
 

 

REGULARIZATION OF TUNNELING RATES WITH QUANTUM 
CHAOS 

 
LOUIS M. PECORA 

Materials Physics and Sensors 
U.S. Naval Research Laboratory 

Washington, DC 20375, USA 
pecora@anvil.nrl.navy.mil 

 
HOSHIK LEE 

Department of Physics 
College of William and Mary 

Williamsburg, VA, USA 
hoshik.lee@wm.edu 

 
DONG-HO WU 

Materials Physics and Sensors 
U.S. Naval Research Laboratory 

Washington, DC 20375, USA 
dhwu@ccs.nrl.navy.mil 

 
    Received  
 

We study tunneling in various shaped, closed, two-dimensional, flat potential, double wells by 
calculating the energy splitting between symmetric and anti-symmetric state pairs. For shapes that 
have regular or nearly regular classical behavior (e.g. rectangular or circular) the tunneling rates 
vary greatly over wide ranges often by several orders of magnitude.  However, for well shapes that 
admit more classically chaotic behavior (e.g. the stadium, the Sinai billiard) the range of tunneling 
rates narrows, often by orders of magnitude. This dramatic narrowing appears to come from 
destabilization of periodic orbits in the regular wells that produce the largest and smallest 
tunneling rates and causes the splitting vs. energy relation to take on a possibly universal shape. It 
is in this sense that we say the quantum chaos regularizes the tunneling rates.    
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1. Introduction 

A general theory of tunneling between two potential wells separated by a barrier has been well known for 
many decades for one-dimensional systems [Cohen-Tannoudji et al., 2006]. See Fig. 1.  However, in two-
dimensional systems a general theory of tunneling "has largely remained impervious  to such analysis." 
[Creagh & Whelan, 2001].  A similar statement also applies to opens systems where metastable states 
govern behavior [Creagh & Whelan, 1998].  This makes the discovery of universal behaviors important to 
guide theory and, in the absence of a general theory, guide intuition about double well potentials, 



especially for their implementation in devices like quantum dots and sensors [Loss and Divincenzo, 
2006]. 

Some recent work has tied tunneling rates in chaotic or mixed systems to (perhaps, unstable) periodic 
orbits in a semiclassical realm [Creagh & Whelan, 2001] and [Creagh & Whelan, 1996; Smith & Creagh, 
2006; Tomsovic & Ullmo, 1994] and in relation to wavefunction scarring [Bies et al., 2001].  In those 
studies the barrier was often kept within a small region of the potential or particular periodic orbits were 
used.  While these led to some insights for systems with such barriers, they could say little about long 
barriers or more complicated orbital situations.  This is not a criticism, but an acknowledgment of the 
difficulty of the problem. 

We examine several two-dimensional, flat-potential, double-well systems in which the barriers run 
along most of one side of each well.  We numerically solve Schrödinger's equation (in the Helmholtz 
form) for several hundred eigenstates in each system.  The differences in energies between the symmetric 
and antisymmetric pairs of states give the tunneling rates for wavefunctions in combinations of those 
states.  For integrable or near integrable wells the tunneling rates can vary by several orders of magnitude 
for states that are very close in energy.  This is unlike the one-dimensional case (Fig. 1) where tunneling 
rates monotonically increase with energy.  However, as we move to systems with ubiquitous chaos, the 
variation of the tunneling rates with energy decreases to a narrow range and the graphs of tunneling rates 
vs. energy approach what appears to be a universal curve resembling in some ways the curve in the one-
dimensional situation.  It appears that the destruction of entire sets of stable or marginally stable periodic 
orbits by changes in boundary shapes causes this change in tunneling rates.  Using Husimi distributions to 
get the average probability and average momentum normal to the barrier (px in most of our systems) 
shows that the tunneling rates are closely related to the size of the wave function at the barrier and the 
magnitude of the momentum normal to the barrier. 

 
2. Eigenstates and Tunneling Rates 

We have chosen six well shapes: rectangular, circular, stadium, Sinai, butterfly, and concave.  We use 
each shape to form two wells separated by a long barrier which is straight on each side (or nearly so), 
except for the circular wells.  Their geometry can be seen in Fig. 1.  The areas of all wells are equal (=4.8 
in arbitrary units) so that in an average sense (using Weyl's formula [Gutzwiller, 1990] as a guide) the 
eigenstates will be similarly distributed in energy.  The barriers are all of the same average width (0.1 
arb.units) and potential height (Vb =1000) so the splittings will roughly cover the same range.  In this way 
we can fairly compare the tunneling rates of different shapes. 

To find the stationary eigenstates of the double well systems we employ the boundary element 
method (BEM) [Knipp & Reinecke, 1996; Ram-Mohan, 2002] to solve Schrödinger's equation in the 

Helmholtz form, , where , E is the eigenstate energy and V is the 

potential level of the well (taken as V=0 here).  We take  so all energies are in inverse-length-
squared units.  We note that we can find energy level differences to within less than 1% accuracy. For the 
Sinai system we used the finite element method.  

We calculated all eigenenergies and states from the ground state up to an energy of approximately 
800 (just below the barrier potential).  This gives about 300 states per double-well system or about 150 
symmetric-antisymmetric pairs.  Fig. 1 shows the tunneling rates for each system as a function of the 
mean energy of the splitting pairs along with some typical eigenstates.   

In Fig. 1 (c) the tunneling rates depend directly on the momentum normal to the barrier since px and 
py are good eigenvalues labeling each state and only the  px value affects the tunneling rate. This results in 
"lines" of equal valued tunneling rates for states that all have the same px value, but different py values 
and, hence, energies.  The tunneling rates for eigenstates of almost equal energy can be vastly different by 
ratios of over two orders of magnitude. 

Fig. 1 (d) shows a similar range of tunneling rates with non-monotonic energy dependence.  Even 
though px and py are not good eigenvalue labels for the states, the system is nearly integrable and the 
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eigenstates resemble those of the simple circular well (Bessel functions times sinusoids).  The eigenstates 
are highly structured giving some patterns with very low or very high probability near the barrier and 
have high variation in momentum normal to the boundary.  This combination leads again to large 
variations in tunneling rates for states close in energy. 

 
 

 
Fig. 1 (a) and (b) One dimensional wells and the associated tunneling rates vs. energy. 
Tunneling rates for (c) rectangular, (d) circular, (e) stadium, (f) Sinai, (e) butterfly, and 
(h) concave double-well systems.  Insets show the double-well and barrier configuration 
(not to scale) and some typical eigenstates.  For the rectangular well (c) low tunneling 
and a high tunneling rate states are shown. 

 

In Fig. 1 (e) for a double stadium system we begin to see changes in the variations of tunneling rates.  
Notably absent in the higher energy states (>150) are the smallest rates common in both (c) and (d).  
Some remanence of the lines of higher tunneling rates for the rectangular wells are still evident.  Fig. 1 (f) 
for the Sinai double wells shows more contraction of the energy variation beyond that of the stadium case.  
Gone are the high lines of tunneling rates.  For the butterfly shaped system of Fig. 1 (g) we see further 
diminishing of tunneling rate variations for nearby energies.   And, finally, for the case of fully concave 
potential wells in Fig. 1 (h) we have the minimum variation of tunneling rates – approximately within a 
factor of 2 of neighboring states – a decrease of two orders of magnitude from Fig. 1 (c) and (d).   

 
 

3. Poincaré Sections 
We can get some understanding of the tunneling rates by examining the classical dynamics of single 
billiards.  In Fig. 2 we plot bounce or bounce maps or Poincaré sections in Birkhoff  coordinates 
[Nakamura & Harayama, 2004] of single wells  using the variables s the distance along the perimeter of a 
well to where a collision with the wall occurs for a billiard particle and c the sine of the angle of incidence 
at the collision which capture the dynamics of a single billiard well [Nakamura & Harayama, 2004].  The 
maps were made by selecting 400 random initial conditions in the phase space (s,c) and iterating for 400 
collisions each.  This is a sampling of the dynamics of the well, not a rigorous search for various orbits or 
regions. 



In Fig. 2 (a) the Birkhoff map is made up of horizontal line segments.  This is one sign of an 
integrable (or nearly so) well.  The lines are generated by bounces back and forth between opposite walls.  
In the quantum realm this leads to states well-labeled by px and py .  Fig. 2 (b)  

 
Fig. 2 Poincaré sections for the six wells (a) rectangular, (b) circular, (c) stadium, (d) Sinai, (e) 
butterfly, and (f) concave.   

 

shows similar horizontal trajectory sets which come from orbits that bounce around the circle from 
straight-across bounces to whispering gallery modes.  These lead in the quantum case to very nearly 
integrable states which like in the rectangular system have extreme values of momenta normal to the 
boundary.  (Strictly speaking the circular double well is probably not integrable, but is very close to an 
integrable system since the barrier is rather high and even high energy states closely resemble the isolated 
circular well states.)  Fig. 2 (c) for the stadium well is best compared with the rectangular well.  We note 
that most of the horizontal lines are gone.  This is an ergodic, strongly chaotic system [E. Ott, 1995], but 
we notice that the bounce orbits between left and right walls are not very unstable leading to a lot of 
horizontal groups of points along c=0.  This leads to states where  px is almost a good state label which is 
similar to the rectangular well (see Fig. 1).  However, the top-bottom family of bounce orbits (which 
results in the horizontal-striped quantum state) are not present and the associated states in rectangular (see 
Fig. 1) never show up in the stadium.  They have been destabilized by the rounded ends of the stadium.  
Hence, this is why we see the rows of high tunneling rates for the rectangular and stadium systems, but 
not similar low tunneling rates for the stadium.  Fig. 2 (d)  shows that the central circle in the Sinai 
billiard mostly destabilizes the side-to-side and top-to-bottom orbits although some still remain which 
avoid the circle and their signature can be seen as small horizontal point sets along the center of the map.  
This change results in destabilization of the strong  px states still present in the stadium system and kills 
off the rows of high tunneling rates.  Such orbits probably prevent the tunneling rates from narrowing 
more in variation, but we have to investigate this in more detail.  In Fig. 2 (e) we see that the butterfly 
well with its indented side has completely destabilized the side-to-side orbits leading to a map with 
almost no structure and smaller tunneling rate variations.  This trend is continued in Fig. 2 (f) where no 
structure is apparent and the tunneling rate variation is narrowest of all.  The continually curved 
boundaries in this last case sufficiently destabilize all orbits leading to the narrowest of all tunneling rate 
curves.   



 
4. Tunneling Rates and Momentum at the Barrier 

In order to get a more quantitative analysis we projected the wave function from each state onto a 
coherent state [Crespi et al., 1993; Luna-Acosta et al., 1996] at the barrier.  This Husimi distribution 
provided us with an estimate of the distribution of the wave function along the barrier (y0) and the 
momentum parallel to the barrier (py),  [Crespi et al., 1993; Luna-Acosta et al., 1996].  From this 

we calculated the average magnitude (probability) at the barrier  and the 

average momentum normal to the barrier .  Individual plots of 
tunneling rates vs. these quantities show the best correlation comes from plotting tunneling rates vs. 

weighted average normal momentum =  (see Fig. 3). This makes physical sense and gives at 
least a semi-quantitative characterization of the tunneling properties of the well systems we studied.   

 

 
Fig. 3 Tunneling rates (energy splittings) for (a) rectangular, (b) circular, and (c) butterfly double-well 

systems vs. average weighted normal momentum to the barrier .  Other chaotic well systems are 
very similar to (c). 

 

Fig. 3 confirms the qualitative view we had about tunneling rates: tunneling rates depend on the 
probability of the particle being at the barrier and its momentum normal to the barrier.  Note that in Fig. 3 
and Fig. 1 the tunneling rates are in roughly one-to-one correspondence with both the energy and the 
weighted normal momentum to the barrier for the chaotic systems implying that the energy strongly 
predicts the weighted momentum, too.  This is not true for the integrable systems.   

 
5. Conclusions 
At present a simple theory that explains this phenomena of tunneling rate regularization is absent from the 
literature [Creagh, 2009; Fishman, 2009].  It may be possible to use complex paths or instanton 
approaches to get semiclassical approximations to the tunneling in these systems, but these involve the 
more difficult situation where one must deal with dense families of periodic orbits rather than a few 
isolated orbits [Creagh, 2009; Fishman, 2009].  Both of these ideas will take some effort at development 
and we hope to examine those possibilities in the future.  We have found that a more productive approach 
is to approximate the form of the wave function in the wells with more chaotic and ergodic classical 
dynamics as a random plane wave superposition.  This is under development and will be presented 
elsewhere [Pecora, et al., 2011].  

A possible experimental consequence for similar real systems may be that since injection of electrons 
into nanowells is rarely monochromatic, tunneling currents may appear noisier in wells with regular 
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shapes where even a narrow energy window encompasses vastly different tunneling rates than in chaotic 
wells. 

On a more practical level the results here show that it may be possible to engineer well shapes that 
constrain and/or guarantee certain tunneling rates in some windows of the energy spectrum.  One could 
now change tunneling rates using well shape rather than just by barrier height adjustment.  The latter 
would not cure the problem of having high tunneling rate variability whereas the well shape would.  That 
surely would be useful for any devices which operate just below or in the semiclassical limit.  Certain 
2DEG quantum dot and graphene systems already operate in this regime. 

We have presented strong evidence that for double well systems which are classically strongly 
chaotic tunneling rates for quantum states are regularized to have very little local fluctuations with 
energy.  This contrasts with integrable systems which appear to suffer from large fluctuations in tunneling 
rates.  It will be interesting to see if this phenomenon carries over in any way to mixed systems and more 
general potentials.  

We would like to thank the following people for helpful conversations and advice:  P. Knipp, L. 
Ramdas Ram-Mohan, T. Reinecke, S. Creagh, M. White, and S. Fishman. 
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