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We apply to bidimensional chaotic maps the numerical method proposed by Ginelli et al. to
approximate the associated Oseledets splitting, i.e. the set of linear subspaces spanned by the so
called covariant Lyapunov vectors (CLV) and corresponding to the Lyapunov spectrum. These
subspaces are the analog of linearized invariant manifolds for non-periodic points, so the angles
between them can be used to quantify the degree of hyperbolicity of generic orbits; however,
being such splitting non invariant under smooth transformations of phase space, it is interesting
to investigate the properties of transversality when coordinates change, e.g. to study it in distinct
dynamical systems. To illustrate this issue on the Chirikov-Taylor standard map we compare the
probability densities of transversality for two different coordinate systems; these are connected
by a linear transformation that deforms splitting angles through phase space, changing also the
probability density of almost-zero angles although complete tangencies are in fact invariant.
This is completely due to the PDF transformation law and strongly suggests that any statistical
inference from such distributions must be generally taken with care.
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1. Introduction

It is known that tangencies between invariant manifolds of unstable periodic points are directly connected
to important dynamical properties, like mixing and transport [Zaslavsky, 2008]; indeed when invariant
manifolds are almost tangent, the local dynamics can be slowed down and the invariant partitions globally
can induce reductions of the transport flux [Wiggins, 1990]. In Hamiltonian systems this phenomenon is lo-
calized around stable islands and brings the orbit to temporarily stick there giving transient accumulations
of probability density [Meiss, 1994]; for this reason it is known as the stickiness phenomenon [Zaslavsky,
2008].

These facts have a deep impact on the finite time behavior of many properties of the system (diffu-
sion, correlations, time averages and recurrences) typically slowing down convergence (power laws instead
of exponential decays) and, in extreme cases, making the numerical calculation of asymptotic quantities
impossible [Lichtenberg & Lieberman, 1992]; sensitivity to stickiness has been proved to be present for
any observable Birkhoff average [Melbourne, 2009] and it can be checked e.g. for the finite time Lyapunov
exponents (FTLE), whose distributions exhibit large deviations connected to a power laws decay of corre-
lations ([Artuso & Manchein, 2009],[Oliveira et al., 2008]).

In spite of the known connections between full tangencies and stickiness it remains to be understood
which information can be extracted from the splitting angle statistics; for this reason we focus on the
possible ambiguity of such non-invariant object. The paper is organized as follows: in Sec.2 we review
the basic definition of CLV and transversality for bidimensional maps and how these quantities transform
under a generic coordinate change. Numerical results on the Standard map are then presented and dis-
cussed in Sec.3, where we compare splitting angle statistics in two coordinate systems connected by a linear
transformation. Sec.4 gives a summary of the results.

2. The covariant Lyapunov vectors (CLV)

By definition, 2D hyperbolic dynamical systems are such that the tangent space at almost every point
admits a decomposition (Oseledets splitting) in two distinct linear subspaces (stable and unstable), implying
that these must be transversal almost everywhere [Oseledets, 1968],[Pesin, 1977]. The covariant Lyapunov
vectors (CLV) are defined at a trajectory point xn as the unit vectors vu

n and vs
n respectively spanning the

Oseledets subspaces (the prefix covariant refers to their intrinsic nature [Ginelli et al., 2007]); the angle
between them is given by the euclidean inner product :

ϕn = cos−1(vu
n · vs

n) . (1)

This formula yields angles ϕ ∈ [0, π] while in [Ginelli et al., 2007] splitting angles were defined in [0, π
2
]

since the absolute value of the inner product was considered. This difference is already present in other
works on the subject : in [Kuptsov & Kuznetsov, 2009; Bosetti & Posch, 2010; Bosetti et al., 2010] and
[Yang & Radons, 2008] the absolute value is used, while in [Yang et al., 2009; Truant & Morris, 2011] it is
not. In principle hyperbolicity only requires transversality (ϕ 6= 0, π), i.e. doesn’t depend on whether the
angle is above or below π

2
, but, as shown in the next sections, numerical observations suggest that such

distinction clarifies the comparison between different coordinate systems and seems to be the correct one.

It is implicitly understood that collecting CLV splitting angles along chaotic trajectories interspersed
through the folds of periodic points invariant manifolds yields information about the structure of those
invariant manifolds themselves [Ginelli et al., 2007]; this is because Oseledets splitting aligns in some sense
to the invariant curves that cover densely the region containing the chaotic orbits [Pesin, 1977].

Whichever is the case under study, applying a smooth coordinates transformation may simultaneously
induce dilations and contractions of the angles, also even widening small angles while squeezing larger
ones; one can realize that for a linear transformation this deformations depends on the direction of the
CLV pair only, while for a nonlinear one the CLV phase space localization would also come into play.
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To better probe this effect consider the C1 transformation τ from coordinates x to x̂ (we consider now
two-dimensional systems), with Jacobian matrix M, mapping from the associated covariant vectors dx to
dx̂ :

x 7→ x̂ = τ(x) , dx 7→ dx̂ = Mdx (2)

One can then define the angles αu, αs as the slopes (w.r.t. a fixed direction) of the unitary vectors vu, vs

before the transformation, and the angles α̂u, α̂s as the slopes of v̂u, v̂s after the transformation; splitting
angles are then, respectively :

ϕ ≡ (αs − αu)
τ
→ ϕ̂ ≡ (α̂s − α̂u) (3)

From the Jacobian matrix M it is possible to define the symmetric matrix :
(

a b
b d

)

≡ MTM (4)

and derive the useful relation :

cot(ϕ̂) =
1

detM

[

(

a+d
2

)

cot(ϕ) +

((

a−d
2

)

cos(θ) + b sin(θ)
)

sin(ϕ)

]

, θ ≡ αs + αu (5)

with θ/2 the “average” direction of the CLV pair before the transformation; then under linear changes of
coordinates (for which a, b, d are constants) the new splitting angle is a nonlinear function ϕ̂ = f(ϕ, θ),
while for nonlinear changes the coefficients a, b, d are functions of the phase space (old) coordinates x and
thus ϕ̂ = f(ϕ, θ,x). As one can expect even in the linear case the new splitting angle ϕ̂ depends nonlinearly
on the old ϕ and θ/2.
These imply that a numerical measure of transversality between invariant directions is a priori ambiguous,
and any quantity depending on it may be coordinate dependent; on the other hand invariant quantities
do exist, the most celebrated example being the Lyapunov exponent : any deviation of the FTLE induced
by a coordinates change asymptotically goes to zero as the inverse time [Lichtenberg & Lieberman, 1992].
This means that non-invariance of FTLE eventually disappears in the infinite time limit, but also that any
finite time observation must be regarded as coordinates representation dependent; while this can be of little
implication in a single orbit observation, it is not yet clear which are its effects on ensemble observations,
e.g. in analyzing FTLE distributions (as in [Artuso & Manchein, 2009]) in different coordinate systems.

3. Numerical Results

We first study the Hénon and Lozi maps, [Hénon, 1976],[H.Jurgens et al., 1992], both at fixed parameter
values a = 1.4 and b = 0.3, so each one is a dissipative system for which a strange attractor does exist. Since
forward iteration of these maps brings orbits to evolve either to infinity or onto the attractor depending on
initial conditions, the only points from which it is possible to extract and localize information are those be-
longing to the attractor. We check the correspondence with analogous calculations in [Ginelli et al., 2007];
since the procedure described there is necessary only in more than two dimensions, the employed algorithm
has been adapted and optimized for 2D maps [Artuso & Sala, 2011]. In Fig.(1) the angles between stable
and unstable manifolds are shown through colors from palette in each of the orbit points.

To illustrate the action of a linear transformation we then consider the Chirikov-Taylor standard map
in two appropriate coordinate systems; for each system we compute probability distributions of angles for
a scan over several nonlinearity parameter values and then visualize the associated phase space distribu-
tions only for four parameter values. In these analysis we obtain angles by the formula from [Ginelli et al.,
2007] (i.e. getting angles ϕ ∈ [0, π

2
]), as one in principle would do in searching for zero angles only. We then

compute again the probability distributions for the four nonlinearity parameters by using Eq. (1), so that
ϕ ∈ [0, π], and we show that the angles PDF seem to be periodic in ϕ, with period equal to π, suggesting
that splitting angles should be computed over such a range.
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Figure 1. Phase space for the Hénon (left) and Lozi (right) map, a = 1.4 , b = 0.3. In each point of a single 105 iterations
orbit, transversal angle is represented by a color from palette (yellow = π/2, orange = π/4, blue = 0).

3.1. Chirikov-Taylor map

The Chirikov-Taylor standard map, being the paradigm of all chaotic Hamiltonian maps, is a good bench-
mark to test hyperbolicity properties. In canonical coordinates it has the form :

xn+1 = xn + pn+1 mod2π

pn+1 = pn + K sin(xn) (6)

with K the nonlinearity parameter; it is possible to consider also the another representation (xn, xn−1), by
defining y ≡ (x− p) i.e. yn ≡ xn−1: this leads to the following form:

xn+1 = 2xn + K sin(xn)− yn mod2π

yn+1 = xn (7)

This evolution has the nice property of being reversed by coordinates exchange, i.e. reflection w.r.t. the
bisector is equivalent to time inversion; on the other hand it has the drawback of loosing information about
momentum growth since both coordinates belong to the interval [0, 2π]. The transformation that brings
from coordinates (x, p) to (x, y) is linear and thus coincides with its Jacobian matrix :

τ ∼ M =

(

1 0
1 −1

)

⇒ MTM =

(

2 −1
−1 1

)

=

(

a b
b d

)

, detM = −1 . (8)

We remark that this transformation is an involution (i.e. coincides with its inverse); the transformation
law (5) for transversal angles associated to (8) then reads :

cot(ϕ̂) = −
3

2
cot(ϕ) +

sin(θ)− 1

2
cos(θ)

sin(ϕ)
(9)

remember that θ ≡ αs + αu is the CLV pair orientation; nonlinearity is apparent here, together with
the θ dependence. The Chirikov-Taylor standard map possesses a very complicated phase space structure
in both coordinate systems (6) and (7), with coexistence of regular and chaotic motion for a large set
of nonlinearity parameter values; we first consider a scan of 103 equidistant values for the nonlinearity
parameter inside the interval K ∈ [0, 10]; for each coordinate system and each K value we compute an
ensemble of 103 orbits of length 104 and compute histograms of transversal angles over the set ϕ ∈ [0, π

2
]

(i.e. as in [Ginelli et al., 2007]). We also verify that computing transversality by direct calculation (over
the two systems) and through the transformation law (from one to the other) is completely equivalent.
The chosen K interval contains elliptic fixed points and thus the associated bifurcations also; in Fig. (2)
we show the absolute value of the half trace of the Jacobian matrix (of (6) or (7), it is an invariant) versus



April 3, 2022 11:59 Sala˙Manchein˙Artuso˙IJBC˙D˙10˙00458˙ARXIV

Estimating hyperbolicity of chaotic bidimensional maps 5

nonlinearity parameter K. It determines the Jacobian matrix eigenvalues and so, when it is less than 1, it
gives the frequency ω of elliptic fixed points via the relation :

ω = arccos

∣

∣

∣

∣

trace

2

∣

∣

∣

∣

. (10)
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Figure 2. Nonlinearity parameter K windows (light gray) in which stable fixed points exist, i.e. |trace/2| < 1. The values
under study range over K ∈ [0, 10]; red lines mark the values, K = 1.5, 3.5, 6.5, 10, to which Fig. from (6) to (9) refer.

Outside windows with |trace/2| < 1 islands also exist and are associated to at least period-2 fixed points,
which have a more complex localization in parameter space, usually connected to bifurcation sequences.
Fig. (4) show the PDF P (K,ϕ) in colormap (arbitrary scale) as a function of the angles ϕ and the nonlin-
earity parameter K for the two coordinate systems ((x, y) top, (x, p) bottom).
There it can be noticed that some patterns across the (ϕ,K) plane seem to overlap as in a superposition
of two trends w.r.t. K: this might be a suggestion about the correct domain for the variable ϕ. Densities
for K & 3 are higher around ϕ = π

2
in the (x, y) coordinates and around ϕ = π

4
in the (x, p); an increase of

the nonlinearity parameter pushes probability away from zero and leaves the distributions more compact
around maxima. This can be clearly seen in Fig. (5) where a choice of four K values is extracted from Fig.
(4) (K = 1.5, 3.5, 6.5, 10) and superimposed for the two coordinate systems; due to nonlinearity in Eq.(9)
the two corresponding PDF in all of the four cases are different around ϕ = 0, with a discrepancy far larger
than the histograms error bars.

For the same four values of the nonlinearity parameter K we observe the splitting patterns through phase
space (Figs. from (6) to (9)) by plotting in each point of an orbit a color associated to the angle value
by some color bar. Since chaotic trajectories almost fill out areas, these plots show spatial variation of
hyperbolicity w.r.t. nonlinearity strength: in both representations it is apparent that stronger nonlineari-
ties yield wider regions of smoothly varying angles, thus leading to higher and more compact peaks in the
associated PDF from Fig. (4) and (5). We remark that all these data have been collected by the formula in
[Ginelli et al., 2007] so that angles still belong to [0, π

2
]; indeed, the main histograms features are already

apparent but no clear connection between the two coordinate system is visible yet.

In Fig. (6) to (9) it is interesting to notice how the angles go near zero (blue/black color) around the
islands, as one can expect, but also along certain definite structures surely not due to islands (e.g. the
blue/black stripes in Fig. (9)); these tangencies are due to the structure of the manifolds across those
regions. Indeed one can locally describe one foliation (e.g. the stable one) as rectilinear (parallel lines)
and the other one as parabolic (“parallel” curves); the intersection between such two families of curves
naturally gives rise to a line of tangency between the foliations (see the dashed line in the left panel of
Fig. (3)), that is what we observe in phase space plots. Those lines of tangencies are the cause for the
angles PDF in Fig. (5) to extend quite smoothly to their values in ϕ = 0 also in the K = 10 case, in which
macroscopic islands seem to be absent and thus one may not expect to observe any tangency.

What may worry about the PDF in Fig. (5) is that, for each value of K, details between coordinate
systems are different. Getting the angles inside the interval [0, π] yields the histograms in Fig. (10), that
correspond to Fig. (5) but extends from −π

2
to 3π

2
and has log10 vertical axis; it can be noticed that PDF

are periodic w.r.t. ϕ with period equal to π, so the distributions in Fig. (10) are repeated twice. Qualitative
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u

s

u

s

(x,y) (x,p)

Figure 3. Schematic structure of the invariant manifolds intersections in the two coordinate systems ; u unstable (orange), s
stable (blue) manifolds. The dashed lines correspond to tangencies.

connections between the two systems are now apparent: the histogram in one system is similar to the other
one after a translation with inversion of the variable, as Eq. (9) suggests. Moreover, the different value of
the PDF in ϕ = 0 for the two systems is completely explained by the transformation law of probability
density functions : it is straightforward to obtain the relation :

∂P

∂ϕ

∣

∣

∣

∣

ϕ=0

=
∂P̂

∂ϕ̂

∣

∣

∣

∣

∣

ϕ̂=0

∂ϕ̂

∂ϕ

∣

∣

∣

∣

ϕ=0

, (11)

from the invariance condition dP̂ (0) = dP (0); we remark two points here : exact tangencies cannot be
numerically measured since no map can transform them into nonzero angles; it must be also taken into
account that the transversality deformations from a system to another depends crucially on the orientation
angle θ also, so to evaluate the exact difference between the histograms the partial derivative of Eq. (5)
or (9) (evaluated in ϕ = ϕ̂ = 0) should also be integrated over θ weighted by its associated density.
The net effect of these properties is that at high nonlinearity parameter K both the PDF values and
slopes in ϕ = 0 are different for the two systems: for (x, y) there is a minimum and the slope is zero, for
(x, p) the slope is clearly positive (see Fig. (10)). This feature can also be addressed through the manifold
structures visible in Fig. (8) and (9) (resp. at K = 6.5 and K = 10) and schematized in Fig. (3): the
dashed lines correspond to tangencies and divide the regions in two; the parabolic foliation in (x, y) (left
panel) is qualitatively symmetric w.r.t. the dashed line and the corresponding PDF in Fig. (10) is almost
symmetric at zero. Since the (x, p) coordinates (right panel) come from the (x, y) ones through a shear
plus inversion, parabolic foliations may not be symmetric anymore, suggesting an heuristic explanation for
the PDF asymmetry around ϕ = 0 (Fig. (10)).

4. Conclusions

In this numerical work we investigate the action of smooth coordinate change on the Oseledets splitting for
dissipative (Hénon and Lozi maps) and conservative (standard map) bidimensional systems, to understand
its qualitative consequences on invariant manifolds splitting angles. After showing how these angles trans-
form (5) under the choice of new coordinates we compare their statistics and remark that, to understand
the structure of their probability distribution functions, angles must be collected over the range [0, π], i.e.
taking into account also the sign of the CLV inner product. Through plots of transversality across phase
space and simple arguments, we show how the linear shear connecting two coordinate systems induces
local changes in the angles PDF, suggesting how to interpret the global picture at least in case of strong
nonlinearity. It remains to be understood the structural difference of such probability distributions between
mixed and almost uniform phase spaces (e.g. between the cases at K = 6.5 and K = 10 resp. in Fig. (8)
and (9)) and further studies are required.
The whole numerical work is based on the algorithm in [Ginelli et al., 2007], but optimized for generic
bidimensional maps and also extended to manifold curvatures [Artuso & Sala, 2011].
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nonlinearity parameter K for the two coordinate systems ((x, y) top, (x, p) bottom); notice that the angles domain is [0, π

2
],

and that some structures in the histograms seem to overlap across the upper plane.
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Figure 10. log10PDF of splitting angles with sign for the Standard map in the (x, y) (blue/black) and (x, p) (orange/gray)
coordinates for parameter values K = 1.5 (a), 3.5 (b), 6.5 (c), 10 (d). Notice that here the distribution’s domain is [0, π] and,
only for these plots, the horiziontal axis extends over [−π

2
, 3π

2
] to show the natural periodicity.
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