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ON THE CENTER CONDITIONS FOR ANALYTIC
MONODROMIC DEGENERATE SINGULARITIES

JAUME GINÉ AND JAUME LLIBRE

Abstract. In this paper we present two methods for detecting
centers of monodromic degenerate singularities of planar analytic
vector fields. These methods use auxiliary symmetric vector fields
can be applied independently that the singularity is algebraic solv-
able or not, or has characteristic directions or not. We remark that
these are the first methods which allows to study monodromic de-
generate singularities with characteristic directions.

1. Introduction and statement of the main results

One of the classical problems in the qualitative theory of planar ana-
lytic differential systems in R2 is to characterize the local phase portrait
near an isolated singular point. By using the blow-up technique the
problem is solve except when the singularity is monodromic, i.e. the
solutions of the differential equation in a neighborhood of the singular-
ity turn around it either in forward time, or in backward time, see for
instance [9, 11] and references therein.

When the differential system is analytic, a monodromic singular
point is either a center or a focus, see [10, 21, 22]. A center is a
singular point having a neighborhood filled of periodic orbits except by
the singular point, and a focus is a singular point such that all the near
orbits with the exception of the singular point spiral either in forward
or in backward time to the singular point. The center problem consists
on distinguishing between a center and a focus.

Let p ∈ R2 be a singular point of an analytic differential system
in R2, and assume that p is a center. Without loss of generality we
can assume that p is the origin of coordinates (if necessary we do a
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translation of coordinates sending p to the origin). Then, after a linear
change of variables and a rescaling of the time variable (if necessary),
the system can be written in one of the following three forms:

ẋ = −y + F1(x, y), ẏ = x+ F2(x, y);(1)

ẋ = y + F1(x, y), ẏ = F2(x, y);(2)

ẋ = F1(x, y), ẏ = F2(x, y);(3)

where F1(x, y) and F2(x, y) are real analytic functions without constant
and linear terms, defined in a neighborhood of the origin. A center of
an analytic differential system in R2 is called of the linear type, nilpotent
or degenerate, if it can be written after an affine change of variables
and a rescaling of time as system (1), (2) or (3), respectively.

The center problem for the linear type centers was already solved by
Poincaré [32] and Lyapunov [23] in terms of the existence of an ana-
lytic first integral, see also [31]. The relation between the integrability
problem and the center problem is studied in [7, 8].

For nilpotent singular points the monodromy problem was solved
in [1], and the characterization of a nilpotent center in terms of its
normal form is studied in [5, 30, 33]. In [14, 15] is proved that all
the nilpotent centers are limit of linear type centers and consequently
the Poincaré–Lyapunov method to find linear type centers can also be
used to find all the nilpotent centers. Also in [14] it is showed that
the degenerate centers which are limit of linear type centers are also
detectable with the Poincaré–Lyapunov method, and that a Hamiltonian
or time–reversible degenerate center is always limit of a linear type
center. In [18] it is proved that a degenerate center (3) having an
analytic inverse integrating factor V (x, y) with V (0, 0) 6= 0 is always
limit of linear type centers.

In [25] it is shown that an isolated singular point p of an analytic
differential system is a center if and only if there exists a first integral
of class C∞ with an isolated minimun at the singular point p. The
next slightly different characterization of centers, given in [18], is a
straightforward corollary of the previous characterization: a singular
point p of an analytic differential system is a center if and only if p
is monodromic and there exists a C∞ first integral defined in a neigh-
borhood of p. In [19] is established that a degenerate analytic center
is always limit of C∞ linear type centers. If the degenerate center has
an analytic first integral, then it is limit of linear type analytic centers.
Unfortunately from this result is not possible to deduce an algorithm
which provides the center conditions in function of the parameters of
the system.
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The main difficulty in the problem of distinguishing between a center
and a focus comes from the fact that this problem for degenerate centers
may be algebraically non–solvable. We say that a center problem is
algebraically non–solvable when does not exist an infinite sequence of
independent polynomial expressions, involving the coefficients of the
system, such that their simultaneous vanishing guarantees the existence
of a center, whereas the non–nullity of any of these expressions implies
non–existence of a center, see [3, 6]. It was conjectured that the centers
of analytic systems are analytically solvable, see [3], and recently it has
been proved in [27]. Some partial results for the degenerate center
problem can be found in [12, 13, 16, 17, 24].

Let n ≥ 2 be the minimum order of the lower terms of F1 and F2. We
denote by F n

1 and F n
2 be the terms of order n of F1 and F2 respectively,

eventually one of these two polynomials can be zero. We say that θ is
a characteristic direction of the singular point located at the origin of
system (3) if

cos θF n
2 (cos θ, sin θ)− sin θF n

1 (cos θ, sin θ) = 0.

If there is an orbit of system (3) tending to the origin with a defi-
nite tangent at this point, then the direction defined by this tangent
is a characteristic direction, and such an orbit is called a characteristic
orbit. We recall that characteristic directions can or cannot have as-
sociated characteristic orbits. For more details see for instance [2, 11].
Consequently a singular point of an analytic differential system is mon-
odromic if it has no characteristic orbits, but it can have or not char-
acteristic directions, see for more details [34]. There exist an algorithm
that solves the stability problem for the monodromic degenerate sin-
gularities, see [28].

For the origin of system (3) without characteristic directions exists
an algorithm for distinguishing between a center and a focus, called
the Bautin method see [4] and also [16, 18], or the proof of Theorem
2 in section 3 where we use it. We recall that the Bautin method also
determine non–algebraic center conditions, see for instance [16, 35].
Examples of non-algebraic solvable systems (3) when the singular point
has no characteristic directions can be found in [20, 35]. In [18] it is
proved that system (3) with characteristic directions at the origin and
when the lower order terms of system (3) are greater than 3 is limit
of systems (3) without characteristic directions, and that the Bautin
method can be applied to these last system for determining the center
conditions of system (3).
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For systems (3) the center problem becomes more difficult when there
exist characteristic directions. The main difficulty in this case is that
the return map is no longer differentiable at the origin, see [3, 26, 29].

The aim of this work is to present two methods for studying the
center problem for monodromic degenerate singularities algebraically
solvable or not of planar analytic differential systems using auxiliary
symmetric vector fields. In many cases these methods allow to decide if
the singularity is a center. In particular these methods can be applied
to monodromic degenerate singularities with characteristic directions.
We remark that up to now for such singularities when the lower order
terms of system (3) are equal 3 no method existed for studying the
center problem.
Now we shall present the basic ideas of the methods for detecting

centers that we will describe precisely later on. First, taking polar
coordinates and an adequate rescaling of the independent variable we
can write system (3) into the form

ṙ = f(r, θ), θ̇ = g(θ) + rh(r, θ).

It is well known that if g(θ) does not vanish we can apply the Bautin’s
algorithm for determine if the origin of system (3) is a center. Here we
want to study the case when g(θ) vanishes.

Roughly speaking in the first method we consider the monodromic
point p at the origin of system (3) as a composition of two halves of
time–reversible degenerate centers and for deciding if p is a center or
not we perturb the two time–reversible centers with linear terms of
order ε. Thus the possible center at p can be studied taking ε → 0
the composition of a half of the Poincaré maps (computing the classi-
cal Poincaré-Liapunov constants) of the two perturbed time–reversible
systems. In this case we only can detect the algebraic solvable centers.

The second method divides the monodromic point p of system (3)
as a composition of four time–reversible degenerate centers and for
deciding if p is a center or not we perturb the four time–reversible
centers with lower order terms of order ε in such away that the four
perturbed systems have no characteristic directions. In this way the
possible center at p can be studied taking ε → 0 the composition of a
quarter of the Poincaré maps (using the Bautin’s method) of the four
perturbed time–reversible systems. In this case we can also detect the
non–algebraic solvable centers.

Now we shall describe with detail both methods. The first method
is based in Theorem 2, and the second one in Theorem 4.
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It is known, see for instance [12] for a proof, that if an analytic
differential system without linear terms has a focus or a center at the
origin, then the degree of the lower terms is odd. Using this result it
follows that an analytic differential system having a monodromic point
at the origin can be written as

ẋ = P (x, y) =
∞∑

i=n

Pi(x, y), ẏ = Q(x, y) =
∞∑

i=m

Qi(x, y),(4)

with s = min{n,m} ≥ 3.

For the statement of Theorem 2 we need the following preliminary
result.

Proposition 1. Consider the analytic differential system (4) with a
monodromic degenerate singular point at the origin. We can always
construct two analytic systems S1 and S2 both having a degenerate cen-
ter at the origin, where S1 is the pull-back of the half-plane y > 0
through the map y = z2, and S2 is the pull-back of the half-plane y < 0
through the map y = −z2. By construction these two systems S1 and S2

are time–reversible systems and hence, are limit of linear type analytic
centers.

Proposition 1 will be proved in section 2.

Theorem 2. Consider the analytic differential systems (4) with a mon-
odromic degenerate singular point p at the origin. If the return map,
obtained by composition of the return maps of the system S1 in the
half–plane y > 0 and of the system S2 in the half–plane y < 0, is the
identity p is an algebraically solvable degenerate center.

Theorem 2 is proved in section 3.

In the proof of Theorem 2 (see the end of section 3) we shall state
the method for detecting algebraically solvable centers in a family of
systems with a monodromic degenerate singular point. The conditions
detected by the method will be algebraic, because we transform the
initial center problem into a linear type center problem which always
give algebraic conditions. So this method only can detect degenerate
centers algebraically solvable. The method proposed is applied to one
example in section 6, see Proposition 5.

Now the question that we shall consider is: how to develop a method
for detecting the non–algebraic solvable degenerate centers with char-
acteristic directions?

For the statement of Theorem 4 we need the next preliminary result.
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Proposition 3. Consider the analytic system (4) with a monodromic
degenerate singular point at the origin. We construct four analytic sys-
tems S1, S2, S3 and S4 with a degenerate center at the origin associated
to the first, second, third and four quadrant, respectively. We define S1

as the pull–back of the half–plane y > 0 through the map y = z2 fol-
lowed by the pull–back of the half–plane x > 0 through the map x = u2.
We define S2 as the pull–back of the half–plane y > 0 through the map
y = z2 followed by the pull–back of the half–plane x < 0 through the
map x = −u2. In a similar way we define systems S3 and S4. These
four systems are time–reversible systems and hence, are limit of degen-
erate analytic centers without characteristic directions.

Now we can establish the following theorem which will allow to con-
struct a method for studying any degenerated center. In particular
this method allows to study the non-algebraic solvable monodromic
degenerate singular point with characteristic directions.

Theorem 4. Consider a degenerate center with or without character-
istic directions, algebraically solvable or not given by system (4) with
a monodromic degenerate singular point p at the origin. If the return
map of the system, which is composition of the return maps of the sys-
tem S1 in the first quadrant, of the system S2 in the second quadrant, of
the system S3 in the third quadrant and of the system S4 in the fourth
quadrant, is the identity p is a degenerate center.

Proposition 3 and Theorem 4 are proved in Section 4 and 6 respec-
tively.

From Theorem 4 follows a method for finding center conditions for
every monodromic degenerate singular point. Of course the computa-
tions associated to the methods can be very tedious, and sometimes
impossible to end. This already occurs with the computations of the
standard Poincaré-Liapunov constants for determining the linear type
centers or for the Bautin method for determining the degenerate cen-
ters without characteristic directions, the first difficulty is to compute
the constants, and the second is to obtain from them the center con-
ditions. In Section 6 we apply the method based in Theorem 4 to an
example, see Proposition 6.

2. Proof of Proposition 1

Consider system (4) with a monodromic degenerate singular point
at the origin. Assume that the dot in system (4) denotes derivative
with respect to the time t. First in the half–plane y > 0 we change the
variables from (x, y, t) to (x, z, s) through y = z2 and dt = 2zds, where
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s will be the new independent variable (or time) of the differential
system. In the new variables system (4) in y > 0 becomes the system
S1 equal to

ẋ = 2zP (x, z2), ż = Q(x, z2),

in z > 0. System S1 is a time-reversible system invariant by the re-
versibility (x, z, t) → (x,−z,−t).
Second in the half–plane y < 0 we change the variables from (x, y, t)

to (x, z, s) through y = −z2 and dt = −2zds. In the new variables
system (4) in y < 0 becomes the system S2 equal to

ẋ = −2zP (x,−z2), ż = Q(x,−z2),

in z < 0. System S2 is also a time-reversible system invariant by the
reversibility (x, z, t) → (x,−z,−t). Now applying the results proved in
[14] (and mentioned in the introduction) we have that systems S1 and
S2 are limit of linear type centers of the form

(5) ẋ = −εz + 2zP (x, z2), ż = εx+Q(x, z2),

and

(6) ẋ = −εz − 2zP (x,−z2), ż = εx+Q(x,−z2),

respectively. Here ε needs to be small and positive. This completes the
proof of Proposition 1.

3. Proof of Theorem 2

Consider system (4) with a monodromic degenerate singular point
at the origin. Doing the process described in the proof of Proposition
1, we arrive to system (5) and (6). Due to the reversibility the singular
points located at the origin of these systems when they are considered
in the whole plane (x, z) are centers.

A standard method for distinguishing between a focus and a center
is based on the computation of the derivatives of the return map at the
origin. These derivatives are obtained by solving a system of recursive
differential equations. This technique, called the Bautin method, will
be used in what follows for studying the center problem at the origin of
system (4), so we quickly recall it. Take polar coordinates (r, θ), defined
by x = r cos θ, y = r sin θ, in system (5) or (6). In these coordinates
both systems can be written as

(7)
dr

dθ
= f(r, θ) = f2(θ)r

2 + f3(θ)r
3 + · · · ,
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where f is analytic and for all k ≥ 2, the functions fk are trigonomet-
rical polynomials. Let

(8) r = r(θ, r0) := r0 + u2(θ)r
2
0 + u3(θ)r

3
0 + · · · ,

be the solution of system (7) satisfying r(0, r0) = r0. Taking θ = 0
we obtain the initial conditions uk(0) = 0 for all k ≥ 2. Substituting
expression (8) in (7) we get a sequence of recursive differential systems
duk/dθ, for k = 2, 3, . . ., which will allow to compute the functions
uk(θ), and consequently the return map of system (7) is given by

r(2π, r0) = r0 + u2(2π)r
2
0 + u3(2π)r

3
0 + · · ·

:= r0 + v2r
2
0 + v3r

3
0 + · · ·

The values vk, for k ≥ 2, are called the focal values of the singular point
located at the origin.

It is well known that either all the values vk vanish for k ≥ 2, and
in this case the origin is a center, or otherwise the first non zero focal
value corresponds to some k = 2m+ 1 odd, and in this case the origin
is a focus. In this situation it is said that the origin is a weak focus of
order m and the value v2m+1 is called the m-th Lyapunov constant of
the system. Notice that the sign of this Lyapunov constant gives the
stability of the origin. In fact if we do these computations for systems
(5) or (6) we will obtain that all the values vk are null because both
systems have a center at the origin due to their reversibility.

Our objective is to study when the singular point located at the origin
of system (4) is a center or not. For doing that we shall work with the
return map of system (4) around its origin. Due to the construction of
systems of S1 and S2 this return map is the composition of the following
two return maps. The return map of system S1 from the positive x–axis
to the negative x–axis in the half-plane z > 0, with the return map
of system S2 from the negative x–axis to the positive x–axis in the
half-plane z < 0. But since systems S1 and S2 are limit when ε → 0
of systems (5) and (6) respectively, we can study the return map of
system (4) as the limit when ε → 0 of the composition of the return
maps of the system (5) in polar coordinates from θ = 0 to θ = π, with
the return map of the system (6) in polar coordinates from θ = π to
θ = 2π.

Evaluating the solution of system (5) at π we obtain

r(π, r0) = r0 + uk(π) r
k
0 + · · ·

:= r0 + wk r
k
0 + · · · ,

:= r̃0,
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where k = 2m+1 correspond to the first non zero wi. After we evaluate
the solution of (6) with the initial condition θ = π and r = r̃0 at θ = 2π.
The result is the return Poincaré map depending on ε whose limit when
ε → 0 will provide the return map of system (4) around the origin.

To study the solution of (6) with the initial condition θ = π and
r = r̃0 at θ = 2π, we take the polar coordinates (r, θ) defined by
x = r cos(θ + π), y = r sin(θ + π) in system (6), and we evaluate the
solution of the new system with the initial condition θ = 0 and r = r̃0
at θ = π. Thus we obtain

r(π, r̃0) = r̃0 + ū`(π) r̃
`
0 + · · ·

:= r̃0 + w̄` r̃
`
0 + · · ·

where ` = 2n+ 1 correspond to the first non zero w̄i. Substituting the
value of r̃0 we obtain

r(π, r̃0) = r̃0 + w̄`r̃
`
0 + · · ·

= r0 + wkr
k
0 + w̄l(r0 + wkr

k
0 + · · · )` + · · ·

= r0 + wkr
k
0 + w̄lr

l
0 + · · ·

Hence if the limit of r0 + wkr
k
0 + w̄lr

l
0 + · · · when ε → 0 is different

from r0, the origin of system (4) is a focus, otherwise it is a center, and
the proof of Theorem 2 is done. In short we have a method to detect
algebraically solvable degenerate centers.

4. Proof of Proposition 3

Consider system (4) with a monodromic degenerate singular point
at the origin and with s ≥ 3, this last condition is necessary in order
to have a monodromic degenerate singular point as we have mentioned
in section 1. First in the first quadrant x > 0 and y > 0 we change the
variables from (x, y, t) to (x, z, s) through y = z2 and dt = 2zds. In
the new variables system (4) in x > 0 and y > 0 becomes

ẋ = 2zP (x, z2), ż = Q(x, z2),

in x > 0 and z > 0. To this last system in x > 0 and z > 0 we change
the variables from (x, z, s) to (u, z, T ) through x = u2 and ds = 2udT .
In the new variables the last system goes over system S1 equal to

u̇ = 2zP (u2, z2), ż = 2uQ(u2, z2).

System S1 is a time-reversible system invariant by two reversibilities:
(u, z, t) → (u,−z,−t) and (u, z, t) → (−u, z,−t). In the second quad-
rant x < 0 and y > 0 we change the variables from (x, y, t) to (x, z, s)
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through y = z2 and dt = 2zds. In the new variables system (4) in
x < 0 and y > 0 becomes

ẋ = 2zP (x, z2), ż = Q(x, z2),

in x < 0 and z > 0. To this last system in x < 0 and z > 0 we
change the variables from (x, z, s) to (u, z, T ) through x = −u2 and
ds = −2udT . In the new variables the last system goes over system S2

equal to
u̇ = 2zP (−u2, z2), ż = −2uQ(−u2, z2).

System S2 is also a time-reversible system invariant by two reversibili-
ties: (u, z, t) → (u,−z,−t) and (u, z, t) → (−u, z,−t).

In a similar way we construct systems S3 and S4 in the other quad-
rants. Moreover all systems S1, S2, S3 and S4 began with terms of
at least fourth order. Hence applying the results proved in [14, 18]
(and mentioned in the first section), we have that these four systems
are limit of degenerate centers without characteristic directions of the
form

(9) u̇ = −εz3 + 2zP (u2, z2), ż = εu3 + 2uQ(u2, z2);

(10) u̇ = −εz3 + 2zP (−u2, z2), ż = εu3 − 2uQ(−u2, z2);

(11) u̇ = −εz3 − 2zP (−u2,−z2), ż = εu3 − 2uQ(−u2,−z2);

(12) u̇ = −εz3 − 2zP (u2,−z2), ż = εu3 + 2uQ(u2,−z2);

respectively, where ε needs to be small and positive. So Proposition 3
is proved.

5. Proof of Theorem 4

The proof of Theorem 4 follows in a similar way to the proof of
Theorem 2.

Consider system (4) with a monodromic degenerate singular point
at the origin. Doing the process described in the proof of Proposition
3 we arrive to systems (9), (10), (11) and (12), in the first, second,
third and fourth quadrant respectively. Do to the reversibility of these
systems when they are considered in the whole plane (u, z) their origin
are centers.

Again our objective is to study when the singular point located at
the origin of system (4) is a center or not. For doing that we shall
work with the return map of system (4) around the origin. Due to
the construction of systems of S1, S2, S3 and S4 this return map is
the composition of the following four return maps. The return map of
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system S1 from the positive u–axis to the positive z–axis in the first
quadrant, with the return map of system S2 from the positive z–axis
to the negative u–axis in the second quadrat, with the return map
of system S3 from the negative u–axis to the negative z–axis in the
third quadrat, and finally with the return map of system S4 from the
negative z–axis to the positive u–axis in the fourth quadrant. But since
systems S1, S2, S3 and S4 are limit when ε → 0 of four systems (9),
(10), (11) and (12) without characteristic directions at the origin, we
can study the return map of system (4) as the limit when ε → 0 of the
composition of the return maps of those four systems.

The Bautin method also works for studying the return map of every
one of the four systems (9), (10), (11) and (12), because these systems
have no characteristic directions. Hence taking polar coordinates as in
the proof of Theorem 2, all systems (9), (10), (11) and (12) take the
form

(13)
dr

dθ
= f(r, θ) = f1(θ)r + f2(θ)r

2 + · · · ,
where f is analytic and for all k ≥ 1, the functions fk are quotients of
trigonometrical polynomials. As before, we propose a solution of (13)
of the form

(14) r = r(θ, r0) := r0 + u2(θ)r
2
0 + u3(θ)r

3
0 + · · · ,

satisfying r(0, r0) = r0. Taking θ = 0 we obtain the initial conditions
uk(0) = 0 for all k ≥ 2. Substituting expression (14) in (13) we get a
sequence of recursive differential system for computing uk(θ) and the
return map for one of the systems (9), (10), (11) and (12) is given by

r(2π, r0) = r0 + u2(2π)r
2
0 + u3(2π)r

3
0 + · · ·

:= r0 + v2r
2
0 + v3r

3
0 + · · · ,

where the values vk, k ≥ 2, are called the generalized focal values of
the origin. In fact, if we do these computations for systems (9), (10),
(11) and (12) we will obtain that all the values vk are null because
systems (9), (10), (11) and (12) have a center at the origin due to their
reversibility.

Our objective is to study when the singular point located at the
origin of system (4) is a center or not. For doing that we shall work
with the return map of system (4) around the origin. Since systems
S1, S2, S3 and S4 are limit when ε → 0 of systems (9), (10), (11) and
(12) respectively, we can study the return map of system (4) as the
limit when ε → 0 of the composition of the return maps of the system
(9) in polar coordinates from θ = 0 to θ = π/2, with the return map
of the system (10) in polar coordinates from θ = π/2 to θ = π, with
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the return map of the system (11) in polar coordinates from θ = π
to θ = 3π/3, and with the return map of the system (12) in polar
coordinates from θ = 3π/2 to θ = 2π.

Doing the composition of the return maps of the four systems (9),
(10), (11) and (12) to implement the same process described in Section
3. We first use system (9) evaluating its solution at π/2 we obtain

r(π/2, r0) = r0 + uk(π/2) r
k
0 + · · ·

:= r0 + wk r
k
0 + · · · ,

:= r̃0,

where k = 2m + 1 correspond to the first non zero wi. Now, we have
that the values wi can be different from zero for k ≥ 2. Second we
evaluate the solution of next system (10) at the initial condition r̃0,
from π/2 to π. Repeating this process to make a complete turn with
the corresponding system at each quadrant and doing the compositions
of the four return maps in the same way that in the proof of Theorem 2
we obtain in general a non–algebraic condition in order to have a center
for the initial system (4). This condition can be non–algebraic because
the Bautin method, in general, gives non–algebraic conditions, see for
instance [18]. In short if the return map of the composition of the four
return maps is the identity we have a center, and the proof of Theorem
4 is done. Thus we have a method for detecting when a monodromic
degenerate singular point is a center, algebraically solvable or not, with
or without characteristic directions.

6. Applications

We now analyze some examples in order to show how works the
methods that follow from Theorems 2 and 4. It is important to re-
mark that the methods described in this paper only can be applied to
monodromic singular points.

We consider the differential system

(15)
ẋ = y(ax2 + bxy + cy2),
ẏ = y2(ax+ by) + x5.

with a ≤ 0 and c < 0. Using the theory presented in [12], the origin is
a monodromic singular point if a < 0 and c < 0. The monodromy of
system (15) is also studied in [11], where it is proved that if a = 0 and
b 6= 0 then the origin is not monodromic. In [19] it is studied when the
origin of system (15) has a center with an analytic first integral. Using
the method derived from section 3 we have for system (15) the next
result.
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Proposition 5. System (15) has a center at the origin if and only if
a = b = 0 and cd < 0.

Proof. System (15) is a degenerate system with the characteristic di-
rection y = 0, because xQ3 − yP3 = −cy4 being P3 and Q3 the homo-
geneous parts of degree 3 of system (15). First we construct systems
(5) and (6) for system (15) and we obtain

(16) ẋ = −εz+2z3(ax2+bxz2+cz4), ż = εx+dx5+z4(ax+bz2),

and

(17) ẋ = −εz+2z3(ax2−bxz2+cz4), ż = εx+dx5+z4(ax−bz2),

respectively. If we apply the method described in section 3 and con-
struct the return map for system (16) we obtain

r(π, r0) = r0 +
128b

105ε
r60 + · · · = r̃0.

After we evaluate the solution of (17) with the initial condition θ = π
and r = r̃0 at θ = 2π. To compute that, we take the polar coordinates
(r, θ) defined by x = r cos(θ + π), y = r sin(θ + π) in system (17), and
we evaluate the solution of the new system with the initial condition
θ = 0 and r = r̃0 at θ = π. Thus we obtain

r(π, r̃0) = r̃0 +
128b

105ε
r̃60 + · · ·

= r0 +
128b

105ε
r60 +

128b

105ε
(r0 +

128b

105ε
r60 + · · · )6 + · · ·

= r0 +
256b

105ε
r60 + · · ·

Consequently a necessary condition to have a center is b = 0. If we
impose b = 0 we do not find any more conditions. This is because the
original system (15) now takes the form

(18) ẋ = y(ax2 + cy2), ẏ = axy2 + x5.

System (18) is a time-reversible system invariant by two reversibili-
ties: (x, y, t) → (−x, y,−t) and (x, y, t) → (x,−y,−t). Hence this sys-
tem is symmetric respect to the x– and the y–axis. Therefore we must
apply the method described in section 3 but, for instance, with respect
to the first-quadrant bisector. First, in the half-plane y−x > 0 we make
the change the variables from (x, y, t) to (x, z, s) through y − x = z2

and dt = 2zds. In the new variables system (18) in y− x > 0 becomes

(19)
ẋ = 2z(x+ z2)(ax2 + c(x+ z2)2),

ż = dx5 + ax(x+ z2)2 − (x+ z2)(ax2 + c(x+ z2)2),
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in z > 0. Second, in the half-plane y − x < 0 we change the variables
from (x, y, t) to (x, z, s) through y − x = −z2 and dt = −2zds. In the
new variables system (18) in y − x < 0 becomes

(20)
ẋ = −2z(x− z2)(ax2 + c(x− z2)2),

ż = dx5 + ax(x− z2)2 − (x− z2)(ax2 + c(x− z2)2),

in z < 0.

Now we apply the method described in section 3 and construct the
return map for system (19) obtaining

r(π, r0) = r0 +
16a

15ε
r40 +

32ac

105ε2
r60 + · · · = r̃0.

After we evaluate the solution of (20) with the initial conditions θ = π
and r = r̃0 at θ = 2π. To compute that, as before, we take the polar
coordinates (r, θ) defined by x = r cos(θ+π), y = r sin(θ+π) in system
(17), and we evaluate the solution of the new system with the initial
conditions θ = 0 and r = r̃0 at θ = π. Thus we obtain

r(π, r̃0) = r̃0 +
16a

15ε
r̃40 +

32ac

105ε2
r̃60 + · · ·

We substitute the value of r̃0 and the composition has the form

r(π, r̃0) = r̃0 +
16a

15ε
r̃40 + · · ·

= r0 +
16a

15ε
r40 +

16a

15ε
(r0 +

16a

15ε
r40 + · · · )4 + · · ·

= r0 +
32a

15ε
r40 + · · ·

Therefore we obtain that the second necessary condition is a = 0. If
a = b = 0 system (15) is Hamiltonian with the first integral H(x, y) =
2dx6 − 3cy4. System (15) with a = b = 0 has a degenerate center with
characteristic directions at the origin if cd < 0 because in this case the
origin is surrounded by ovals. ¤
Now we consider the differential system

(21)
ẋ = bx2y + axy2 − by3 − x4,
ẏ = 4bxy2 − ay3 + 2x5.

System (21) is a degenerate system with the characteristic direction
y = 0, because xQ3 − yP3 = by2(3x2 + y2) where P3 and Q3 are the
lower homogeneous parts of system (21). Hence order of the lower
terms is s = 3, and we cannot apply the method developed in [18].
By using the blow–up technique in [11] it was shown that the origin
of system (21) is monodromic if and only if b ≥ 1/4. Now we shall
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see that using the method described in section 6 we can establish the
following result.

Proposition 6. System (21) has never a center at the origin.

Proof. First we construct systems (9), (10), (11) and (12) for system
(21), and we obtain

(22)
u̇ = −εz3 + 2z(−u8 + bu4z2 + au2z4 − bz6),
ż = εx3 + 2u(2u10 + 4bu2z4 − az6),

(23)
u̇ = −εz3 + 2z(−u8 + bu4z2 − au2z4 − bz6),
ż = εx3 − 2u(−2u10 − 4bu2z4 − az6),

(24)
u̇ = −εz3 − 2z(−u8 − bu4z2 − au2z4 + bz6),
ż = εx3 − 2u(−2u10 − 4bu2z4 + az6),

and

(25)
u̇ = −εz3 − 2z(−u8 − bu4z2 + au2z4 + bz6),
ż = εx3 + 2u(2u10 + 4bu2z4 + az6),

respectively. If we apply the method described in section 6 and con-
struct the return map from θ = 0 to θ = π/2 for system (22) we obtain

r(π/2, r0) = r0 +
8b− aπ

8ε
r50 −

8

15ε
r70 + · · · = r̃0.

After we evaluate the solution of (23) with the initial conditions θ =
π/2 and r = r̃0 at θ = π. To compute that, we take the polar coordi-
nates (r, θ) defined by x = r cos(θ+ π/2), y = r sin(θ+ π/2) in system
(23), and we evaluate the solution of the new system with the initial
conditions θ = 0 and r = r̃0 at θ = π/2. Thus we obtain

r(π, r̃0) = r̃0 −
8b+ aπ

8ε
r̃50 +

8

15ε
r̃70 + · · · = ˜̃r0.

Next step is to evaluate the solution of (24) with the initial conditions
θ = π and r = ˜̃r0 at θ = 3π/2. To compute that, we take the polar
coordinates (r, θ) defined by x = r cos(θ+π), y = r sin(θ+π) in system
(24), and we evaluate the solution of the new system with the initial
conditions θ = 0 and r = ˜̃r0 at θ = π/2. Thus we obtain

r(3π/2, ˜̃r0) = ˜̃r0 +
8b− aπ

8ε
˜̃r
5

0 +
8

15ε
˜̃r
7

0 + · · · = ˜̃̃
r0.

Finally we evaluate the solution of (25) with the initial conditions θ =

3π/2 and r =
˜̃̃
r0 at θ = 2π. To compute that, we take the polar

coordinates (r, θ) defined by x = r cos(θ + 3π/2), y = r sin(θ + 3π/2)
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in system (25), and we evaluate the solution of the new system with

the initial conditions θ = 0 and r =
˜̃̃
r0 at θ = π/2. Thus we obtain

r(2π,
˜̃̃
r0) =

˜̃̃
r0 −

8b− aπ

8ε
˜̃̃
r
5

0 −
8

15ε
˜̃̃
r
7

0 + · · ·
The composition of these four return maps gives the condition a = 0.
The terms in r70 cancel and if we repeat the computations of the four
returns maps with a = 0 we have

r(π/2, r0) = r0 +
b

ε
r50 −

8

15ε
r70 +

b2 + ε

3e2
r90 + · · · = r̃0,

r(π, r̃0) = r̃0 −
b

ε
r̃50 +

8

15ε
r̃70 +

13b2 − ε

3e2
r̃90 + · · · = ˜̃r0,

r(3π/2, ˜̃r0) = ˜̃r0 +
b

ε
˜̃r
5

0 +
8

15ε
˜̃r
7

0 +
b2 + ε

3e2
˜̃r
9

0 + · · · = ˜̃̃
r0,

r(2π,
˜̃̃
r0) =

˜̃̃
r0 −

b

ε
˜̃̃
r
5

0 −
8

15ε
˜̃̃
r
7

0 +
13b2 − ε

3e2
˜̃̃
r
9

0 + · · ·
Therefore, after the composition of these four maps, the second neces-
sary condition is b = 0 in contradiction with the monodromy condition
b ≥ 1/4. In fact, for a = b = 0 the system has a straight line x = 0
passing through the origin. ¤
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[17] J. Giné, Analytic integrability and characterization of centers for generalized
nilpotent singular points, Appl. Math. Comput. 148 (2004), no. 3, 849–868.
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