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Abstract. In this paper, we consider the family of rational maps

Fλ(z) = zn +
λ

zd
,

where n ≥ 2, d ≥ 1, and λ ∈ C. We consider the case where λ lies in the

main cardioid of one of the n − 1 principal Mandelbrot sets in these fami-

lies. We show that the Julia sets of these maps are always homeomorphic.

However, two such maps Fλ and Fµ are conjugate on these Julia sets only

if the parameters at the centers of the given cardioids satisfy µ = νj(d+1)λ

or µ = νj(d+1)λ where j ∈ Z and ν is an n − 1st root of unity. We define a

dynamical invariant, which we call the minimal rotation number. It deter-

mines which of these maps are conjugate on their Julia sets, and we obtain

an exact count of the number of distinct conjugacy classes of maps drawn

from these main cardioids.
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In recent years there have been many papers dealing with the family of

rational maps given by

Fλ(z) = zn +
λ

zd
,

where n ≥ 2, d ≥ 1, and λ ∈ C [9]. For many parameter values, the Julia sets

for these maps are Sierpiński curves, i.e., planar sets that are homeomorphic

to the well-known Sierpiński carpet fractal. One distinguishing property of

Sierpiński curve Julia sets is that the Fatou set consists of infinitely many

open disks, each bounded by a simple closed curve, but no two of these

bounding curves intersect.

There are many different ways in which these Sierpiński curves arise as

Julia sets in these families. For example, the Julia set is a Sierpiński curve

if λ is a parameter for which

1. the critical orbits enter the immediate basin of attraction of ∞ after

two or more iterations [5];

2. the parameter lies in the main cardioid of a “buried” baby Mandelbrot

set [3]; or

3. the parameter lies on a buried point in a Cantor necklace in the pa-

rameter plane [7].

The parameter planes for these maps in the cases where n = d = 3 and

n = d = 4 are shown in Figure 1. The red disks not centered at the origin are

regions where the first case above occurs. These disks are called Sierpiński

holes.

Many Mandelbrot sets are visible in Figure 1. The ones that touch the

external red region are not “buried,” so their main cardioids do not contain

Sierpiński curve Julia sets. Only the ones that do not meet this boundary

contain parameters from case 2.

Finally, numerous Cantor necklaces, i.e., sets homeomorphic to the Can-

tor middle-thirds set with the removed open intervals replaced by open disks,

appear in these figures. The buried points in the Cantor set portion of the

necklace are the parameters for which case 3 occurs.
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Figure 1: Two parameter planes: n = d = 3 (left) and n = d = 4 (right).

The dynamical behavior on Sierpiński curve Julia sets drawn from non-

symmetrically located Sierpiński holes is never the same [6]. That is, only

symmetrically located Sierpiński holes contain parameters for which the cor-

responding maps have conjugate dynamics. While it is known that two such

maps are not conjugate on their Julia sets, there is no known dynamical

invariant that explains this lack of conjugacy.

In this paper, we describe the topology of and dynamics on a very different

type of Julia set that arises in these families, the “checkerboard” Julia sets.

The parameter spaces contain n− 1 “principle Mandelbrot sets,” the largest

Mandelbrot sets in the parameter space [8]. We consider the Julia sets for

the parameters that lie in the main cardioids of these Mandelbrot sets.

Parameters from these cardioids have two distinct types of Fatou compo-

nents (see Figure 2). Since∞ is a superattracting fixed point, the immediate

basin of∞ and its preimages lie in the Fatou set. These components are the

escaping Fatou components. The Fatou set also contains a collection of com-

ponents corresponding to other finite attracting periodic orbits and their

preimages. These components are the non-escaping Fatou components. As

we shall show, none of the boundaries of the escaping Fatou components
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intersect. Likewise, the boundaries of the non-escaping Fatou components

do not intersect. However, each such boundary intersects infinitely many

boundaries of the escaping Fatou components, and each boundary of an es-

caping Fatou component intersects infinitely many non-escaping boundaries.

Hence, the topology of these Julia sets is very different from the topology of

Sierpiński curve Julia sets. We use the word “checkerboard” to describe this

pattern of Fatou components.

In Figure 2, we display the Julia set for the map F0.18(z) = z4 + 0.18/z3.

The red regions are the preimages of the attracting basin of∞, and the black

regions are the preimages of the basins of the finite attracting cycles. The

boundary of each red region touches infinitely many boundaries of the black

regions, but it does not touch the boundary of any other red region. Similarly,

the boundary of each black region touches infinitely many boundaries of the

red regions, but it does not touch the boundary of any other black region.

Figure 2: The image on the left is the checkerboard Julia set for F0.18(z) =
z4 + 0.18/z3. The image on the right is a magnification of one-seventh of the
Julia set.

The external red region in the left-hand image of Figure 2 is the immediate

basin of attraction of∞. We denote this basin by Bλ. The central red region
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that contains the pole at the origin is mapped to Bλ. We let Tλ denote this

Fatou component. All other red regions are also eventually mapped to Bλ.

Note that there are n + d (= 7 in this example) large black regions that

touch Bλ and Tλ at unique points. These Fatou components are (eventually)

periodic. We call them the connecting (Fatou) components since they are the

only Fatou components that extend from Bλ to Tλ. Each of these connecting

components seems to be separated by another red region that touches exactly

two boundaries of the adjacent connecting components. On one side of these

red regions, we see d−1 (= 2 in this example) smaller black components. On

the other side, we see n− 1 (= 3 in this example) smaller black components.

Each such black component connects to a pair of red regions. If we were to

magnify this image, we would see that this pattern repeats itself at any scale.

In this paper, we make this construction precise. In particular, we give

an algorithm for describing the topological structure of these Julia sets. This

algorithm also describes the dynamics on these Julia sets via symbolic dy-

namics. We prove:

Theorem 1. Let Fλ(z) = zn + λ/zd with n ≥ 2 and d ≥ 1. Any two Julia

sets that correspond to parameters in the main cardioids of the principal

Mandelbrot sets in the parameter plane for these maps are homeomorphic.

Theorem 1 says that checkerboard Julia sets are analogous to Sierpiǹski

curve Julia sets [15] because all checkboard Julia sets are homeomorphic.

As in the Sierpiǹski case [6], only certain symmetrically located cardioids

give rise to conjugacies on their respective Julia sets. However, unlike the

Sierpiǹski case, we can define a dynamical invariant for checkboard Julia sets.

We call it the minimal rotation number, and we prove that it is a conjugacy

invariant for checkerboard Julia sets.

Theorem 2. Two maps drawn from different main cardioids of principal

Mandelbrot sets are topologically conjugate on their Julia sets if and only

if their minimal rotation numbers are equal. In particular, two such maps

restricted to their Julia sets are topologically conjugate only if the parameters
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are symmetric either under the rotation z 7→ νj(d+1)z or under the map

z 7→ νj(d+1)z, where j ∈ Z and νn−1 = 1.

Theorem 2 leads to an exact count of the number of main cardioids that

have non-conjugate dynamics.

Theorem 3. Let g be the greatest common divisor of n− 1 and n+ d. If g

is even, then there are exactly 1 + g/2 distinct conjugacy classes among the

maps drawn from the main cardioids of the principal Mandelbrot sets. If g is

odd, then the number of conjugacy classes is (g + 1)/2.

1 Preliminaries

Consider the family of maps

Fλ(z) = zn +
λ

zd

where n ≥ 2, d ≥ 1, and λ ∈ C. The point at infinity is superattracting of

order n. As above, we denote the immediate basin of ∞ by Bλ. Also, 0 is a

pole of order d, so there is a neighborhood of 0 that is mapped into Bλ. If

this neighborhood is disjoint from Bλ, we use the term “trap door” for the

preimage of Bλ that contains 0. We denote the trap door by Tλ.

The map Fλ(z) has n+d “free” critical points. They satisfy the equation

zn+d =
dλ

n
.

Hence, they are equally spaced on the circle of radius

n+d

√
d|λ|
n

centered at the origin. There are also n + d prepoles. They satisfy the

equation zn+d = −λ.

The family Fλ has symmetries in both the dynamical plane and the pa-

rameter plane.
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Symmetry Lemma 1. The map Fλ is conjugate to Fλ by the conjugacy

z 7→ z.

This first symmetry implies that the parameter plane is symmetric under

complex conjugation.

Symmetry Lemma 2. If ω is a (n+ d)th root of unity, then

Fλ(ωz) = ωnFλ(z).

This second symmetry implies that the Julia set of Fλ is symmetric under

the map z 7→ ωz. Similarly, Bλ and Tλ possess this (n+ d) -fold symmetry.

Moreover, since the free critical points are arranged symmetrically with

respect to z 7→ ωz, all of the free critical orbits behave symmetrically with

respect to this rotation. However, it is not necessarily true that all of these

critical orbits behave in the same manner. For example, consider the map

F0.18(z) = z4 + 0.18/z3 (see Figure 2). The orbit of the free critical point

on the positive real axis is asymptotic to a fixed point, but the other six

free critical orbits are asymptotic to a pair of period-three orbits. This sym-

metry also implies that the basins of these attracting orbits are arranged

symmetrically as well.

The most important consequence of Symmetry Lemma 2 is the fact that

the orbits of all of the free critical points can be determined from the orbit of

any one of them (see Figure 3). So the one-dimensional λ-plane is a natural

parameter plane for these maps.

Symmetry Lemma 3. Suppose that η is an (n+ d)(n− 1)st root of unity.

Let ν = ηn+d and ω = ηn−1. Then

F k
νλ(ηz) = ηn

k

F k
λ (z)

for k = 1, 2, 3, . . . .

Note that ν is an (n− 1)st root of unity and ω is an (n+ d)th root of unity.

Symmetry Lemma 3 is proved by induction on k.
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Figure 3: The orbit diagram for the critical points of Fλ0(z) = z13 + λ0/z
7

where λ0 is the center of the principal Mandelbrot setM0 that intersects the
positive real axis. The critical point on the positive real axis is a fixed point,
and it is labeled with the number 0. The orbits of the remaining critical
points are determined from the orbit of the fixed point using Symmetry
Lemma 2.

We can determine the orbit diagram of Fνλ from the orbit diagram of λ.

In particular, if cλ is a critical point for Fλ, then ηcλ is a critical point for

Fνλ. We denote this critical point by cνλ. From Symmetry Lemma 3, we

have

F k
νλ (cνλ) = F k

νλ (ηcλ) = ηn
k

F k
λ (cλ) .

Therefore, the orbits of the critical points of Fλ and Fνλ behave symmetrically

with respect to rotation by some power of η (see Figure 4). Consequently,

the parameter plane is symmetric under the rotation λ 7→ νλ.

As we shall see, the dynamics of Fλ and Fνλ are not necessarily conjugate.

For example, if λ lies in the main cardioid of the right-hand principal Man-

delbrot set in the n = d = 3 case, the map Fλ has a pair of attracting fixed

points (see Figure 1). In contrast, if λ is an element of the the main cardioid

of the left-hand principal Mandelbrot set, the map Fλ has an attracting cycle

of period two.

7



Figure 4: The orbit diagram for the critical points of Fλ1(z) = z13 + λ1/z
7

where λ1 = νλ0 is the center of the principal Mandelbrot set M1, i.e., the
image of M0 under the rotation z 7→ νz.

The map Fνλ is conjugate to ωFλ by the rotation z 7→ ηz because

Fνλ(ηz) = (ηz)n +
νλ

(ηz)d
= ηnzn +

ν

ηd
λ

zd
= ηn

(
zn +

λ

zd

)
= ηω

(
zn +

λ

zd

)
.

More generally, the map Fνjλ is conjugate to the map ωjFλ via the rota-

tion z 7→ ηjz.

As in the case of the quadratic polynomials z2 + c, the orbits of the free

critical points can tend to ∞. However, unlike the quadratic case, there are

three distinct ways that these critical orbits can escape, and each way leads

to a different topological type of Julia set.

Theorem (The Escape Trichotomy [5].) Let vλ = Fλ(cλ) be a critical value.

1. If vλ lies in Bλ, then J(Fλ) is a Cantor set.

2. If Tλ 6= Bλ and vλ lies in Tλ, then J(Fλ) is a Cantor set of disjoint,

simple, closed curves that surround the origin.
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3. In all other cases, J(Fλ) is a connected set. In particular, if Tλ 6= Bλ

and F j
λ(vλ) lies in Tλ for some j ≥ 1, then J(Fλ) is a Sierpiński curve.

We remark that case 2 of this theorem does not occur if n = d = 2 or if

d = 1. In each parameter plane in Figure 1, the exterior red region consists

of the parameters for which the Julia set is a Cantor set. We call this region

the Cantor set locus. The small red region that contains the origin is the set

of parameters for which the Julia set is a Cantor set of circles. We call this

region the McMullen domain because McMullen first discovered this type

of Julia set [12]. The complement of these two regions is the connectedness

locus. The Julia sets for these parameters are connected. The “holes” in the

connectedness locus consist of parameter values for which the Julia set is a

Sierpiński curve. We call these regions Sierpiński holes.

Note that there are two large Mandelbrot sets along the real axis in the left

parameter plane in Figure 1. In the right parameter plane in the same figure,

there are three large Mandelbrot sets symmetrically located with respect to

the rotation z 7→ νz where ν = e2πi/3.

With the exception of the n = d = 2 case, the parameter plane for the

family Fλ contains n− 1 symmetrically located Mandelbrot sets if d 6= 1 [8].

We call these sets the principal Mandelbrot sets for the family Fλ. In [8], the

existence of these sets was proved for the case n = d > 2. However, the same

proof works if d 6= 1 and n 6= d. In this paper, we describe the structure of

and dynamics on the Julia sets for parameters that lie in the main cardioids

of these principal Mandelbrot sets.

If n = d = 2, there does not exist a principal Mandelbrot set in the

parameter plane. In this case, the “tail” of the Mandelbrot set, i.e., the

parameter corresponding to c = −2 in the Mandelbrot set for z2 + c, extends

to the origin, where the map is just F0(z) = z2. So, we do not have a

complete Mandelbrot set. Nonetheless, there is a main cardioid in which

each parameter has four connecting Fatou components (see the left-hand

parameter plane in Figure 5).

If d = 1, there are no principal Mandelbrot sets in the parameter plane.

However, there are n − 1 distinct cardioid-shaped regions extending from
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the Cantor set locus to the origin (see the right-hand parameter plane in

Figure 5). Parameters drawn from these regions have n+1 connecting Fatou

components.

Figure 5: Two parameter planes: n = d = 2 (left) and n = 4, d = 1 (right).

For the maps that we study, the boundary of the immediate basin of

infinity is a simple, closed curve.

Proposition 1. Suppose λ lies in the connectedness locus in the parameter

plane and Fλ is hyperbolic on its Julia set. Then the boundary of Bλ is a

simple, closed curve.

Proof: Since Fλ is hyperbolic on its Julia set, J(Fλ) is locally connected

(see [13]). In particular, the boundary of J(Fλ) is locally connected, so ∂Bλ

is a locally connected set. We need only show that the set C−Bλ is connected.

We argue by contradiction. Suppose that C − Bλ is disconnected. Let

W0 denote its component that contains the trap door. The second symmetry

lemma implies that W0 is symmetric under z 7→ ωz. Also, Tλ is contained in

the interior of W0 since, if not, there would be a critical point in ∂Tλ ∩ ∂Bλ,

which contradicts the assumption that Fλ is hyperbolic on J(Fλ).

At least one other component of C − Bλ, say W1, is mapped over W0.

If not, ∂W0 would be backward invariant, which cannot happen. Another
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application of the second symmetry implies that Wj = ωjW1 is also mapped

onto W0 for j = 1, . . . , n+ d− 1. We have n+ d distinct preimages of W0.

However, we claim that there are points in W0 that are also mapped

into W0. To see why, recall that ∂Tλ is mapped over the entire boundary

of Bλ by Fλ and that ∂Tλ lies in W0. Thus there is a point z0 in ∂Tλ that

is mapped into ∂W0. Then there is a neighborhood of z0 in W0 mapped to

a neighborhood of Fλ(z0), and hence there are points in this neighborhood

that are mapped inside W0. We arrive at a contradiction since we have found

points in W0 that have more than n+ d preimages.

2

2 Checkerboard Julia Sets

In this section we present an algorithm for constructing the Julia sets for

parameters in the main cardioids of the principal Mandelbrot sets. Theorem 1

follows from this algorithm.

First, consider the case of the principal Mandelbrot set whose main car-

dioid intersects the positive real axis, and let [a, b] denote the interval of

intersection. By considering the graph of Fλ |R for λ ∈ (a, b), we see that

each such map has an attracting fixed point that is real and positive. Hence,

for each λ from this main cardioid, the map Fλ also has an attracting fixed

point. We denote this fixed point by p0λ and its immediate basin of attraction

by C0
λ. Since Fλ is hyperbolic, ∂C0

λ is a simple, closed curve. Furthermore,

if λ ∈ (a, b), the graph of Fλ |R shows that C0
λ extends from ∂Bλ to ∂Tλ.

Consequently, C0
λ extends from ∂Bλ to ∂Tλ for all values of λ in this main

cardioid. The intersection ∂Bλ∩∂C0
λ consists solely of a repelling fixed point

q0λ that is real and positive. Similarly, the intersection ∂Tλ ∩ ∂C0
λ is also

just one point that is real and positive. We denote it by u0λ. Note that

Fλ(u
0
λ) = q0λ.

From the second symmetry, we obtain n+ d− 1 other Fatou components

that are symmetrically located around the origin. We denote these Fatou

components by Cj
λ with j = 1, . . . , n+ d− 1. They are ordered in the coun-
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terclockwise direction. Since each of these components extends from Tλ to

Bλ, we call them connecting (Fatou) components. Some of these Fatou com-

ponents are immediate basins of attracting cycles, and others are eventually

periodic components. The exact configuration of these components is deter-

mined by Symmetry Lemma 2 with ω = exp(2πi/(n + d)). For example,

since Fλ(ωz) = ωnFλ(z), we have Fλ(C
1
λ) = Cn

λ , Fλ(C
2
λ) = C2n

λ , and so forth.

In particular, if n = d = 3, both C0
λ and C3

λ are fixed basins, C1
λ and C5

λ are

mapped to C3
λ, and C2

λ and C4
λ are mapped to C0

λ.

Let pjλ = ωjp0λ, q
j
λ = ωjq0λ, and ujλ = ωju0λ. Then both qjλ and ujλ lie on

∂Cj
λ. Also, pjλ lies in the interior of Cj

λ and is either periodic or preperiodic

(see Figure 6).

For the other n − 2 main cardioids of the principal Mandelbrot sets, we

have a similar structure due to the (n− 1) -fold symmetry in the parameter

plane. More precisely, if ν is an (n−1)st root of unity, the orbits of the critical

points of Fλ and Fνλ behave symmetrically with respect to multiplication by

some (fractional) power of ν, as was shown immediately following Symmetry

Lemma 3. Consequently, the configuration of the basins for Fνλ is similar to

that of Fλ.

Recall that ∂Bλ and ∂Tλ are simple, closed curves. Since there are no

critical points in ∂Bλ∩∂Tλ, these curves do not intersect. Let Aλ denote the

closed annulus bounded by ∂Bλ and ∂Tλ. Let Ijλ denote the closed set in Aλ

that is contained in the region located between the open disks Cj
λ and Cj+1

λ .

Note that the intersection of Ijλ and Ij+1
λ is the pair of points qj+1

λ and uj+1
λ .

Thus there are four points on the boundary of each Ijλ that also lie on the

boundary of another such set: a pair of points lies in Ijλ ∩ I
j+1
λ and another

pair in Ijλ ∩ I
j−1
λ . We call the points qjλ the outer junction points and the

points ujλ the inner junction points (see Figure 6).

Proposition 2. Fλ maps each Ijλ univalently (except at the junction points)

over the region that is the complement of the three sets Bλ, Fλ(C
j
λ), and

Fλ(C
j+1
λ ).

Proof: Since Fλ is conjugate to z 7→ zn on ∂Bλ, the portion of ∂Bλ that

12



Figure 6: The regions Ijλ if n = 3 and d = 2.

meets Ijλ, i.e., the arc in ∂Bλ connecting qjλ to qj+1
λ , is mapped to an arc in

∂Bλ that passes through exactly n + 1 outer junction points. Similarly, the

portion of ∂Tλ that meets Ijλ is mapped to the complementary arc in ∂Bλ.

These two arcs meet at a pair of outer junction points in ∂Bλ. Also, the

portion of the boundary of Ijλ that meets ∂Cj
λ is mapped one-to-one onto the

boundary of Fλ(C
j
λ) except at the junction points. The junction points are

both mapped to the same point. Similarly the other boundary of Ijλ that

lies in ∂Cj+1
λ is mapped onto ∂Fλ(C

j+1
λ ). Therefore, the boundary of Ijλ is

mapped to the boundary of the three sets Bλ, Fλ(C
j
λ), and Fλ(C

j+1
λ ). Since

there are no critical points in Ijλ, the result follows. 2

We call the two arcs in Ijλ that lie in the boundaries of Cj
λ and Cj+1

λ

the internal boundary components of Ijλ. By Proposition 2, there must be a

preimage of Tλ in each Ijλ. Moreover, the boundary of this preimage must

meet each internal boundary component of Ijλ in exactly one point, namely

the preimage of the inner junction points lying in the portions of the bound-

ary of Fλ(C
j
λ) and Fλ(C

j+1
λ ) that lie in Ijλ. Thus the preimage of Tλ in each

Ijλ is an open region whose boundary meets exactly one point in each of the

boundaries of the connecting Fatou components that are adjacent to Ijλ (see
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Figure 7).

The preimage of Tλ separates Ijλ into two pieces: an external piece that

abuts ∂Bλ and an internal piece that abuts ∂Tλ. The external piece is mapped

by Fλ over the portion of Aλ that stretches from Fλ(C
j
λ) to Fλ(C

j+1
λ ) in the

counterclockwise direction. Since Fλ(ωz) = ωnFλ(z), this region is mapped

over exactly n of the I iλ and n− 1 of the Ci
λ. Similarly, the internal piece is

mapped over exactly d of the I iλ and d − 1 of the Cj
λ. So each of Ijλ can be

further subdivided as shown in Figure 7. The portion of Ijλ lying outside the

preimage of Tλ has n − 1 preimages of the connecting components, and the

internal portion has d− 1 such preimages. Between each preimage including

Cj
λ and Cj+1

λ , there is a region that is mapped univalently onto one of the

Ikλ ’s. Hence there is a preimage of each of the sets just constructed in each

of these smaller regions (see Figure 7).

Figure 7: The regions Ijλ if n = 3 and d = 2.

Continuing in this fashion, we always find the same picture in each region

bounded by kth and earlier preimages of Tλ and kth and earlier preimages of

the Cj
λ’s. It is a central (k + 1)st preimage of Tλ flanked by n − 1 (k + 1)st

preimages of the connecting components on one side and d−1 other (k+1)st

preimages on the other side.
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However, this construction does not give the entire Julia set of Fλ. Indeed,

the portion of the Julia set produced thus far contains only preimages of the

boundaries of Bλ and the Cj
λ. None of these preimages contain any periodic

points; the only periodic points here lie in ∂Bλ and ∂Cj
λ. So there must be

more to the Julia set.

To complete the construction of the Julia set, note that each closed region

Ijλ is almost mapped univalently over the union of all of the Ikλs. The map

is univalent except at the four junction points. One pair of junction points

is mapped to an outer junction point in the image, and the other pair is

mapped to a different outer junction point. We can use symbolic dynamics

to identify each point in the Julia set. Let Σ denote the set of sequences

(s0, s1, s2, . . .) where each sj is one of the integers 0, 1, . . . , n + d − 1. We

identify each point in J(Fλ) with a point in Σ by assigning to each z ∈ J(Fλ)

its itinerary S(z) = (s0, s1, s2, . . .) where sk = j if F k
λ (z) ∈ Ijλ. However,

infinitely many points are assigned to a pair of sequences. The points qjλ
and ujλ each have a pair of sequences attached to them since these points

reside in two of the Ijλ’s. For example, S(q0λ) = (0) = (n+ d− 1) and

S(u0λ) = (0, n+ d− 1) = (n+d−1, 0). Similarly, any point that is eventually

mapped onto a qjλ or a ujλ also has a pair of itineraries, e.g., the itineraries

(s0, . . . , sk, 0, n+ d− 1) and (s0, . . . , sk, n+ d− 1, 0) correspond to the same

points.

We let Σ′ denote the sequence space with the above identifications and

endow Σ′ with the quotient topology. Since each Ijλ is mapped univalently

(except at the junction points) over the union of the Ikλ and the Julia set

is contained in this union, standard arguments then show that the Julia set

is homeomorphic to Σ′. The subsets Σ′j of Σ′ consisting of all sequences

that start with the digit j correspond to points in Ijλ ∩ J(Fλ), and they are

homeomorphic to Σ′k. It is important to note that the dynamics on these sets

are not the same even though they are homeomorphic. We have described

the topological structure of each Ijλ ∩ J(Fλ), and this description implies

Theorem 1 (see [2] for a similar argument).
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3 Dynamical Invariants

In this section we prove Theorems 2 and 3. Let ν = exp(2πi/(n − 1)). We

show that two maps drawn from the main cardioids of different principal

Mandelbrot sets are conjugate on their Julia sets if and only if the cardioids

are located symmetrically under either the maps z 7→ νj(d+1)z or z 7→ νj(d+1)z

for some integer j.

We first observe that it suffices to prove this result for the special maps

whose parameter is the center of these main cardioids. The set of critical

points is invariant under the map, so the critical points are either periodic or

preperiodic. The following proposition follows from the work of Mané, Sad,

and Sullivan [10].

Proposition 3. Suppose λ lies at the center of the main cardioid of one of

the principal Mandelbrot sets and that µ lies in the same cardioid. Then Fλ

and Fµ are quasiconformally conjugate on their Julia sets.

Remark. It is not true that Fλ and Fµ are globally conjugate since Fλ

has a superattracting cycle while the attracting cycle for Fµ need not be

superattracting.

By Proposition 3, we need only consider parameters that lie at the centers

of the main cardioids of the principal Mandelbrot sets. So for the remainder

of this section, we assume that λ and µ are centers. Then µ = νjλ for some

j ∈ Z. The proof of one direction of Theorem 2 is straightforward:

Proposition 4. If µ = νj(d+1)λ or µ = νj(d+1)λ for some integer j, then Fµ

is conjugate to Fλ.

Proof: Let µ = νj(d+1)λ, then

Fµ(νjz) = νjnzn +
λνj(d+1)

νjdzd
= νj

(
zn +

λ

zd

)
= νjFλ(z).

So Fλ is conjugate to Fµ via the linear map z 7→ νjz.

By Symmetry Lemma 1, Fλ and Fλ have conjugate dynamics. So if

µ = νj(d+1)λ, then Fµ is conjugate to Fλ and hence also to Fλ.

16



2

From Proposition 4, we know that all centers whose parameters are of the

form νkλ or νkλ where k = j(d + 1) mod (n − 1) have conjugate dynamics.

That is, any two main cardioids that are located symmetrically with respect

to either rotation by νd+1 or complex conjugation have conjugate dynamics.

Note that νd+1 = νn−1νd+1 = νn+d, so we can say that any two cardioids that

are located symmetrically with respect to either rotation by νn+d or complex

conjugation have conjugate dynamics.

Using basic facts about the greatest common divisor of two numbers, we

can restate this relationship among the centers with conjugate dynamics in

terms of the greatest common divisor g of d+1 and n−1. In fact, all centers

whose parameters are of the form νkλ or νkλ where k is an integer multiple

of g have conjugate dynamics.

Now we show that these symmetrically located centers are the only centers

with conjugate dynamics. First we define the minimum rotation number for

parameters in the main cardioids of the principal Mandelbrot sets. For each

such parameter we have n+d connecting components Cj
λ with j defined mod

n+d, and the Cj
λ are ordered in the counterclockwise direction as j increases.

Each of these connecting components is mapped two-to-one onto another such

component since each contains a unique critical point (see Figure 6).

Suppose Fλ(C
j
λ) = Ck

λ . We define the rotation number ρj of Cj
λ to be the

value of k− j that is closest to 0 for any k mod n+d. Note that it is possible

for k to be negative (see Figure 8). For example, if Fλ(C
0
λ) = Cn+d−1

λ , then

the rotation number of C0
λ would be −1 since Cn+d−1

λ = C−1λ . We say that Cj
λ

is rotated through k− j components if ρj = k. We then define the minimum

rotation number ρ(λ) for Fλ to be the minimum value of |ρj| over all j. For

example, if Fλ has an attracting fixed point in some Cj
λ, ρ(λ) = 0. If there

is no such attracting fixed point, then ρ(λ) > 0.

Proposition 5. Let λ and µ be centers of main cardioids of principal Man-

delbrot sets. Then Fλ is conjugate to Fµ if and only if ρ(λ) = ρ(µ). Equiva-

lently, µ = νkλ or µ = νkλ where k = j(d+ 1) mod (n− 1) for some integer

j. The conjugating map is either a rotation about the origin or a rotation
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Figure 8: A Cj
λ with ρj = −1.

followed by complex conjugation.

Proof: First suppose that two such centers λ and µ have different minimum

rotation numbers. Then Fλ and Fµ cannot be conjugate on their Julia sets.

To see why, recall that the connecting components each touch ∂Bλ at exactly

one point. Now ∂Bλ must be sent to itself by any conjugacy between Fλ and

Fµ since this set is the only invariant subset of the Julia set that touches the

boundaries of all of the connecting components. Thus the ordering of the

Cj
λ is either preserved or reversed by the conjugacy, i.e., either the conjugacy

rotates the connecting components in one direction or the other, or the con-

jugacy first applies complex conjugation followed by some rotation. In either

case, if the minimum rotation numbers of Fλ and Fµ are different, then such

a conjugacy cannot exist.

To prove the converse, we consider the set of critical points, c0λ, . . . , c
n+d−1
λ ,

of Fλ where λ is the center of a main cardioid of a principal Mandelbrot set.

The point cjλ is the unique critical point that lies in the connecting component

Cj
λ. We note that this set of critical points is invariant under Fλ.

Suppose Fλ and Fµ have the same minimum rotation number m. By

assumption, there is at least one critical point cjλ for Fλ for which either
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Fλ(c
j
λ) = cj+mλ = ωmcjλ or Fλ(c

j
λ) = cj−mλ = ω−mcjλ. (Recall that ωn+d = 1.)

There is also a critical point ciµ for Fµ for which either Fµ(ciµ) = ci+mµ = ωmciµ
or Fµ(ciµ) = ci−mµ = ω−mciµ.

We consider the first case for λ and µ, i.e., where the rotation numbers m

for both critical points are positive. Since µ = νkλ for some k, Fµ is conjugate

to the map z 7→ ωkFλ(z) by the rotation z 7→ ηkz where

η = exp(2πi/((n+ d)(n− 1)))

(see the paragraphs that follow Symmetry Lemma 3). So there must be a

critical point for ωkFλ that corresponds to ciµ and that is also rotated by ωm

when ωkFλ is applied to it. But any critical point of ωkFλ must also be a

critical point for Fλ. Suppose that ω`cjλ is the critical point for ωkFλ that

corresponds to ciµ. Then we have

ωkFλ(ω
`cjλ) = ωmω`cjλ = ω`ωmcjλ = ω`Fλ(c

j
λ).

But

ωkFλ(ω
`cjλ) = ωk+`nFλ(c

j
λ).

Therefore we have ` = k + `n mod (n+ d).

Consequently, ω`Fλ(z) = ωk+`nFλ(z), and using Symmetry Lemma 2, we

obtain

ω`Fλ(z) = ωkFλ(ω
`z)

for all z ∈ C. So Fλ is conjugate to ωkFλ via the map z 7→ ω`z. Therefore Fλ

is also conjugate to Fµ via a linear map of the form z 7→ ηω`z and µ = νkλ

where k = j(d+ 1) mod (n− 1).

The proof for the case where both rotation numbers m are negative is

exactly the same.

To prove the second case, the case where the rotations go in opposite

directions, we simply conjugate Fµ to Fµ by complex conjugation and then

invoke the first case. 2

As a consequence of Propositions 3 and 5, this result extends to all pa-

rameters in the main cardioids of any of the principal Mandelbrot sets.
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Corollary. Let λ and µ be any parameters drawn from the main cardioids of

any two prinicpal Mandelbrot sets. Then Fλ and Fµ are conjugate on their

Julia sets if and only if ρ(λ) = ρ(µ).

Now we can determine exactly which main cardioids of the principal Man-

delbrot sets have conjugate dynamics and the precise number of different

conjugacy classes. Let M0 denote the main cardioid of the principal Man-

delbrot set that intersects the positive real axis, and denote the remaining

main cardioids of principal Mandelbrot sets by Mj where the ordering is in

the counterclockwise direction. We write Mj ≡ Mk if the parameters at

the centers of Mj and Mk have conjugate dynamics. Let g be the greatest

common divisor of n − 1 and d + 1. As we proved in this section, the prin-

cipal Mandelbrot sets with dynamics conjugate to the dynamics of Mk are

those obtained by successive rotations in the parameter plane by z 7→ νjgz or

by these rotations followed by complex conjugation. In particular, we have

M0 ≡Mjg for all integers j.

Theorem. If the greatest common divisor g is even, there are 1+g/2 differ-

ent conjugacy classes among the Mj. If g is odd, there are (g+ 1)/2 distinct

such conjugacy classes.

Proof: First suppose that g = 1. Then all maps drawn from the Mj have

conjugate dynamics, so we have 1 = (g + 1)/2 conjugacy classes.

Now suppose g > 1. We claim thatMk 6≡ M0 for any k with 0 < k < g.

If not, then maps at the centers of M0 and some Mk would be conjugate

by z 7→ z followed possibly by a rotation. But then Mk ≡ M−k via z 7→ z.

Also, Mg ≡M−g by z 7→ z. Therefore we have M−g ≡M−k by a rotation,

which would imply that the greatest common divisor is smaller than g. So

none of the centers of the Mk with 0 < k < g have dynamics conjugate to

the center of M0.

If g is even, we consider Mk where 0 < k < g/2. We have Mk ≡
M−k by complex conjugation. Moreover M−k ≡ Mg−k since these sets are

symmetric under the rotation z 7→ νgz, soMk ≡Mg−k. On the other hand,

we cannot have Mk ≡ Mj for any other j with 0 < j < g via rotation
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by z 7→ νgz or by complex conjugation coupled with a rotation, so the

principal Mandelbrot sets with dynamics conjugate to those in Mk are just

the rotations ofMk together with their complex conjugates. The number of

such conjugacy classes is g/2 − 1. We have Mg/2 ≡ M−g/2 by the rotation

z 7→ ν−gz as well as by complex conjugation. So Mg/2 lies in a conjugacy

class that is distinct from the classes of the Mk with 0 ≤ k ≤ g/2. The

conjugacy class of M0 has not yet been counted. Combining all of these

classes, we obtain a total of 1 + g/2 distinct conjugacy classes.

If g is odd, we count in exactly the same way except that we do not have

a conjugacy class that corresponds to Mg/2 in this case.

2

See Figure 9 for the three orbit diagrams that arise if n = 13 and d = 7.

In Figure 10, we consider the case where n = 11 and d = 4, and group the

Mandelbrot sets whose centers have conjugate dynamics.

Figure 9: If n = 13 and d = 7, then g = 4, and consequently, there are
three conjugacy classes. This figure contains one orbit diagram for each of
the three classes.

4 A Group Action

Since the conjugacies among the Mk arise from reflective and rotational

symmetries, we can count the number of conjugacy classes by viewing them
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Figure 10: If n = 11 and d = 4, then g = 5, and consequently, there are three
conjugacy classes. The parameters with conjugate dynamics are connected
by segments of the same color, e.g., the four Mandelbrot sets connected by
white segments all have conjugate dynamics.

as orbits of the action of a dihedral group on the set {Mk}, viewed as the

vertices of a regular (n− 1)-gon.

Let a = (n− 1)/g. We claim that the natural group that produces these

orbits is D2a, the group of symmetries of a regular a-gon. Let s be the gener-

ator of D2a corresponding to reflection and r be the generator corresponding

to rotation. We define the action of D2a on {Mk} by

sMk = M−k mod n−1

rMk = Mk+g mod n−1

These rules produce a well-defined D2a action, and since the actions on

{Mk} by s and r are exactly complex conjugation and rotation by z 7→ νgz,

respectively, the orbits of this action correspond exactly to the conjugacy

classes among the Mk.
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By Burnside’s Lemma, the number of orbits is

1

|D2a|
∑
x∈D2a

|fix(x)|

where fix(x) = {Mi ∈ {Mk} : xMi =Mi}.
The group D2a has 2a elements, and each can be written as rj or srj with

0 ≤ j < a. The identity fixes all n− 1 elements of {Mk}, and rj fixes none

for 0 < j < a. Thus the number of orbits is

1

2a

(
n− 1 +

a−1∑
j=0

|fix(srj)|

)

An element of the form srj rotates eachMk by z 7→ νjgz and then reflects

it about the real axis. Equivalently, it reflects the Mk through some axis of

symmetry of the set viewed as a regular (n − 1)-gon. Thus, if n − 1 is odd,

every such axis passes through exactly one of theMk, and thus |fix(srj)| = 1

for all j. The formula above then shows the number of conjugacy classes is

(n− 1 + a)/2a = (g + 1)/2.

If n−1 is even, half of the axes of symmetry pass through two of theMk,

and half pass through none. Thus srj fixes either two or zero of the Mk.

There exists a j such that srj fixes none of theMk if and only if there is some

i such that srjMi =Mi+1 mod n−1, i.e., the axis of reflection passes between

Mi and Mi+1 mod n−1 for some i. For such an i, rjMi = s−1Mi+1 mod n−1 =

M−i−1 mod n−1 which equals Mi+jg mod n−1 by the definition of the action of

r. Thus −i − 1 ≡ i + jg mod n − 1, and hence, 2i + jg + 1 ≡ 0 mod n − 1.

If either j or g is even, this equality is impossible since n − 1 is even, and

therefore, srj must fix two of theMk. If j and g are both odd, however, any

i with i ≡ (−jg− 1)/2 mod n− 1 satisfies the congruence, and thus srj fixes

none of the Mk.

Therefore, if n − 1 and g are even, then |fix(srj)| = 2 for all j, and the

number of conjugacy classes is (n − 1 + 2a)/2a = 1 + g/2. If n − 1 is even

and g is odd, |fix(srj)| equals 2 if j is even, and 0 if j is odd. Hence, there

are (n− 1 + a)/2a = (g + 1)/2 conjugacy classes.

23



Finally, if n−1 is odd, g must be odd, so the possible cases really depend

only on the parity of g and not of n − 1. Hence, the number of conjugacy

classes is (g + 1)/2 if g is odd and 1 + g/2 if g is even.
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