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We study some dynamical properties of a classical time-dependent elliptical billiard. We consider
periodically moving boundary and collisions between the particle and the boundary are assumed
to be elastic. Our results confirm that although the static elliptical billiard is an integrable
system, after to introduce time-dependent perturbation on the boundary the unlimited energy
growth is observed. The behaviour of the average velocity is described using scaling arguments.
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1. Introduction

The idea of unlimited energy growth (also known as the Fermi acceleration) due to the repeated collisions
of particles with a moving wall was introduced by Enrico Fermi [Fermi, 1949] in 1949 as an attempt to
explain the acceleration of cosmic rays. He proposed a very simple model where charged particles could be
accelerated by collisions with moving magnetic field structures. His original model was later modified and
studied considering different approaches. Many of them take into account the inclusion of external fields,
simplifications, damping coefficients, quantum and relativistic effects.

One of the most important versions of this problem is the well known Fermi-Ulam Model (FUM). This
model consists of a classical point particle of mass m, bouncing between two rigid walls. One of them is
assumed to be fixed while the other one moves according to a periodic function. It is important to emphasize
that this system has a very rich phase space structure in the sense that, depending on the initial conditions
and control parameters, one can observe invariant spanning curves, chaotic seas and Kolmogorov-Arnold-
Moser (KAM) islands. Later on Pustylnikov [Pustylnikov, 1983, 1995] replaced the fixed wall existing
in the Fermi-Ulam model by a constant gravitational field [Holmes, 1982; Everson, 1986; Luna-Costa,
1990; Leonel & Livorati, 2008; Vincent, 2000] the so-called bouncer model. Despite the similarity between
the two models, there is a huge difference between them mainly regarding the average velocity of the
particle for long time. In the Fermi-Ulam model it was rigorously proved by Pustylnikov that the existence
of invariant curves in the phase space always prevents the unlimited energy growth [Pustylnikov, 1994]
although other workers provided an evidence for such a conclusion [Ulam, 1961; Lichtenberg & Lieberman,
1972; Douady, 1982]. On the other hand, for specific combinations of both control parameters and initial
conditions the phenomenon of unlimited energy growth can be observed in the Pustylnikov bouncer model.
This surprising result was later discussed and explained by Lichtenberg and Lieberman [Lichtenberg et al.,
1980; Lichtenberg & Lieberman, 1992] and can be easily understood by looking at the phase space. The
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FUM has a set of invariant spanning curves limiting the size of the chaotic sea (as well as the particle’s
velocity), but such invariant tori are not observed in the bouncer model and the energy can typically grow
unbounded. A natural extension of the one dimensional billiard models are the two-dimensional billiard
systems. Basically they are classified (i) integrable, (ii) ergodic and (iii) mixed. In case (i) the phase space
consists of invariant tori filling the entire phase space and typical examples are the circular and the elliptical
billiard whose the integrability in the case of the circle comes from the angular momentum conservation,
and the product of the angular momenta with respect to the foci in case of ellipse [Kamphorst, 1999;
Koiller, 1995]. In case (ii) the time evolution of a single initial condition is enough to fill the phase space
and two examples are the Bunimovich stadium [Bunimovich, 1979] and the Sinai billiard [Sinai, 1970]. In
case (iii), there is a representative number of billiards that present mixed phase space structure [Saitô,
1982; Robnik, 1983; Leonel & McClintock, 2005; Lopac et al., 2001, 2006; Oliveira & Leonel, 2010]. One
important property in the mixed phase space is that chaotic seas are generally surrounding Kolmogorov-
Arnold-Moser (KAM) islands which are confined by invariant spanning curves [Lichtenberg & Lieberman,
1992; Pustylnikov, 1983, 1995]. In particular such curves can cross the phase plane and partition it into
several separated portions of the phase space. One of the main questions about two dimensional time-
dependent systems is: Under what conditions the unlimited energy growth will be observed? In this sense,
a conjecture was proposed by Loskutov-Ryabov-Akinshin (LRA) [Loskutov et al., 2000] and later it was
proved by Gelfreich and Turaev [Gelfreich & Turaev, 2008a,b]. This conjecture, known as LRA-conjecture,
states that the existence of a chaotic component in the phase space with static boundary is a sufficient
condition to observe Fermi acceleration when a perturbation is introduced. Very recently Leonel and
Bunimovich [Leonel & Bunimovich, 2010] extended the conjecture to the existence of a heteroclinic orbit
in the phase space instead of the existence of a set with chaotic dynamics. Results that corroborate the
validity of this conjecture include the time-dependent oval billiard [Leonel et al., 2009], stadium billiard
[Ryabov & Loskutov, 2010] and Lorentz gas [Oliveira et al., 2010]. Lenz et al. [Lenz et al., 2008, 2009, 2010]
observed that after a time-dependent perturbation is introduced the separatrix gives place to a chaotic layer
and the particle’s velocity can grow unbounded. Initially it was proposed that the acceleration exponent was
controlled by the driven amplitude of the boundary [Lenz et al., 2008]. Later, when extensive simulations
were taken into account, the authors observed that when the number of collisions with the boundary is
large enough the acceleration exponent is the same independent of the driving amplitude [Lenz et al., 2010].
Such result has been confirmed in [Oliveira & Robnik, 2011] and it is studied in more details in the present
paper.

In this paper we revisit the problem of a classical particle confined in a time-dependent closed region
of elliptical shape. Our main goal is to describe and understand the behaviour of the average velocity as a
function of the number of collisions with the boundary using scaling arguments.

The paper is organized as follows. In section 2 we describe the necessary details to define the four-
dimensional mapping that describes the dynamics of the system, and our numerical results. Conclusions
are drawn in section 3.

2. The model and the map.

In this section we discuss all the details required for the construction of the mapping. The two-dimensional
driven elliptical billiard consists of a classical point particle of mass m confined into a closed region within
which it is freely moving and is suffering elastic collisions with the time-dependent boundary. We stress
that the particle is not affected by any external field and travels freely on a straight line until it reaches the
boundary (see Fig. 1 ). We describe the dynamics of the system in terms of a four-dimensional nonlinear
mapping T (θn, αn, Vn, tn) = (θn+1, αn+1, Vn+1, tn+1) that gives: the angular position1 of the particle θn;
the angle that the trajectory of the particle forms with the tangent line at the position of the collision

αn; the absolute value of the particle velocity Vn = |
−→
V n| and the instant of the hit with the boundary

1 θ is the canonical parameter of the ellipse (called the eccentric anomaly in astronomy) and is not the angle ψ between
the position vector (x, y) and the x-axis (polar angle). The connection between θ and the canonical parameter ψ is tanψ =
(B0/A0) tan θ.
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Fig. 1. Illustration of five collision with the time-dependent boundary. The corresponding angles that describe the dynamics
are also illustrated.

tn [Leonel et al., 2009]. The index n denotes the nth collision with the moving boundary. The Cartesian
components of the boundary at the angular position (θn, tn) are

X(θn, tn) = [A0 + C sin(tn)] cos(θn) , (1)

Y (θn, tn) = [B0 + C sin(tn)] sin(θn) , (2)

where A0 and B0 are constants, thus, at any time tn we have elliptical shape. The control (oscillation)
parameter 0 < C < min(A0, B0) controls the amplitude of oscillation and θ ∈ [0, 2π) is a counterclockwise
canonical angle measured with respect to the positive horizontal axis. The angle between the tangent of
the boundary at the position (X(θn), Y (θn)) measured with respect to the horizontal line is

φn = arctan

[
Y ′(θn)

X ′(θn)

]
, (3)

where the expressions for both X ′(θn) and Y ′(θn) are written as

X ′(θn) = −[A0 + C sin(tn)] sin(θn), (4)

Y ′(θn) = +[B0 + C sin(tn)] cos(θn). (5)

Since both φn and αn are already known, the angle between the horizontal axis and the particle’s
trajectory is (φn + αn) and the vector velocity of the particle is given by

−→
V n = |

−→
Vn|[cos(φn + αn)̂i+ sin(φn + αn)ĵ] , (6)

where î and ĵ represent the unit vectors with respect to the X and Y axis, respectively. This allows us to
obtain the position of the particle as function of time as follows

Xp(t) = X(θn, tn) + |
−→
V n| cos(φn + αn)(t− tn) , (7)

Yp(t) = Y (θn, tn) + |
−→
V n| sin(φn + αn)(t− tn) , (8)

where the index p denotes that such coordinates correspond to the particle. In order to find the angular
position θn+1 at the collision n + 1, and the time tn+1 of the next collision, we need to solve numerically
the expression Rp(θn+1, tn+1) = Rb(θn+1, tn+1) where Rp(θn, tn) is the distance of the particle measured

with respect to the origin of the coordinate system, i.e., Rp(θn, tn) =
√

X2
p (t) + Y 2

p (t), and by evaluating
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Fig. 2. (Color online) Behaviour of V̄ vs.n for different initial velocities. The control parameters used were A0 = 2 , B0 = 1.

the expression

tn+1 = tn +

√
[Xp(tn+1)−X(θn, tn)]2 + [Yp(tn+1)− Y (θn, tn)]2

|
−→
V n|

. (9)

This is equivalent to solving the two equations Xp(tn+1) = X(θn+1, tn+1) and Yp(tn+1) = Y (θn+1, tn+1). In
the comoving frame of the boundary, where the velocity of the particle for the elastic collision is denoted

by
−→
V ′, the following conditions must be satisfied

−→
V ′

n+1.
−→
T n+1 =

−→
V ′

n.
−→
T n+1 , (10)

−→
V ′

n+1.
−→
N n+1 = −

−→
V ′

n.
−→
N n+1 . (11)

At the new angular position, θn+1, the unitary tangent and normal vectors are
−→
T n+1 = cos(φn+1)̂i+ sin(φn+1)ĵ , (12)
−→
N n+1 = − sin(φn+1)̂i+ cos(φn+1)ĵ , (13)

and after some algebra we can easily find
−→
V n+1.

−→
T n+1 = |

−→
Vn | [cos(φn+1 − φn − αn)], (14)

−→
V n+1.

−→
N n+1 = |

−→
Vn | [sin(φn+1 − φn − αn)] + 2

−→
V b.

−→
N n+1, (15)

where
−→
V b is the velocity of the boundary which is written as

−→
V b = C cos(tn+1)[cos(θn+1)̂i+ sin(θn+1)ĵ] . (16)

Thus, the absolute value of the velocity just after the collision (n+ 1) is given by

Vn+1 =|
−→
V n+1 |=

√
[
−→
V n+1.

−→
T n+1]2 + [

−→
V n+1.

−→
N n+1]2 , (17)

and the angle αn+1 is

tanαn+1 =

−→
V n+1.

−→
N n+1

−→
V n+1.

−→
T n+1

. (18)
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Fig. 3. Behaviour of V̄ × n for different initial velocities. The control parameters used were A0 = 2, B0 = 1, C = 0.2.

2.1. Numerical results

Our numerical results for the time-dependent driven elliptical billiard discuss basically the behaviour of
the average velocity of the particle as a function of the number of bounces2 n. This is done because in a
4D phase space it is difficult or even meaningless to consider individual pointwise initial conditions. We
obtain the average velocity in two steps. Firstly, we evaluate the average velocity over the orbit for a single
initial condition

Vi =
1

n+ 1

n∑

j=0

Vi,j , (19)

where the index i corresponds to a member of an ensemble of initial conditions. Second, we take the average
over the ensemble of initial conditions, so that the average velocity is defined as

V =
1

M

M∑

i=1

Vi , (20)

whereM denotes the number of different initial conditions. We have considered M = 200 in our simulations
and fixed the control parameters as A0 = 2, B0 = 1. We will concentrate on the influence of the initial
velocity V0 on the behaviour of the average velocity. Our main goal is to describe such a behaviour using
scaling arguments. Figure 2 shows the behavior of the average velocity as a function of the number of
collisions for different initial conditions and different values of the control parameter C. Figure 3 shows the
behavior of the average velocity V̄ as a function of the number of collisions n for different initial velocities
and fixed C = 0.2. We have chosen 11 different values for initial velocity V0 while a random choice for the
other variables was made as t ∈ [0, 2π], θ ∈ [0, 2π] and α ∈ [0, π]. As one can see, all curves of the V̄ behave
quite similarly in the sense that: (a) for short n, up to n ≈ nx the average velocity remains constant equal
to V̄ip, where ip means initial plateau, and (b) after a crossover for n >> nx, all the curves start to grow
with the same exponent. For such a behaviour we propose the following hypotheses, which turn out to
describe the empirical facts:

2It should be noted that as long as the dynamics is chaotic there is not fundamental difference in choosing the discrete time n
or the continuous time t. Namely, if V ∝ nβ , then V ∝ tβ/(1−β) that is to say the acceleration exponent changes β → β/(1−β).
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Fig. 4. (a) Plot of Vip × V0. (b) Behaviour of nx as function of V0.

(1) For short n, say n ≪ nx, V̄ behaves according to

V̄ip ∝ V γ
0

, (21)

and if the initial plateau is well defined we of course expect γ = 1.
(2) For n ≫ nx, the average velocity is given by

V̄ ∝ nβ , (22)

where the exponents γ and β are critical exponents, namely the initial and acceleration exponents,
respectively.

(3) The crossover iteration number nx that marks the change from constant velocity at the initial plateau
to the growth is written as

nx ∝ V z
0 , (23)

where z is the third exponent, called the crossover exponent.

With these three assumptions, from the method of [Leonel, McClintock & da Silva, 2004], we suppose that
the average velocity is described in terms of a scaling function of the type

V̄ (V0, n) = λV̄ (λaV0, λ
bn) , (24)
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Fig. 5. (a) Behaviour of the average velocity for different values of V0, a subset of the curves of figure 3; (b) their collapse
onto a single and universal plot.

where λ is the scaling factor, a and b are scaling exponents. If we chose λaV0 = 1, then λ = V
−1/a
0

and Eq.
(24) is given by:

V̄ (V0, n) = V
−1/a
0

V̄1(V
−b/a
0

n) , (25)

where V̄1(V
−b/a
0

n) = V̄ (1, V
−b/a
0

n) is assumed to be constant for n ≪ nx. Comparing Eq. (25) and Eq.

(21), we obtain γ = −1/a. On the other hand, if we chose λbn = 1, which means λ = n−1/b and Eq. (24)
is rewritten as

V̄ (V0, n) = n−1/bV̄2(n
−a/bV0) , (26)

where the function V̄2 is defined as V̄2(n
−a/bV0) = V̄ (n−a/bV0, 1). It is assumed to be constant for n ≫ nx.

Comparing Eq. (26) and Eq. (22) we find β = −1/b. Considering the two different expressions for the

scaling factor λ, the condition of the crossover exponent is λ = n
−1/b
x = nβ

x = V
−1/a
0

= V γ
0
, and we find

z =
γ

β
. (27)

Note that the scaling exponents are determined if the critical exponents γ and β are numerically
obtained. The exponent β is obtained from a power law fitting for the average velocity when n ≫ nx.
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Thus, an average of these values gives β = 0.50(1) (see Fig. 3), and β = 0.49970(2) for others values of
C (Fig. 2). Figure 4 shows the behaviour of (a), V̄ipvs.V0 and (b), nxvs.V0. From a power law fitting we
obtain z = 2.0123(1) ∼= 2 and γ = 0.99991(8). Considering the previous values of both β and γ and using
Eq. 27, we find that z = 1.99(4). This result indeed agrees with our numerical data. A confirmation of the
initial hypotheses comes from a collapse of different curves of V̄ vs.n onto a single and universal plot, as
demonstrated in Fig. 5. Additionally, considering the fact that the critical exponents are β ∼= 0.5, γ ∼= 1
and z ∼= 2 we can conclude that the conservative time dependent elliptical billiard belongs to the same
class of universality like the conservative time-dependent Lorentz gas [Oliveira et al., 2010] for the range
of the control parameters considered.

3. Final Remarks

As a conclusion of the present paper, we have studied some dynamical properties of a time-dependent
elliptical billiard considering elastic collisions with the boundary. We have shown that the average velocity
for short time remains constant but after a crossover it starts to grow with exponent 0.5. We have shown
that such a behaviour can be described using scaling properties and we have found an analytical relation
between the critical exponents β, γ, and z (acceleration, initial and crossover exponents, respectively).
Our scaling hypotheses are confirmed by a good collapse of all the curves of the average velocity onto a
single universal plot, therefore confirming that the model is scaling invariant and also that it belongs to
the same class of universality of the time-dependent Lorentz gas for the range of the control parameters
considered. It should be noted that the physical origin and explanation of the scaling laws discovered
by [Leonel, McClintock & da Silva, 2004] is still largely unknown, although there is some progress on the
theoretical side [Batistić & Robnik, 2011].
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