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We characterize all the values of the parameters
for which the Chen and Lü systems have polynomial
first integrals by using weight homogeneous polyno-
mials and the method of characteristics for solving
partial differential equations. We improve previous
results which were not complete.

1. Introduction and statement of the main
results

The following real differential system

ẋ = a(y − x),
ẏ = (c − a)x − xz + cy,
ż = xy − bz,

(1)

where a, b, c ∈ R are parameters is known as
the Chen system [Chen & Ueta, 1999]. It exhibits
chaotic phenomena which resembles some familiar
features from both the Lorenz and the Rössler at-
tractors, for suitable choices of the parameters. De-
spite of its similar structure to the Lorenz system,
it is not topologically equivalent. This is why Lü

and Chen investigated the real differential system

ẋ = a(y − x),
ẏ = −xz + cy,
ż = xy − bz,

(2)

where a, b, c ∈ R are parameters, which now is
usually called the Lü system [Lü & Chen, 2002].
The Lü system connects the Lorenz system and
the Chen system and represents a transition
from one to the other. For more details see
[Lü & Chen, 2002]. Moreover, recently Lü and
Zhang [Lü & Zhang, 2007] and Lü [Lü, 2009]
characterize the invariant algebraic surfaces of
the Chen and of the Lü systems, respectively.
Furthermore, Lü in [Lü, 2007] characterize the
Darboux first integrals of the Chen system. These
recent years the dynamics of the Chen system
has been analyzed from many different points of
view. See for instance [Bashkirtseva et al., 2010,
Cafagna & Grassi, 2008, Cai et al., 2009,
Cao et al., 2008, Chen & Wang, 2007,
Chen & Zhou, 2009, Chowdhury & Hashim, 2009,
Denquan & Zhixiang, 2009, Fallahi et al., 2008,
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Hou et al., 2008, Mahmoud et al., 2007,
Yao & Liu, 2010].

The vector field associated to (1) is

X = a(y−x)
∂

∂x
+((c−a)x−xz+cy)

∂

∂x
+(xy−bz)

∂

∂x
,

and the vector field associated to (2) is

X = a(y − x)
∂

∂x
+ (−xz + cy)

∂

∂x
+ (xy − bz)

∂

∂x
.

Let U be an open subset of R3 such that R3 \U
has zero Lebesgue measure. We say that a real func-
tion H = H(x, y, z): U ⊂ R3 → R is a first integral
if H(x(t), y(t), z(t)) is constant for all values of the
solution (x(t), y(t), z(t)) of X where it is defined,
i.e., if XH = 0.

Two functions f1(x, y, z) and f2(x, y, z) are in-
dependent if their gradients are linearly indepen-
dent vectors for all (x, y, z) ∈ R3 except perhaps
for a set of zero Lebesgue measure.

If the vector field X has two independent first
integrals H1 and H2, we say that it is completely
integrable. In this case the orbits of X are contained
in the curves {H1(x, x, y, z) = h1} ∩ {H2(x, y, z) =
h2}, when h1 and h2 vary in R.

When a = 0 the Chen and Lü differential sys-
tems are completely integrable as it is shown in the
following result. Its proof is tedious but it follows
easily from direct computations.

Theorem 1.1. When a = 0 the Chen and Lü sys-
tems are integrable with the first integrals H1 = x
and H2.

(a) For the Chen system

H2 = x exp

(
2(b−c) arctan

(
b−c+ 2A

bz−xy√
4B−(b−c)2

)

√
4B−(b−c)2

)

(B(xy2 + xz2 − cxz − (b + c)yz)+
c(c − b)x2y + cx(b2z − x2z + cx2)),

where A = c(x2 + bz) − x2z and B = x2 − bc.

(b) For the Lü system

H2 = z exp

(
−(b−c) arctan

(
2xy−(b+c)z

z
√

4x2−(b+c)2

)

√
4x2−(b+c)2

)

√
x + xy2

z2 − (b+c)y
z .

In view of Theorem 1.1 from now on we con-
sider only the case a ̸= 0 in both the Chen and the
Lü systems.

Our main result for the Chen and Lü systems
are the following two theorems.

Theorem 1.2. The Chen differential system with
a ̸= 0 has a polynomial first integral if and only if
b = c = 0. In this case any polynomial first integral
is a polynomial in the variable y2 + z2 + 2az.

Theorem 1.2 provides a counterexample to
statement (b) of Theorem 1 of [Lü, 2007], where the
author claims that the Chen system has no Dar-
boux polynomial first integrals and of course the
polynomial first integral y2 + z2 +2az is a Darboux
polynomial for the Chen system.

Theorem 1.3. The Lü system with a ̸= 0 has a
polynomial first integral if and only if b = c = 0. In
this case any polynomial first integral is a polyno-
mial in the variable y2 + z2.

The result of Theorem 1.3 is well known, see
[Llibre & Zhang, 2002, Lü, 2009].

The proof of Theorem 1.2 is given in section
2, but we only provide an sketch of the proof of
Theorem 1.3 in section 3. We note that in the
proof of Theorems 1.2 we use similar arguments to
the ones used in the papers [Lü & Zhang, 2007] and
[Lü, 2009].

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2. For simpli-
fying the computations we introduce the following
weight change of variables

x = µ−1X, y = µ−2Y, z = µ−2Z, t = µT,
(3)

with µ ∈ R \ {0}. Then the Chen system (1) be-
comes

X ′ = a(Y − µX),
Y ′ = −XZ + µcY + µ2(c − a)X,
Z ′ = XY − µbZ,

where the prime denotes the derivative of the vari-
ables with respect to T .

A polynomial G(X, Y, Z) is said to be weight
homogeneous of degree m ∈ N with respect to the
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weight exponent s = (s1, s2, s3) for all µ ∈ R \ {0}
we have

G(µs1X, µs2Y, µs3Z) = µmG(X,Y, Z).

Here N is the set of positive integers.
Let g(x, y, z) be a polynomial first integral of

system (1). Set

G(X, Y, Z) = µmg(µ−1X, µ−2Y, µ−2Z)

=

m∑

i=0

µiGi(X, Y, Z),
(4)

where Gi is the weight homogeneous part with
weight degree-m−i of G, and m is the weight degree
of G with the weight exponent s = (1, 2, 2).

From the definition of a polynomial first inte-
gral we have

a(y − µx)

m∑

i=0

µi ∂Gi

∂x
+

(−xz + µcy + µ2(c − a)x)
m∑

i=0

µi ∂Gi

∂y
+

(xy − µbz)

m∑

i=0

µi ∂Gi

∂z
= 0,

(5)

where we still use x, y, z instead of X, Y, Z.
Equating in (5) the terms with µi for i =

0, 1, . . . ,m + 2, we get

L[G0] = 0,

L[G1] = ax
∂G0

∂x
− cy

∂G0

∂y
+ bz

∂G0

∂z
,

L[Gj ] = ax
∂Gj−1

∂x
− cy

∂Gj−1

∂y
+

bz
∂Gj−1

∂z
− (c − a)x

∂Gj−2

∂y
,

(6)

for j = 2, 3, . . . , m + 2, where Gj = 0 for j > m
and L is the linear partial differential operator of
the form

L = ay
∂

∂x
− xz

∂

∂y
+ xy

∂

∂z
. (7)

The characteristic equations associated to the linear
partial differential operator are

dx

dz
=

a

x
,

dy

dz
= −z

y
.

This system has the general solution

x2 − 2az = d1, y2 + z2 = d2,

where d1 and d2 are constants of integration. Ac-
cording to this, we make the change of variables

u = x2 − 2az, v = y2 + z2, w = z. (8)

Its inverse transformation is

x = ±
√

u + 2aw, y = ±
√

v − w2, z = w. (9)

In the following, for simplicity, we only consider the
case x =

√
u + 2aw, y =

√
v − w2, z = w. Under

the changes of variables (8) and (9), the first equa-
tion of (6) becomes the following ordinary differen-
tial equation (for fixed u, v):

√
u + 2aw

√
v − w2

dḠ0

dw
= 0,

where Ḡ0 is G0 written in the variables u, v and
w. In what follows we always use the notation θ̄
to denote θ(x, y, z) written in the variables u, v, w.
The last equation has the following general solu-
tion Ḡ0 = T̄0(u, v), where T̄0 is an arbitrary smooth
function in u and v. So,

G0(x, y, z) = Ḡ0(u, v, w) = T0(x
2 − 2az, y2 + z2).

Since G0 is a weight homogeneous polynomial and
the weight degrees of u and v in the variables x, y, z
are 2 and 4, respectively, G0 should have weight
degree either m = 4n, or m = 4n − 2 for some
convenient n ∈ N. So G0 has the form

G0 =

n∑

i=0

ai(x
2 − 2az)2i(y2 + z2)n−i, (10)

with the weight degree 4n, or

G0 =
n∑

i=1

ai(x
2 − 2az)2i−1(y2 + z2)n−i, (11)

with the weight degree 4n − 2.

Case 1: G0 has the form (11). Substituting G0 into
the second equation of (6), we can prove that

L[G1] =

n∑

i=1

[2a(2i − 1) − 2c(n − i)]

ai(x
2 − 2az)2i−1(y2 + z2)n−i

+
n∑

i=1

[(4a2 − 2ab)(2i − 1)]

ai(x
2 − 2az)2i−2(y2 + z2)n−iz

+

n∑

i=1

2(b + c)(n − i)

ai(x
2 − 2az)2i−1(y2 + z2)n−i−1z2.
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Using the transformations (8) and (9) and working
in a similar way to solve Ḡ0 we get the following
ordinary differential equation (for fixed u and v):

√
u + 2aw

√
v − w2

dḠ1

dw
=

n∑

i=1

[2a(2i − 1) − 2c(n − i)]aiu
2i−1vn−i

+

n∑

i=1

[(4a2 − 2ab)(2i − 1)]aiu
2i−2vn−iw

+

n∑

i=1

2(b + c)(n − i)aiu
2i−1vn−i−1w2.

Using

d

dw
(
√

u + 2aw
√

v − w2) =
−uw + a(v − 3w2)√

u + 2aw
√

v − w2
,

it is easy to deduce that the integration of the pre-
vious equation with respect to w is

Ḡ1 =

n∑

i=1

1

a
[2a(2i − 1) − 2c(n − i)]

aiu
2i−1vn−i−1

√
u + 2aw

√
v − w2

+

n∑

i=0

[(4a2 − 2ab)(2i + 1)ai+1

+(2a(2i − 1) − 2c(n − i))ai]u
2ivn−i−1·

·
∫

w dw√
u + 2aw

√
v − w2

+

n∑

i=1

[2(b + c)(n − i) +
3

a
(2a(2i − 1)

−2c(n − i))]aiu
2i−1vn−i−1·

·
∫

w2 dw√
u + 2aw

√
v − w2

+ T̄1(u, v),

where T̄1(u, v) is an arbitrary smooth function in u
and v. Since Ḡ1 is a weight homogeneous poly-
nomial of weight degree 4n − 3, we must have
T̄1(u, v) = 0, and

(4a2 − 2ab)(2i + 1)ai+1+
(2a(2i − 1) − 2c(n − i))ai = 0,
i = 0, . . . , n,

(2(b + c)(n − i) +
3

a
(2a(2i − 1)−

2c(n − i)))ai = 0,
i = 1, . . . , n,

(12)

where a0 = an+1 = 0. It is easy to prove that since
a ̸= 0, conditions (12) are equivalent to one of the

following conditions, either b = 2a = −c, n = 1/2
and there exists i0 ∈ {1, . . . , n − 1} such that ai0 ̸=
0, or b = 2a, n = 1/2, G0 = an(x2 − 2az)2n−1, or
G0 = 0. Since n is a natural number the two first
cases are not possible, and therefore only the third
case is possible. In this last case it is obvious that
the Chen system has no polynomial first integral of
the given form.

Case 2: G0 has the form (10). Substituting G0 into
the second equation of (6) we get that

L[G1] =
n∑

i=0

[4ai − 2c(n − i)]ai

(x2 − 2az)2i(y2 + z2)n−i

+

n∑

i=0

2[4a2 − 2ab]iai

(x2 − 2az)2i−1(y2 + z2)n−iz

+
n∑

i=0

2(b + c)(n − i)ai

(x2 − 2az)2i(y2 + z2)n−i−1z2.

Then we have

Ḡ1 =

n∑

i=0

1

a
[4ai − 2c(n − i)]ai

u2ivn−i−1
√

u + 2aw
√

v − w2

+

n−1∑

i=0

(1

a
[4ai − 2c(n − i)]ai+

4a(2a − b)(i + 1)]ai+1

)
u2i+1vn−i−1·

·
∫

w√
u + 2av

√
v − w2

dw

+4ananu2n+1v−1

∫
w√

u + 2av
√

v − w2
dw

+

n−1∑

i=0

[12ai + 2(b − 2c)(n − i)]aiu
2ivn−i−2·

·
∫

w2

√
u + 2av

√
v − w2

dw + T̄2(u, v).

In order that G1 be a weight homogeneous
polynomial of weight degree 4n − 1, we must have
T̄2(u, v) = 0, and

4anan = 0,
(4ai − 2c(n − i))ai+

4a2(2a − b)(i + 1)ai+1 = 0,
(12ai + 2(b − 2c)(n − i))ai = 0,

(13)

with i = 0, . . . , n−1. We can easily prove that since
a ̸= 0, conditions (13) are equivalent to one of the
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following conditions:

b = 2a, n = 0, an ̸= 0, and
ai = 0 for i = 0, 1, . . . , n − 1;

b = 2a = −c, n = 0, and there exists
i0 ∈ {0, . . . , n − 1} such that ai0 ̸= 0;

b = −c ̸= 2a, 2cn = 0, a0 ̸= 0, and
ai = 0 for i = 1, . . . , n;

b = 6a + 2c ̸= −c, n = 0,

an−i(−4a2)i

(
n
i

)
an, and an ̸= 0.

Since n ≥ 1 the unique possibility is b = c = 0,
a ̸= 0, a0 ̸= 0 and ai = 0 for i = 1, . . . , n. Since
G0 = a0(y

2 + z2)n and G1 = 0, from (6) we get

G2 = 2ana0(y
2 + z2)n−1z

+
n∑

i=1

a
(2)
i (x2 − 2az)2i−1(y2 + z2)n−i

= a0

(
n
1

)
(y2 + z2)n−1(2az)

+

n∑

i=1

a
(2)
i (x2 − 2az)2i−1(y2 + z2)n−i.

Then again from (6) with j = 3, we can prove that

Ḡ3 =
n∑

i=1

(2a(2i − 1))a
(2)
i u2i−1vn−i·

·
∫

dw√
u + 2aw

√
v − w2

+4a2
n∑

i=1

(2i − 1)a
(2)
i u2i−2vn−i·

·
∫

w
√

u + 2aw

∫
v − w2

dw + T̄3(u, v).

In order that G3 be a weight homogeneous poly-
nomial of weight degree 4n − 3, we must have
T̄3(u, v) = 0, and

2a(2i − 1)a
(2)
i = 0, i = 1, . . . , n,

4a2a
(2)
1 = 0,

2a2(2i − 1)a
(2)
i = 0, i = 2, . . . , n.

(14)

Consequently G3 = 0. Indeed, from conditions (14)

and since a ̸= 0 is equivalent to a
(2)
i = 0 for i =

1, . . . , n, it follows that G3 = 0. Hence

G2 = a0

(
n
1

)
(y2 + z2)n−1(2az).

Furthermore, substituting G2 and G3 in (6) with
j = 4, we get that

G4 = a0n(n−1)(y2+z2)n−2(2a)2z+
n∑

i=0

a
(4)
i u2ivn−i−1.

Substituting G3 and G4 into (6) with j = 5, we
obtain that

Ḡ5 = 4aia
(4)
i u2ivn−i−1

∫
1√

u + 2aw
√

v − w2
dw

+

n∑

i=0

8a2ia
(4)
i u2i−1vn−i−1·

·
∫

w√
u + 2aw

√
v − w2

dw + T̄5(u, v).

Since G5 must be a weight homogeneous polynomial
of degree 4n − 5, we must have T̄5(u, v) = 0, and

4aia
(4)
i = 0, 8aia

(4)
i = 0, i = 0, . . . , n.

These equations imply that i = 0 and a
(4)
i = 0 for

i = 1, . . . , n. Thus we have that G5 = 0 and

G4 = a0

(
n
2

)
(y2 + z2)n−2(2a)2.

By recursive calculations we can prove that

G2i = a0

(
n
i

)
(y2 + z2)n−i(2az)i,

G2i+1 = 0,

for i ≥ 0 and 2i ≤ m. Hence the polynomial first
integral is

(
n
i

)
(y2 + z2)n−i(2az)i = a0(y

2 + z2 + 2az)n.

The generator of the polynomial first integral is y2+
z2 +2az. This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. We introduce
the weight change of variables in (3) and system (2)
becomes

X ′ = a(Y − µX),
Y ′ = −XZ + µcY,
Z ′ = XY − µbZ,

where again the prime denotes the derivative with
respect to T .
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Let g(x, y, z) be a polynomial first integral of
system (2) and set G(X, Y, Z) as in (4). We have

a(y − µx)

m∑

i=0

µi ∂Gi

∂x
+ (−xz + µcy)

m∑

i=0

µi ∂Gi

∂y

+(xy − µbz)

m∑

i=0

µi ∂Gi

∂z
= 0,

where again we still use x, y, z instead of X, Y, Z.
From the previous equality the coefficients of

µi for i = 0, 1, . . . ,m + 1 are

L[G0] = 0,

L[Gj ] = ax
∂Gj−1

∂x
− cy

∂Gj−1

∂y
+ bz

∂Gj−1

∂z
,

(15)

for j = 2, 3, . . . , m+1, where Gj = 0 for j > m and
L is the linear partial differential operator in (7).
Proceeding as in the proof of Theorem 1.2 we get
that G0 has either the form (10) with weight degree
4m, or the form (11) with weight degree 4m − 2.
Proceeding analogously to Case 1 in the proof of
Theorem 1.2 we get that the Lü system has no
polynomial first integrals if G0 is of the form (11).
Again, proceeding as in Case 2 of the proof of The-
orem 1.2 we get that G1 = 0 and again from (13)
and since a ̸= 0, the unique possibility is b = c = 0,
a0 ̸= 0 and ai = 0 for i = 1, . . . , n. Therefore
G0 = a0(y

2 + z2)n, and

G2 =
n∑

i=1

a
(2)
i (x2 − 2az)2i−1(y2 + z2)n−i

=

n∑

i=1

a
(2)
i (x2 − 2az)2i−1(y2 + z2)n−i.

Then from (15) with j = 3, and proceeding as in

the proof of Theorem 1.2 we get that a
(2)
i = 0 for

i = 1, . . . , n, and consequently G2 = G3 = 0. By
recursive calculations, and proceeding as in Case
2 in the proof of Theorem 1.2 we can prove that
Gi = 0 for i = 1, . . . , n. Hence the generator of the
polynomial first integrals is y2 +z2. This completes
the proof of Theorem 1.3.
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Lü, T., [2007] “Exponential factors and non–
Darbouxian integrability of the Chen system,”
Ann. of Diff. Eqs. 23, 304–311.
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