) simulations.

We consider an initial population of No individuals distributed in the different classes. At each time
step, each sick individual contacts β randomly chosen individuals. When one of these contacts is a healthy
node −i.e., an individual belonging to U class− the contagion is produced with a probability equal to the
spreading rate λ. In the case that contagion takes place, the newly infected node goes directly to the T
class with probability p. In the complementary case (with probability 1 − p), the contagion causes the
individual to enter into latency. The results that follow have been obtained using an initial population of
No = 1000 individuals and we have taken β = 6. In addition to the contagion dynamics, at each time step
individuals of classes U and L leaves the system with probability µ, while sick individuals die with a higher
probability equal to µ + µtb. Births are also simulated by introducing bN individuals −all of them into
class U−. Finally, the transition from latency to the infectious phase takes place with probability r.

Regarding the parameter values, for birth and natural death rates −b and µ− we have taken as a
reference the typical values of a developed country like Spain: b = 0.01 and µ = 0.009 events per capita
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and year. The rest parameters −those directly related to the disease spreading− are not easily measurable
on real populations. In spite of this, plausible approximations can be made, and usually, typical validity
ranges are accepted in the literature [Murphy et al., 2002]: r = 0.002, p = 0.07 and, finally µtb = 0.8 deaths
due to tuberculosis per capita and year. Therefore, the spreading rate will be our free, control parameter
(in part because it is the most harder to obtain). In particular, we explore the region between λ = 0.5 and
λ = 1.

Given the previous selection of parameters, it can be easily shown that we are between regions 3 and 4.
So, taken into account the analytical characterization of the dynamics of the model made in the previous
section, the only caution one should have in mind is that the initial proportion of sick individuals should
not be bigger than t∗max. This will guarantee that the state t = 1 will not become an attractor of the system
dynamics. In this sense, it can be easily calculated that, for our set of parameters, the largest solution of
(7) is always greater than unity and thus the eventual state t∗ = 1 will never be an attractor for the
dynamics. Moreover, substituting the chosen model parameters in Eq. 14 predicts λc = 0.6.

Figure 2 compares the results derived from the analytical solution of the model to those obtained from
MC simulations. As it can be seen, although the analytical curve is systematically above the numerical
values, it lies within the limits of the error bars, and therefore both are in agreement. Regarding the
epidemic threshold, MC results predict a somewhat smaller value for λc. Although the differences are not
large and the agreement can also be considered good, it is likely that these deviations come from finite size
effects and that working with larger system sizes will reduce the gap.

3. Conclusions

We have discussed a model for the spreading of persistent infections in homogeneous populations. The model
complements the epidemiological framework previously discussed for complex heterogeneous populations
[Sanz et al., 2010]. This kind of approach is particularly suited for diseases like Tuberculosis, where one can
have at the same time new ingredients such as long latency periods and primoinfections. Finally, it is also
worth mentioning that the model discussed here is probably the simplest one may devise for the spreading
of persistent infections in homogeneous populations. As it has been shown before for the SIR model, the
results obtained for well-mixed populations are equivalent (for instance, in what concerns the existence of
a critical pint) to those one would obtain if the population were considered homogeneous, i.e., a random
network with a bounded second moment of the degree distribution [Boccaletti et al., 2006]. Future works
should consider the implementation of models that explicitly takes into account the concurrent interaction
of persistent infections with other diseases, which is known to drastically change the dynamics of the disease
being modeled.
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