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Exploring the Kibble-Zurek mechanism in a secondary bifurcation
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We present new experimental results on the quenching dynamics of an extended thermo-convective
system (a network array of approximately 100 convective oscillators) going through a secondary
subcritical bifurcation. We characterize a dynamical phase transition through the nature of the
domain walls (1D-fronts) that connect the basic multicellular pattern with the new oscillating one.
Two different mechanisms of the relaxing dynamics at the threshold are characterized depending on
the crossing rate µ = dε

dt

∣

∣

ε=0
(where ε is the control parameter) of the quenched transition. From the

analysis of fronts, we show that these mechanisms follow different correlation length scales ξ ∼ µ−σ.
Below a critical value µc a slow response dynamics yields a spatiotemporal coherent front with weak
coupling between oscillators. Above µc, for rapid quenches, defects are trapped at the front with
a strong coupling between oscillators, similarly to the Kibble-Zurek mechanism in quenched phase
transitions. These defects, which are pinned to the fronts, yield a strong decay of the correlation
length.

Keywords: Synchronization, pattern formation, non-equilibrium phase transitions, Networks, front
dynamics, symmetry breaking bifurcations, cosmology.

Note: A version of this article has been accepted for publication in the Int. J. Bifurcation and
Chaos

I. INTRODUCTION

A dynamical synchronization transition is the closest
expression of a ’real’ phase transition in nature. Some re-
cent interest on synchronization processes [1–10] is meant
to understand the interaction between oscillating units
which give rise to a collective behavior (i.e. as in a phase
transition or in a Network). A key aspect of most phase
transitions is the breaking of symmetries which should
be inherited in the synchronization processes.

Moreover, in nature, systems that undertake symmetry
breaking transitions show a richer phenomenology. As a
matter of fact, it has been argued that in the early uni-
verse, short after the Big Bang this kind of transitions
had made possible the appearance of the present elec-
tromagnetic field from unified fields, and the asymme-
try between matter and antimatter in the universe [11–
13], among other important phenomena. Kibble [12] pro-
posed that cosmological phase transitions which under-
went in the early universe could also be responsible for
the large scale structure that is observed in the present
time (i.e. distribution of galaxies). This may happen due
to the existence of many causally uncorrelated regions in
a less symmetric phase after the transitions. This will
lead to a phase mismatch and thus, to the appearance of
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phase singularities (topological defects). Those defects
determined huge energy fluctuations which could be re-
lated to the large scale of the universe, and even to the
existence of topological dark matter [14].

Later, Zurek [15, 16] proved that this causal mech-
anism has its counterpart in condensed matter systems,
and in general can be applied to all second order breaking
phase transitions. The generalized mechanism is known
as the Kibble-Zurek one. The argument is the follow-
ing: on one hand, when the control parameter is far from
the critical point, any slow change in the control param-
eter would be followed adiabatically by the states of the
system. On the other hand, in the critical region the
relaxation time diverges. Thus, the system cannot fol-
low the control parameter because otherwise the fluctu-
ations should propagate faster than the limiting speed in
the system. Consequently the correlation length of the
fluctuations gets frozen until the adiabatic dynamics is
restored (after the transition is crossed). Then, fluctua-
tions grow to form the new phase, and topological defects
appear due to the aforementioned mismatch. This kind
of defects, due to their topological stability, keep the cor-
relation values until well after the transition is performed.
This mechanism leads to a power law for the correlation
length as a function of the rate of change of the control
parameter.

Many condensed matter experiments have been per-
formed to confirm cosmological theories in the labora-
tory [15, 17–19]. Among them, in liquid crystals [20–
22], in superfluid helium [23–30], in superconductors and
Josephson junctions [31–38], in Bose-Einstein conden-
sates [39, 40] and in other condensed matter systems [41].
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Numerical and theoretical approaches have been numer-
ous.

The Kibble-Zurek mechanism has also been extended
to non-equilibrium primary bifurcations [42] and has
been the focus of experiments in nonlinear optical sys-
tems [42, 43] and in fluid convection systems [44–46]. All
these bifurcations are supercritical (i.e. second order) or
very weakly subcritical. In a primary bifurcation the sys-
tem goes from a homogeneous state to a patterned one
(with broken symmetries). In a secondary bifurcation,
the previous existing phase (pattern) could nonlinearly
interact with the fluctuations. Thus, the dynamics of the
critical modes show features that will be relevant simi-
larly to primary bifurcations where the broken symmetry
phase has more than one critical mode [44].

On the other hand, in subcritical bifurcations we have
to distinguish two cases: weakly subcritical bifurcations
where the causal mechanisms could hold for fast enough
transitions, due to the existence of a slowing down of
the relevant modes (although the relaxation times do not
diverge) [44, 47] and others where the mechanisms are
completely different [48].

In this paper, we show first experimental results on
the quenching dynamics taking place in a convective net-
work of oscillators driven by a quasi-1D heating through
a secondary bifurcation. The basic pattern is a station-
ary multicellular pattern (ST) from which different heat-
ing ramps will send the system towards an oscillatory
pattern throughout the presence of domains of traveling
waves (TW) and mixed patterns of counter-oscillating
waves over ST (ST/ALT). Furthermore, as we increase
the quench intensity the system will cross a second bi-
furcation to the counter-oscillating pattern (ALT). This
experiment has been studied in a previous experimen-
tal setup [49, 50] and an improved version can be found
in [51, 52]. Therefore, this experiment allows us to study
the quenching dynamics from a constrained degeneracy
given by a nonhomogeneous basic pattern (ST). For this
system we have already shown that the classical pattern
formation can be understood from the point of view of
Networks [1] as the phase synchronization between in-
dividual oscillators. In this sense, this work is very rele-
vant because the results on the quenched dynamics in the
critical region can be translated into the interaction and
collective behavior of those oscillators. Notwithstanding
the existence of very few numerical works [53] pointing
towards this direction.

Although the classical Kibble-Zurek mechanism (its
limitations and possible extensions) is still a matter of
discussion [54, 55], we aim at finding new clues in exper-
iments which could enlighten the Kibble-Zurek mecha-
nisms from its foundations (i.e. causality and dynamical
aspects of bifurcations). Specifically, we are going to fo-
cus for the first time on the fact that the studied bifurca-
tion is secondary, and also we will consider its weak (but
not very weak, though measurable) subcritical character.

II. EXPERIMENTAL SETUP

Our system consists on a rectangular cell Lx × Ly

(Lx = 470 mm, Ly = 60 mm) filled with a Silicone
oil of viscosity 5cSt. Convection is achieved by heat-
ing the fluid layer from below and along a central line
(in the widest direction x̂). The fluid layer lies over a
plane plate with a heating rail underneath. Tempera-
ture on this underlying plate (Tb) is selected at a heating
bath (Th). The upper surface of the fluid layer is opened
to the atmosphere and the depth of the fluid layer d is
measured with a micrometric screw. Lateral cooled walls
(Tc) and room temperature (Ta) are kept at 20.0±0.1◦C.
The control parameter for a fixed depth is the vertical
temperature difference ∆Tv = Th − Ta and the reduced
control parameter is defined as ε = ∆Tv−∆Tvc

∆Tv
, where

∆Tvc = Thc − Ta is the critical value at the threshold.
A more detailed description of the present experimental
setup can be found in Miranda and Burguete [51]. For
the results reported here, we have been supplied with a
different 5cSt Silicone oil whose only effect is to displace
the convective thresholds.
During each quench, the temperature Tb is recorded

at the heating line and controlled at the entrance of the
cell in order to check the heating bath response. Because
the underlying plate is the most external structure from
the inner core of the cell, we have obtained that Tb ≈
Th − 9.0◦C.
The dynamics of the convective cells is recorded from

the shadowgraphy images on the screen by placing an
acquisition line (we use an image acquisition board con-
nected to a CCD camera) next to the heating line. Each
measurement consists on a spatial and temporal sampling
image in grey levels which is a spatiotemporal diagram.
Spatiotemporal diagrams show a central region of the cell
of 156 mm long that is recorded during 900 seconds at a
frequency of 1 s−1.
Due to the high thermal inertia of this system, before

recording each spatiotemporal diagram it is necessary to
achieve a permanent regime which takes at least three
hours from an initial state where the whole cell is at
room temperature.

III. MEASUREMENT PROCESS

On the stability diagram in Fig. 1, we set our control
parameters at (d = 7.5 mm, ∆Tv = 16.0◦C), close to the
codimension-2 point from below, in order to achieve a
constant velocity at the static threshold of the secondary
bifurcation ε = 0 (see Fig. 2). Thus, the crossing rate
is given by µ = dT

dt

∣

∣

ε=0
. This secondary bifurcation

is weakly subcritical when it is crossed quasi-statically
(with a subcriticality of ǫ ≈ −0.02 [51]). Under these
conditions, the system bifurcates from a multicellular
pattern towards the oscillatory pattern ST/ALT+TW at
the first subcritical threshold, or towards ALT at the
second one depending on the quench power. We observe
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FIG. 1: Stability diagram. Solid lines bound regions with
the same asymptotic dynamics. The upward arrow shows the
range of quenches that has been explored at d = 7.5 mm. Co-
2 stands for codimension-2 point. Stationary patterns are:
PC (primary convection which, in our system, is the homo-
geneous state) and ST (multicellular pattern). Oscillatory
patterns are: ALT (resonant triad), ST/ALT (mixed pattern
of irregular clusters in ALT over ST), TW (traveling waves)
and ST/ALT + TW (coexistence between the mixed pattern
ST/ALT and TW).

from Fig. 1 that, beyond the codimension-2 point (d ≥ 8
mm), the system bifurcates supercritically from a homo-
geneous state towards traveling waves.

The starting temperature selected at the heating
bath is determined from the closeness to the static
threshold ε = 0 of the secondary bifurcation towards
ST/ALT+TW. This fact assures the linear behavior of
temperature in the vicinity of ε = 0. Thus, quenches
start at the stationary regime ST which is characterized
by a wavelength (λs) that allows us to define an array of
convective oscillators, initially at rest. In the course of
quenches, these convective oscillators will become non-
locally coupled through the correlation length ξ. This
correlation length is measured at the transition front.

Each heating ramp starts at Th = 36.0◦C (on the un-
derlying plate the corresponding temperature is Tb =
27.2± 0.1◦C) and is characterized by the final tempera-
ture in the range from Th = 42.0◦C to Th = 54.0◦C. In
order to get a better accuracy, we have worked with steps
of 1 or 2 degrees depending on the subcritical nature of
the region to be studied.

The results reported here correspond to the average
of four spatiotemporal diagrams for each heating ramp.
For a given crossing rate µ, we find out the corresponding
transition front. We define this 1D-front as the spatial
position where the new phase has been identified in time:
Fµ(x, t) = 0. From now on, it will be expressed explic-
itly as t = fµ(x), which is a univaluated function. Fronts
are determined from the amplitude and phase diagrams
because it is not possible to track the oscillators paths in-
dividually along the quenched dynamics. Trajectories de-
scribed by each oscillator might become deformed along
quenched regimes invading neighboring paths in order to

time0

0

Multicellular pattern

Oscillatory pattern
static threshold

ε

εi
−to to

 −t(   ) µ =    εdt

 ε=0
t(  )ε

ε
d

o

o

FIG. 2: Sketch of the control parameter ramp at the thresh-
old of a secondary instability ε = 0 (Tb = 29.5◦C). The
slow relaxation dynamics takes place in the region [−to, to]
where the crossing rate is given by µ = dε

dt

∣

∣

ε=0
. The ini-

tial value of the control parameter for each quench is εi
(Tb = 27.2◦C) where the system exhibits the multicellular
regime (ST). Above ε = 0 the system bifurcates to an oscilla-
tory pattern.

adjust to a new wavenumber and frequency. This fact has
determined the necessity of analyzing the global phase-
amplitude information of spatiotemporal diagrams for a
constant illumination. Therefore, the front of active os-
cillators t = fµ(x) is obtained by complex demodulation
from the matrix of amplitudes |A(x, t)| ≥ α |Amax(x, t)|,
where |Amax(x, t)| is the maximum amplitude of the crit-
ical mode and α is a constant (0 < α < 1). Critical
modes are selected with the following criteria: those with
the highest amplitude in the Fourier spectrum, and those
providing the dynamics at the front. Amplitude diagrams
have been tested in the range α = [0.2− 0.37] in order to
assure that the shape of the front is conserved.
The self-correlation of the fronts is obtained as:

Cµ(ζ) =

∫

x

[fµ(x+ ζ)−〈fµ(x)〉][fµ(x)−〈fµ(x)〉]dx . (1)

where ζ is the spatial lag and 〈〉 defines the spatial aver-
age value. Hence, the characteristic correlation length ξ
is given by the spatial lag at e−1 of the largest value of
Cµ:

ξ = min

[

C−1

µ

{

Cµ(0)

e

}]

. (2)

The values of Cµ(ζ) have been computed for different
parameters (amplitude thresholds and filter properties).
From these values we have obtained a similar description
of the dynamics, therefore we have introduced these devi-
ations in the error bars computed for each spatiotemporal
diagram.
Temperature measurements at the underlying plate are

shown in Fig. 3 for a particular sequence of quenches. We
implement a nonlinear curve fitting taking into account
the heat transfer from the water circulation in the heating
bath towards the underlying plate (see Fig. 3). For each
temperature ramp , the crossing rate is obtained from
the slope of each fitted curve at the static threshold: µ =
dTb

dt

∣

∣

ε=0
.
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FIG. 3: Temperature measurements at the underlying plate
of the cell belonging to a sequence of quenches. The static
threshold of this secondary bifurcation ε = 0 takes place at
Tb = 29.5◦C. Each temperature profile has been fitted to the
curve Tb = ao+a1e

−t/a2+a1(1−e−t/a2e−t/a3). The solid line
corresponds to the following parameter values: ao = 30.91,
a1 = −3.84, a2 = 254.10, a3 = 96.38. The crossing rate in
this particular case is µ = dTb

dt
(Tb = 29.5◦C) = 0.0061◦C/s.

IV. RESULTS AND DISCUSSION

The initial pattern at the beginning of each quench is
the stationary one (ST), with wavelength λs = 4.75±0.05
mm, which corresponds to an array of 95 latent oscil-
lators, although we observe only the central region of
the system (approximately 33 oscillators). Once the
quenched regime bifurcates towards an oscillatory pat-
tern, we obtain the corresponding front t = fµ(x) by se-
lecting the Fourier oscillatory modes with the minimum
frequency in order to obtain the first unstable front from
the multicellular pattern.

In Fig. 4, we show the wavenumbers and frequencies of
the critical modes. From Fig. 4(a) we have measured an
average wavelength of 8.76±0.01mm for µ ≤ 0.0095◦C/s,
and of 9.25± 0.02 mm for µ > 0.0095◦C/s. The gap be-
tween these values might be inherited from two different
and consecutive subcritical thresholds in the permanent
regimes [51]. This observation will be checked with the
corresponding spatiotemporal diagrams and fronts fur-
ther on.

From Fig. 4(b) we obtain an average period of 23.60±
0.01 s which remains practically constant at any crossing
rate. A detailed analysis of the spatiotemporal diagrams
shows that the frequency evolves slowly along the heating
ramp as it is expected from previous results [51]. This
fact is related to the slow response of the system towards
the transition point where the modes with the lowest
frequencies are the very first to guide this quenched bi-
furcation.

In Figs. 5,6 we show some spatiotemporal diagrams
that represent the quenching dynamics along two differ-
ent and contiguous subcritical thresholds. Also, the cor-

0.0035 0.0065 0.0095 0.0125 0.0155 0.0185 0.0215
Crossing rate µ (o

C/s)

0.5

0.6

0.7

0.8

0.9

W
av

en
um

be
r 

(m
m

-1
)

0.0035 0.0065 0.0095 0.0125 0.0155 0.0185 0.0215
Crossing rate µ  (o

C/s)

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

F
re

qu
en

cy
 (

s-1
)

(a)

(b)

FIG. 4: Wavenumbers (a) and frequencies (b) of the critical
modes that define the front at a given quench. Error bars are
given by the dispersion of values given by the left and right
oscillatory modes for different sequences.

responding fronts t = fµ(x) have been overlapped. We
briefly summarize the main features of these transitions
when they are crossed quasi-statically (for a more de-
tailed study of the quasi-static transitions see Miranda
and Burguete [51]):

(I) In the first subcritical bifurcation, left and right
traveling waves (with λTW± ≈ 1.5λs) are bounded
in domains which coexist with the mixed pattern
ST/ALT (with λALT ≈ 2λs).

(II) In the second subcritical bifurcation, the ALT pat-
tern is expected to coexist with the TW pattern
until, for increasing values of the control parame-
ter, the only remaining pattern is the ALT one.

In Fig. 5, we show the transition front for different
crossing rates ranging from µ = 0.0035◦C/s, with a
spatio-temporal coherent front, until the crossing rate
reaches µ = 0.0125◦C/s, with a more homogeneous front.
We observe that the front becomes fragmented in be-
tween as the quench power is increased. Thus, we may
infer that, in the range shown in this figure, the front
exhibits different degrees of coherence depending on the
strength of coupling between oscillators.
In Fig. 6, the bifurcation scenario is more robust be-

cause from the previous quasi-homogeneous front (e.g.
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FIG. 5: Spatiotemporal diagrams corresponding to quenched
dynamics: (a) µ = 0.0035◦C/s, (b) µ = 0.0065◦C/s, (c) µ =
0.0095◦C/s, (d) µ = 0.0125◦C/s. White lines correspond to
the fronts defined by left oscillatory modes.
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FIG. 6: Spatiotemporal diagrams corresponding to quenched
dynamics: (a) µ = 0.0155◦C/s, (b) µ = 0.0215◦C/s. White
lines correspond to the fronts defined by left oscillatory
modes.

see Fig. 5(d)) topological defects arise at the front. These
defects have survived the quenched transition and remain
pinned to the transition front.
From these patterns we can distinguish two different

behaviors:

(i) For µ ≤ 0.0095◦C/s, the quenching dynamics after
the onset of the bifurcation shows the presence of
certain domains in the TW and ST/ALT patterns
which are remnants of the subcritical behavior of
the quasi-static transition. We should stress that
the front describes the time at which each oscilla-
tor bifurcates disregarding the fluctuating behavior
of the oscillators that belong to the mixed pattern
ST/ALT (because they are susceptible of returning
to the stationary state).

(ii) For µ > 0.0095◦C/s, the quenching dynamics sends
the system through the following subcritical bifur-
cation. Nevertheless, the new pattern has entirely
bifurcated to the ALT pattern. Therefore, for fast
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FIG. 7: Standard deviation of the fronts versus the crossing
rate µ. The dashed line indicates the critical value µc.

quenches, during the relaxation time that takes the
system to reach the onset of this bifurcation, the
most unstable mode is the one that represents the
ALT pattern (which doubles the wavelength of the
multicellular pattern).

In Fig. 7, we measure for different sequences the de-
gree of inhomogeneity of the front given by the standard
deviation of the front t = fµ(x). We have taken into ac-
count fronts defined from both counter-oscillating modes.
These modes define similar fronts except for the very slow
values of µ because of the presence of TW domains that
are attached to the front. We should emphasize that re-
sults from Fig. 7 match the dynamical description of the
fronts given above: for slow crossing rates nonhomoge-
neous fronts appear, meanwhile as the crossing rate is
increased the fronts become more homogeneous and ro-
bust, this fact is related to the stronger coupling between
oscillators [1].
In Fig. 8, we show the correlation length of the fronts ξ

which is obtained from Eq. (2). The maximum value of ξ
corresponds to a quasi-homogeneous front (see Fig. 5(d))
at a critical value of the crossing rate µc. For slow
quenches (µ < µc), there is a minimum correlation length
that belongs to the kind of fragmented fronts shown in
Fig. 5(b,c). In these fronts, neighboring oscillators are
beginning to show a stronger coupling [1]. On the other
hand, according to the Kibble-Zurek mechanism in phase
transitions our experimental results for fast quenches
(µ > µc) follow a power law despite the critical exponent
is far to follow previous experimental results obtained in
other systems.
In Fig. 9, the minimum time that is needed to bifurcate

from the static threshold is a measure of the relaxation
time of the convective array of oscillators. We observe
that for the slowest quenches, when the oscillators are
weakly coupled, the relaxation time is the shortest. But
as the power law behavior is reached (for µ > µc) the
relaxation time becomes much longer as if the quenched
dynamics from the basic pattern ST to the ALT pattern
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FIG. 9: Minimum time to bifurcate from the static threshold
ε = 0 versus the crossing rate µ. The dashed line indicates
the critical value µc.

had corresponded to that of a supercritical bifurcation
(see Fig. 6).

V. FURTHER REMARKS AND CONCLUSIONS

In this paper we report experimental evidence of the
slow response dynamics arising from quenched transi-
tions in a quasi-1D convective system. The quenched dy-
namics goes through a secondary and weakly subcritical
bifurcation for a depth of the fluid layer of d = 7.5 mm.
Complementary results concerning quenches through a
stronger subcritical bifurcation are going to be reported
elsewhere [56].
Specifically, these results correspond to the kind of

ramped symmetry breaking bifurcations where an ini-
tially quasi-degenerated state (ST) undergoes a phase
transition where it looses some symmetries towards the
oscillatory patterns (ST/ALT+TW or ALT). This dy-
namics can be characterized from the shape of the fronts
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c cλ  = 2λsλ  = [1.5−2]λ
s

FIG. 10: Sketch of the quenching mechanism. Blue lines rep-
resent fronts while dashed lines are a guide to the eye. The
vertical solid line indicates the critical value µc.

where defects become trapped above a critical value of
the crossing rate µc. Fronts and topological defects are
the kind of localized coherent structures that have sur-
vived a sudden transition in the laboratory, and represent
an interesting analogy to the cosmological objects after
the Big Bang [57].
According to the Kibble-Zurek mechanism, the dis-

tance between defects might revel the order of the cor-
relation length scale which diverges from the correlation
length ξ measured from the fronts. If the positions of
defects along the array are uncorrelated, one may think
that the distribution of defects along the fronts does not
respond to the healing length and perhaps to a nonlin-
ear mechanism regarding the distant position of the last
subcritical instability from the primary bifurcation. For
µ > µc, despite the analysis could have been done tak-
ing as reference the next bifurcation, we choose not to;
because in fact the pattern for ε < 0 (ST) remains un-
changed until the studied front is revealed.
The fronts are expected to show the degree of interac-

tion between the convective oscillators along the network.
In Fig. 10, we summarize the most relevant aspects of this
paper. We should outline that the results on the corre-
lation length are a measure of the degree of interaction
between oscillators. On the other hand, fluctuations of
the front that have not been absorbed by the front during
the slow relaxation time, do represent an order parame-
ter of the quenched dynamics. In consequence, the shape
of the front is a trace of the slow relaxation dynamics at
the critical point of a symmetry breaking bifurcation.
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