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http://c3.fisica.unam.mx/
8 Laboratoire de Recherche Scientifique, Paris, France

http://labores.eu/
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Abstract

Since their inception at Macy conferences in later 1940s complex systems remain the most controversial
topic of inter-disciplinary sciences. The term ‘complex system’ is the most vague and liberally used scientific
term. Using elementary cellular automata (ECA), and exploiting the CA classification, we demonstrate
elusiveness of ‘complexity’ by shifting space-time dynamics of the automata from simple to complex by
enriching cells with memory. This way, we can transform any ECA class to another ECA class — without
changing skeleton of cell-state transition function — and vice versa by just selecting a right kind of memory.
A systematic analysis display that memory helps ‘discover’ hidden information and behaviour on trivial —
uniform, periodic, and non-trivial — chaotic, complex — dynamical systems.

keywords: elementary cellular automata, classification, memory, computability, gliders, collisions, complex
systems.
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1 Introduction

A complexity theory emerged from studies of computable problems in computer science and mathematical
foundations of computation, when a need came to compare performance and resource-efficiency of algorithms.
Typically time complexity (number of steps) and space complexity (memory of a single processor and number
of processors) are expressed in terms of a Turing machine or an equivalent mathematical device. Each specific
kind of a Turing machine represents a certain class of complexity [Minsky, 1967], [Arbib, 1969], [Hopcroft &
Ullman, 1987]. When related to complex systems meaning of the word ‘complexity’ is different and heavily
depends on its context. Complexity of a system is almost never quantified but often related to unpredictability.

Theory of cellular automata (CA) refers to complexity its entire life [von Neumann, 1966], [Adamatzky &
Bull, 2009], [Boccara, 2004], [Chopard & Droz, 1998], [Hoekstra et al., 2010], [Kauffman, 1993], [Margenstern,
2007], [McIntosh, 2009], [Mainzer & Chua, 2012], [Mitchell, 2002], [Morita, 1998], [Margolus et al., 1986],
[Poundstone, 1985], [Park et al., 1986], [Toffoli & Margolus, 1987], [Schiff, 2008], [Sipper, 1997], [Wolfram,
1986], [Mart́ınez et al., 2013a], [Mart́ınez et al., 2013b]. Due to transparency of cellular automata structures
their complexity can be measured and analysed [Wolfram, 1984a], [Culik II & Yu, 1988].

An elementary cellular automaton (ECA) is a one-dimensional array of finite automata, each automaton
takes two states and updates its state in discrete times according to its own state and states of its two closest
neighbours, all cells update their state synchronously. Thus in 1980s Wolfram subdivided ECA onto four
complexity classes [Wolfram, 1984a]:

• class I. CA evolving uniformly.

• class II. CA evolving periodically.

• class III. CA evolving chaotically.

• class IV. Include all previous cases, known as the class complex.

Also these classes can be defined in terms of CA evolution as follows:

• If the evolution is dominated by a unique state of alphabet from any random initial condition, it belongs
to class I.

• If the evolution is dominated by blocks of cells which are periodically repeated from any random initial
condition, hence it belongs to class II.

• If the evolution is dominated by sets of cells without some defined pattern for a long time from any random
initial condition, hence it belongs to class III.

• If the evolution is dominated by non-trivial structures emerging and travelling along of the evolution space
where also uniform, periodic, or chaotic regions can coexist with these structures, it belongs to class IV.
This class is named frequently as: complex behaviour, complex dynamics, or simply complex.

Figure 1 illustrates the Wolfram’s classes by a selected ECA rule (following the Wolfram’s notation for
ECA [Wolfram, 1983]), and all evolutions begin with the same random initial condition. Fig. 1a shows ECA
rule 8 converging quickly to a homogeneous state, the class I. Figure 1b displays blocks of cells which evolve
periodically exhibiting a right shift, this is an interesting reversible ECA rule 15, the class II. Figure 1c displays
a typical chaotic evolution with ECA rule 126, where no regular patterns detected or no limit point can be
identified, the class III. Finally, Fig. 1d displays the so-called complex class or class IV with ECA rule 54.
There we can see non-trivial patterns emerging in the evolution space, and such patterns conserve their form
and travel along of the evolution space. The patterns collide with each other and annihilate or fuse, or undergo
soliton-like transformations or produce new structures. These patterns are referred to as gliders in the CA
literature (glider is a concept widely accepted and popularised by Conway from its famous 2D CA Game of
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(a) (b)

(c) (d)

Figure 1: Examples of space-time evolution of ECA rules: (a) class I, ECA rule 8, (b) class II, ECA rule
15, (c) class III, ECA rule 126, (d) class IV, ECA rule 54 (a periodic background is filtered). All automata
illustrated start their development at the same random initial condition with a density of 50% of states 0, light
(light blue) dots, and states 1, dark (dark blue) dots. Each automaton is a horizontal ring of 385 cells evolved
for 400 time steps.
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Life [Gardner, 1970]). In space-time configurations developed by functions from class IV we can see regions
with periodic configurations, fragments of chaos, and well-defined non-trivial patterns. Frequently in complex
rules the background is dominated by a stable state, such as happens in Conway’s Game of Life. In this case,
particularly the complex ECA rule 54 and 110 can evolve with a periodic background (called ether) where these
gliders emerge and live. Gliders in GoL and other CAs as the 2D Brian’s Brain CA [Toffoli & Margolus, 1987]
caught the attention of Langton and thus contributed to development of Artificial Life field [Langton, 1984],
[Langton, 1986].

Since the publication of the paper “Universality and complexity in cellular automata” in 1984 [Wolfram,
1984a] there have been a number of disputes about validity of the classification. Wolfram selected certain ECA
rules to illustrate each class. Although, he commented textually that: k = 2, r = 1 cellular automata are
too simple to support universal computation [Wolfram, 1984a] (page 31). Nevertheless, in his book “Cellular
Automata and Complexity” [Wolfram, 1994] ECA rule 110 was awarded its own appendix (Table 15, Structures
in Rule 110, pages 575–577). It contains specimens of evolution including a list of thirteen gliders compiled by
Lind, and also presents the conjecture that the rule could be universal. Wolfram wrote: One may speculate that
the behaviour of rule 110 is sophisticated enough to support universal computation. Finally, in [Cook, 2004],
[Wolfram, 2002] it was proved that ECA rule 110 is computationally universal because it simulates a novel cyclic
tag system with package of gliders and collisions on millions of cells.1

The paper written by Culick II and Yu titled “Undecidability of CA Classification Schemes” [Culik II &
Yu, 1988], [Sutner, 1989] discussed the properties of Wolfram ECA classes and stated that it is undecidable to
which class a given cellular automaton belongs (page 177).

Further attempts of ECA classification have been made in [Gutowitz et al., 1987], [Li & Packard, 1990],
[Aizawa & Nishikawa, 1986], Ada94, [Sutner, 2009]. Gutowitz developed a statistical analysis in “Local struc-
ture theory for cellular automata” [Gutowitz et al., 1987]. An extended classification of ECA classes with mean
field theory was proposed by McIntosh in “Wolfram’s Class IV and a Good Life” [McIntosh, 1990]. An inter-
esting schematic diagram conceptualising classes in CA was made by Li and Packard in “The Structure of the
Elementary Cellular Automata Rule Space” [Li & Packard, 1990]. Patterns recognition and classification was
presented in “Toward the classification of the patterns generated by one-dimensional cellular automata” [Aizawa
& Nishikawa, 1986]. An extended analysis of CA was presented in “Identification of Cellular Automata” by
Adamatzky in [Adamatzky, 1994] relating to the problem of given a sequence of configurations of an unknown
CA hence how to reconstruct the cell-state transition rule. Sutner has been discussed this classification and also
the principle of equivalence computation in “Classification of Cellular Automata” [Sutner, 2009], with emphasis
in class IV or computable CA. A fruitful approach with additive 2D CA was suggested by Eppstein [Eppstein,
1999].2

In this classification, class IV (called complex) is of particular interest because such rules present non-trivial
behaviour with a rich diversity of patterns (gliders) emerging and non-trivial interactions between them, gliders
are referred as well as mobile self-localizations, particles, or fragments of waves. This feature was relevant to
implementation of a register machine in GoL [Berlekamp et al., 1982] to determine its universality. Thus Rendell
has developed an elaborated Turing machines in GoL with thousands of thousands of cells [Rendell, 2011a],
[Rendell, 2011b]. Although across of the history, these bridges connection between complexity of a CA (or any
other dynamical system) and their universality is not always obvious [Adamatzky, 2002], [Mills, 2008].

Other recommendable reference sources to mention include Mitchell’s “Complexity: A Guided Tour” [Mitchell,
2009], Wolfram’s “A New Kind of Science” [Wolfram, 2002], Bar-Yam’s “Dynamics of Complex Systems” [Bar-
Yam, 1997], and “The Universe as Automaton: From Simplicity and Symmetry to Complexity” [Mainzer &
Chua, 2012] by Mainzer and Chua.

1Large snapshots of this large machine working in ECA rule 110 are available in http://uncomp.uwe.ac.uk/genaro/rule110/

ctsRule110.html.
2You can see such discussion from Tim Tyler’s CA FAQ in http://cafaq.com/classify/index.php.
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2 One-dimensional cellular automata

CA are discrete dynamical systems, with a finite alphabet that evolve on a regular lattice in parallel. In the
paper we deal with one-dimensional cellular automata.

2.1 Elementary cellular automata (ECA)

A CA is a tuple 〈Σ, ϕ, µ, c0〉 where d is a dimensional lattice and each cell xi, i ∈ N , takes a state from a finite
alphabet Σ such that x ∈ Σ. A sequence s ∈ Σn of n cell-states represents a string or a global configuration c
on Σ. We write a set of finite configurations as Σn. Cells update their states by an evolution rule ϕ : Σµ → Σ,
such that µ = 2r+1 represents a cell neighbourhood that consists of a central cell and a number of r-neighbours
connected locally. If k = |Σ| hence there are k2r+1 neighbourhoods and kk

2r+1

evolution rules.

Figure 2: Dynamics in ECA on an arbitrary one-dimensional array transformed for a specific evolution rule ϕ.

An evolution diagram for a CA is represented by a sequence of configurations {ci} generated by the global
mapping Φ : Σn → Σn, where a global relation is given as Φ(ct) → ct+1. Thus c0 is the initial configuration.
Cell states of a configuration ct are updated simultaneously by the local rule, as follows:

ϕ(xti−r, . . . , x
t
i, . . . , x

t
i+r)→ xt+1

i (1)

where i indicates cell position and r is the radius of neighbourhood in µ. Thus, the elementary CA represents
a system of order (k = 2, r = 1) (in Wolfram’s notation [Wolfram, 1983]), the well-known ECA.

To represent a specific ECA evolution rule we will write the evolution rule in a decimal notation, e.g. ϕR54

represents the evolution rule 54. Thus Fig. 2 illustrates how an evolution dynamics works for ECA.

2.2 Elementary cellular automata with memory (ECAM)

Conventional CA are memoryless: new state of a cell depends on the neighbourhood configuration solely at the
preceding time step of ϕ. CA with memory are an extension of CA in such a way that every cell xi is allowed to
remember its states during some fixed period of its evolution. CA with memory have been proposed originally by
Alonso-Sanz in [Alonso-Sanz & Martin, 2003], [Alonso-Sanz, 2006], [Alonso-Sanz, 2009a], [Alonso-Sanz, 2009b],
[Alonso-Sanz, 2011].
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Hence we implement a memory function φ, as follows:

s
(t)
i = φ(xt−τ+1

i , . . . , xt−1
i , xti) (2)

where 1 ≤ τ ≤ t determines the degree of memory. Thus, τ = 1 means no memory (or conventional evolution),
whereas τ = t means unlimited trailing memory. Each cell trait si ∈ Σ is a state function of the series of states of
the cell i with memory backward up to a specific value τ . In the memory implementations run here, commences
to act as soon as t reaches the τ time-step. Initially, i.e., t < τ , the automaton evolves in the conventional way.
Later, to proceed in the dynamics, the original rule is applied on the cell states s as:

ϕ(. . . , s
(t)
i−1, s

(t)
i , s

(t)
i+1, . . .)→ xt+1

i (3)

to get an evolution with memory. Thus in CA with memory, while the mapping ϕ remains unaltered, historic
memory of all past iterations is retained by featuring each cell as a summary of its past states from φ. We can
say that cells canalise memory to the map ϕ [Alonso-Sanz, 2009a].

Figure 3: Dynamics in ECAM on an arbitrary one-dimensional array and hypothetical evolution rule ϕ and
memory function φm:τ with τ = 3.

Let us consider the memory function φ in a form of majority memory,

φmaj → si,
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where in case of a tie, i.e., same number of 1s and 0s in past configurations, the last value xti is to be adopted

as s
(t)
i , which implies no memory effect. These #1 = #0 ties are only feasible when τ is even, in which case the

effect of memory may appear as somehow weaker, or simply different, compared to the effect of the odd τ −1 or
τ + 1 close lengths of memory. Thus, φmaj function represents the classic majority function. For three values
[Minsky, 1967], then we have that:

φmaj(a, b, c) : (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) (4)

Any map of previous states may act as memory (not only majority). Thus, minority, parity, alpha, . . ., or
any CA rule acting as memory, weighted memory, . . ., etc. (for full details please see [Alonso-Sanz, 2009a],
[Alonso-Sanz, 2011]).

Evolution rules representation for ECAM in this paper is given in [Mart́ınez et al., 2010a], [Mart́ınez et al.,
2010b], [Mart́ınez et al., 2011], [Mart́ınez et al., 2012a], [Mart́ınez et al., 2012b], as follows:

φCARm:τ (5)

where CAR is the decimal notation of a particular ECA rule and m is the kind of memory used with a specific
value of τ . This way, for example, the majority memory (maj) incorporated in ECA rule 30 employing five
steps of a cell’s history (τ = 5) is denoted simply as: φR30maj:5. The memory is functional as the CA itself, see
schematic explanation in Fig. 3.

3 Chaos moving to complexity when endowing the dynamics with
memory: A case study

In this section, we consider a particular case to illustrate the effect of memory, deriving in complex dynamics
from a chaotic rule [Mart́ınez et al., 2010b]. Here we deal with a chaotic ECA (class III), the evolution rule
126. This is a special chaotic rule because such evolution yield sets of regular languages [Wolfram, 1984b],
[McIntosh, 2009]. We can deduce from previous analysis that ECA rule 126 could contain another kind of
interesting information. Selecting a kind of memory we will see that particularly ECAM φR126maj:4 displays a
large number of glider guns emerging from random initial conditions, and emergence of a number of non-trivial
patterns colliding constantly [Mart́ınez et al., 2010b].

3.1 ECA rule 126

The local-state transition function ϕ corresponding to ECA rule 126 is represented as follows:

ϕR126 =

{
1 if 110, 101, 100, 011, 010, 001
0 if 111, 000

.

ECA rule 126 has a chaotic global behaviour typical from Class III in Wolfram’s classification [Wolfram,
1994] (Fig. 1). In ϕR126 we can easily recognize an initial high probability of alive cells, i.e. cells in state ‘1’;
with a 75% to appear in the next time and, complement of only 25% to get state 0. It will be always a new
alive cell iff ϕR126 has one or two alive cells such that the equilibrium reached when there is an overpopulation
condition. Figure 4 shows these cases in typical evolutions of ECA rule 126, both evolving from a single cell in
state ‘1’ (Fig. 4a) and from a random initial configuration (Fig. 4b) where a high density of 1’s is evidently in
the evolution.

While looking on chaotic space-time configuration in Fig. 4 we understand the difficulty for analysing the
rule’s behaviour and selecting any coherent activity among periodic structures without special tools.
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(a) (b)

Figure 4: (a) Typical fractal and (b) chaotic global evolution of ECA rule 126. (a) initially all cells in ‘0’ but
one in state ‘1,’ (b) evolution from random initial configuration with 50% of ‘0’ and ‘1’ states. Evolution on a
horizontal ring of 387 cells with time going down up to 240 time steps).

3.2 Mean field approximation

In this section we use a probabilistic analysis with mean field theory to uncover basic properties of ϕR126

evolution space and its related chaotic behaviour. Such analysis we help us to explore the evolution space with
specific initial conditions, that might lead to discoveries of non-trivial behaviour.

Mean field theory is a established technique for discovering statistical properties of CA without analysing
evolution spaces of individual rules [McIntosh, 2009]. The method assumes that states in Σ are independent
and do not correlate with each other in the local function ϕR126. Thus we can study probabilities of states in a
neighbourhood in terms of the probability of a single state (the state in which the neighbourhood evolves), and
probability of the neighbourhood as a product of the probabilities of each cell in it. McIntosh in [McIntosh,
1990] presents an explanation of Wolfram’s classes with a mixture of probability theory and de Bruijn diagrams,
resulting in a classification based on mean field theory curve, as follows:

• class I: monotonic, entirely on one side of diagonal;

• class II: horizontal tangency, never reaches diagonal;

• class IV: horizontal plus diagonal tangency, no crossing;

• class III: no tangences, curve crosses diagonal.

For one dimensional case, all neighbourhoods are considered as follows:

pt+1 =

k2r+1−1∑
j=0

ϕj(X)pvt (1− pt)n−v (6)

such that j is an index relating each neighbourhood and X are cells xi−r, . . . , xi, . . . , xi+r. Thus n is the number
of cells into every neighbourhood, v indicates how often state ‘1’ occurs in X, n − v shows how often state ‘0’
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occurs in the neighbourhood X, pt is the probability of cell being in state ‘1’ while qt is the probability of cell
being in state ‘0’ i.e., q = 1− p. The polynomial for ECA rule 126 is defined as follows:

pt+1 = 3ptqt. (7)

Because ϕR126 is classified as a chaotic rule, we expect no tangencies and its curve must cross the identity;
recall that ϕR126 has a 75% of probability to produce a state one.

p

q

Figure 5: Mean field curve for ECA rule 126.

Mean field curve (Fig. 5) confirms that probability of state ‘1’ in space-time configurations of ϕR126 is 0.75
for high densities related to big populations of 1’s. The curve demonstrates also that ϕR126 is chaotic because
the curve cross the identity with a first fixed point at the origin f = 0 and the absence of unstable fixed points
inducing non stable regions in the evolution. Nevertheless, the stable fixed point is f = 0.6683, which represents
a ‘concentration’ of ‘1’s diminishing during the automaton evolution.

So the initial inspection indicates no evidence of complex behaviour emerging in ϕR126. Of course a deeper
analysis is necessary for obtaining more features from a chaotic rule, so the next sections explain other techniques
to study in particular periodic structures.

3.3 Basins of attraction

A basin (of attraction) field of a finite CA is the set of basins of attraction into which all possible states and
trajectories are driven by the local function ϕ. The topology of a single basin of attraction may be represented by
a diagram, the state transition graph. Thus the set of graphs composing the field specifies the global behaviour
of the system [Wuensche & Lesser, 1992].

Generally a basin can also recognise CA with chaotic or complex behaviour following previous results on
attractors [Wuensche & Lesser, 1992]. Thus we have Wolfram’s classes represented as a basin classifications,
following the Wuensche’s characterisation:

• class I: very short transients, mainly point attractors (but possibly also periodic attractors) very high
in-degree, very high leaf density (very ordered dynamics);
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• class II: very short transients, mainly short periodic attractors (but also point attractors), high in-degree,
very high leaf density;

• class IV: moderate transients, moderate-length periodic attractors, moderate in-degree, very moderate
leaf density (possibly complex dynamics);

• class III: very long transients, very long periodic attractors, low in-degree, low leaf density (chaotic dy-
namics).

The basins depicted in Fig. 7 show the whole set of non-equivalent basins in ECA rule 126 from l = 2 to
l = 18 (l means length of array) attractors, all they display not high densities from an attractor of mass one
and attractors of mass 14.3 This way, ECA rule 126 displays some non symmetric basins and some of them
have long transients that induce a relation with chaotic rules.

(a) (b) (c) (d)

Figure 6: Periodic patterns calculated from some exemplar attractors.

Particularly we can see specific cycles in Fig. 6 where the following structures could be found:

(a) static configurations as still life patterns (l = 8);

(b) traveling configurations as gliders (l = 15);

(c) meshes (l = 12);

(d) or empty universes (l = 14).

The cycle diagrams expose only displacements to the left, and this empty universe evolving to the stable
state 0 is constructed all times on the first basin for each cycle, see Fig. 7.

This way some cycles could induce a non trivial activity in rule 126, but the associated initial conditions
are not generally predominant. However some information could be derived from periodic patterns that have a
high frequency inside this evolution space. This can be done by using filters.

3.4 De Bruijn diagrams

De Bruijn diagrams [McIntosh, 2009], [Voorhees, 1996] are proven to be an adequate tool for describing evolution
rules in one dimension CA, although originally they were used in shift-register theory (the treatment of sequences

3Basins and attractors were calculated with Discrete Dynamical System DDLab [Wuensche, 2011] available from http://www.

ddlab.org/
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Figure 7: The whole set of non-equivalent basins in ECA rule 126 from l = 2 to l = 18.

14



where their elements overlap each other). Paths in a de Bruijn diagram may represent chains, configurations or
classes of configurations in the evolution space.

For a one-dimensional CA of order (k, r), the de Bruijn diagram is defined as a directed graph with k2r

vertices and k2r+1 edges. The vertices are labeled with elements of an alphabet of length 2r. An edge is
directed from vertex i to vertex j, if and only if, the 2r−1 final symbols of i are the same that the 2r−1 initial
ones in j forming a neighbourhood of 2r+ 1 states represented by i � j. In this case, the edge connecting i to j
is labeled with ϕ(i � j) (the value of the neighbourhood defined by the local function) [Voorhees, 2008].

1

1

1

1

1

00

1

3

2

0

1

Figure 8: De Bruijn diagram for the ECA rule 126.

The extended de Bruijn diagrams [McIntosh, 2009] are useful for calculating all periodic sequences by the
cycles defined in the diagram. These ones also show the shift of a sequence for a certain number of generations.
Thus we can get de Bruijn diagrams describing periodic sequences for ECA rule 126.

(a) (b) (c)

Figure 9: Patterns calculated with extended de Bruijn diagrams, in particular from cycles of order (x, 2) (that
means x-shift in 2-generations).

The de Bruijn diagram associated to ECA rule 126 is depicted in Fig. 8.4 Figure 8 shows that there are two
neighbourhoods evolving into 0 and six neighbourhoods into 1. State 1 has higher frequency. This indicates a

4De Bruijn diagrams were calculated using NXLCAU21 designed by McIntosh; available in http://delta.cs.cinvestav.mx/

~mcintosh/cellularautomata/SOFTWARE.html
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possibility that the local transition function is injective and Garden of Eden configurations [Amoroso & Cooper,
1970] exist. These are configurations that cannot be constructed from other configurations, i.e., configurations
without ancestors. In one dimension, the subset diagram can calculate quickly the Garden of Eden configurations,
and the pair diagram can calculate configurations with multiple ancestors [McIntosh, 1990]. Classical analysis
in graph theory has been applied to de Bruijn diagrams for studying topics such as reversibility [Nasu, 1978],
[Mora et al., 2005]; in other sense, cycles in the diagram indicate periodic constructions in the evolution of the
automaton if the label of the cycle agrees with the sequence defined by its nodes, taking periodic boundary
conditions. Let us take the equivalent construction of a de Bruijn diagram in order to describe the evolution in
two steps of ECA rule 126 (having now nodes composed by sequences of four symbols); the cycles of this new
diagram are presented in Fig. 9.

Cycles inside de Bruijn diagrams can be used for obtaining regular expressions representing a periodic
pattern. Figure 9 displays three patterns calculated as: (a) shift −3 in 2 generations representing a pattern with
displacement to the left, (b) shift 0 in 2 generations describing a static pattern traveling without displacement,
and (c) shift +3 in 2 generations is exactly the symmetric pattern given in the first evolution.

So, we can also see in Fig. 9 that it is possible to find patterns traveling in both directions, as gliders or
mobile structures. But generally these constructions (strings) cannot live in combination with others structures
and therefore it is really hard to have this kind of objects with such characteristics. Although, ECA rule 126
has at least one glider! This will be explained in the next section.

3.5 Filters help for discover hidden dynamics

Filters are essential tools for discovering hidden order in chaotic or complex rules. Filters were introduced in CA
studies by Wuensche who employed them to automatically classify cell-state transition functions, see [Wuensche,
1999]. Also filters related to tiles were successfully applied and deduced in analysing space-time behaviour of
ECA governed by rules 110 and 54 [Mart́ınez, 2006b], [Mart́ınez et al., 2006].

Figure 10: Filtered space-time configuration in ECA rule 126.

This way, we have found that ECA rule 126 has two types of two dimension tiles (which together work as
filters over ϕR126):

• the tile t1 =

[
1111
1001

]
, and

16



• the tile t2 =


0000000
0111110
1100011
0110110
1111111

.

Filter t1 works more significantly on configurations generated by ϕR126, the second one is not frequently
found although it is exploited when ECA rule 126 is altered with memory (as we will see in the next section).

The application of the first filter is effective to discover gaps with little patterns traveling on triangles of ‘1’
states in the evolution space. Although even in this case it may be unclear how a dynamics would be interpreted,
a careful inspection on the evolution brings to light very small localisations (as still life), as shown in Fig. 10.

This localisation emerging in ECA rule 126 and pinpointed by a filter is the periodic pattern calculated with
the basin (Fig. 6a), and with the de Bruijn diagram (Fig. 9b). The last one offers more information because
such cycles allow to classify the whole phases when this glider is coded in the initial condition. Circles in Fig. 10
show some interesting regions that now are more clear with filters working. Some of them display very simple
gliders (stationary), periodic meshes, and non-periodic structures emerging and existing inside chaotic patterns
in several generations.

3.6 Dynamics emerging in ECA rule 126 with memory

CA with memory had open a new family of evolution rules with different and interesting dynamics [Alonso-Sanz,
2009a], [Alonso-Sanz, 2011]. In this paper we explore three types of memory: minority, majority, and parity. In

the latter case, s
(t)
i = xt−τ+1

i ⊕ . . .⊕ xt−1
i ⊕ xti.

Figure 11 illustrates three different kinds of dynamics emerging in ECAM rule 126, for some values of τ .5

Exploring different values of τ , we found that large odd values of τ tend to define macrocells-like patterns
[Wolfram, 1994], [McIntosh, 2009], while even values are responsible for a mixture of periodic and chaotic
dynamics. Figure 11(a)i illustrates large periodic regions with few complex patterns traveling isolation developed
by function φR126min:3. Figure 11(b) shows the function φR126par:2, its evolution is more interesting because we
can see the emergence of some complex patterns than also interact producing other types of complex structures,
including mobile self-localizations or gliders. By exploring systematically distinct values of τ , we found that
φR126maj:4 produces an impressive and non-trivial emergence of patterns traveling and colliding. Fig. 11(c)
shows the most interesting evolution with well defined complex patterns, not just mobile self-localisations but
also the emergence of glider guns, they are complex patterns which travel on the evolution space emitting
periodically another kind of gliders.

An interesting evolution is starting with a single non-quiescent cell. Particularly, φR126maj:4 displays a
growth complex behaviour. An example of this space-time configuration is given in Fig. 12 showing the first
1152 steps, where in this case the automaton needed other 30,000 steps to reach a stationary configuration. Filter
is convenient to eliminate the non relevant information about gliders. At the same figure we can see a number
of gliders, glider guns, still-life configurations, and a wide number of combinations of such patterns colliding and
traveling with different velocities and densities. Consequently, we can classify a number of periodic structures,
objects, and interesting reactions. For full details about ECAM φR126maj:4 please see the paper [Mart́ınez et
al., 2010b]. Another case was presented with the ECA rule 30 in [Mart́ınez et al., 2010a], and others ECA rules
in [Mart́ınez et al., 2012a].

By selecting a majority memory function on the chaotic ECA rule 126 we can transform its dynamics to
complex dynamics. Thus, for some CA rule with a memory m function φ and value τ we can derive a complex
system from a chaotic system or vice versa, transform a chaotic system to complex.

Further we explore systematically — on the 88 equivalent ECA rules — if memory functions are able to
cover the Wolfram’s classes transforming each class. This way, we prove experimentally that each class may

5Evolutions of φR126maj:τ were calculated with OSXLCAU21 system available in http://uncomp.uwe.ac.uk/genaro/

OSXCASystems.html

17

http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html
http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html


(a) (b) (c)

Figure 11: (a) φR126min:3 displays a typical evolution of ECAM rule 126 with minority memory τ = 3, (b)
φR126par:2 displays an evolution but now evolving with parity memory, and (c) the most interesting evolution
with ECAM rule φR126maj:4, where we can see the emergence of complex patterns as gliders and glider guns.
In this case a filter is selected for a best view of complex patterns and their interactions. Snapshots start with
same random initial conditions on a ring of 296 cells evolving in 1036 generations.
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Figure 12: Filtered space-time configuration of ECAM φR126maj:4 evolving with a ring of 843 cells, periodic
boundaries, starting just from one non-quiescent cell and running for 1156 steps.
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Figure 13: Continued evolution to 2312 steps.
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Figure 14: Continued evolution to 3468 steps.
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Figure 15: Continuee evolution to 4624 steps.
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Figure 16: Continued evolution to 5780 steps.
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jump to another class with a kind of memory. We will also show that by selecting a memory we can reach any
other class starting from any class. The full exploration is showed in the appendix ??.

4 Programming dynamics using memory

There are varieties of CA classifications, including Wolfram’s classes [Wolfram, 1983], intra- and inter-class
connection probabilities [Li & Packard, 1990], λ-parameter [Langton, 1986], classification by patterns [Aizawa &
Nishikawa, 1986], Z-parameter and attractors basin [Wuensche & Lesser, 1992], [Wuensche, 1999], local structure
approximation [Gutowitz et al., 1987], mean field and de Bruijn approximation [McIntosh, 1990], non-trivial
collective behaviours [Chaté & Manneville, 1992], glider classification [Eppstein, 1999], equivalence computation
[Sutner, 2009], morphology-bases classification [Adamatzky et al., 2006], nonlinear dynamics [Chua, 2006],
[Chua, 2007], [Chua, 2009], [Chua, 2011], [Chua, 2012], [Mainzer & Chua, 2012], communication complexity
[Dürr et al., 2004], generative morphological diversity [Adamatzky & Mart́ınez, 2010], basis of lattice analysis
[Gunji, 2010], genetic algorithms [Das et al., 1994], compression-based approach [Zenil, 2010], expressiveness
(biodiversity) [Redeker et al., 2013], evolutionary computation [Wolz & de Oliveira, 2008].

The present study with memory function opens a new and complementary properties on CA classes, pro-
ducing a number of interesting properties.

4.1 ECAM classification

In this section, we propose a classification based in memory functions. This tables are published in [Mart́ınez].
A ECAM is a ECA composed with a memory function, the new rule opens new and extended domain of

rules based in the ECA domain [Mart́ınez et al., 2010a].
To derive a new rule from a basic ECA rule one should select an ECA rule and compose this rule with a

memory function (in our analysis we have considered three basic functions : majority, minority, and parity).
Therefore, the memory function will determine if the original ECA rule preserves the same class (respective to
Wolfram’s classes) or if it changes to another class.

Following this simple principle, we know now that ECA rules composed with memory can be classified as
follows:

strong, because the memory functions are unable to transform one class to another;

moderate, because the memory function can transform the rule to another class and conserve the same
class as well;

weak, because the memory functions do most transformations and the rule changes to another different
class quickly.

Table 1 presents the ECA classification based in memory functions.

Proposition 1. Dynamics of CA from a ‘strong class’ can be changed by any memory function.

Proposition 2. Dynamics of CA from ‘moderate class’ can be changed by at least one or more memory
functions.

Proposition 3. Dynamics of CA from ‘weak class’ cannot be affected by none kind of memories studied in
present paper.

Memory classification presents a number of interesting properties.

24



classification

type num. rules

strong 39 2, 7, 9, 10, 11, 15, 18, 22, 24, 25, 26, 30, 34,
35, 41, 42, 45, 46, 54, 56, 57, 58, 62, 94, 106,
108, 110, 122, 126, 128, 130, 138, 146, 152,
154, 162, 170, 178, 184.

moderate 34 1, 3, 4, 5, 6, 8, 13, 14, 27, 28, 29, 32, 33, 37,
38, 40, 43, 44, 72, 73, 74, 77, 78, 104, 132,
134, 136, 140, 142, 156, 160, 164, 168, 172.

weak 15 0, 12, 19, 23, 36, 50, 51, 60, 76, 90, 105, 150,
200, 204, 232.

Table 1: ECAM classification.

We have ECA rules which composed with a particular kind of memory are able to reach another class
including the original dynamic. The main feature is that, at least, this rule with memory is able to reach every
different class. Rules with this property are called universal ECAM (5 rules).

universal ECAM: 22, 54, 130, 146, 152.

Particularly, all these UECAM are classified as strong in ECAM’s classification.

strong: 22, 54, 130, 146, 152.
moderate: -

weak: -

On the other hand, we have ECA that when composed with memory are able to yield a complex ECAM but
with elements of the original ECA rule. They are called complex ECAM (44 rules). Several of these complex
rules are illustrated in Appendix A.

complex ECAM: 6, 9, 10, 11, 13, 15, 22, 24, 25, 26, 27, 30, 33, 35, 38, 40,
41, 42, 44, 46, 54, 57, 58, 62, 72, 77, 78, 106, 108, 110, 122,
126, 130, 132, 138, 142, 146, 152, 156, 162, 170, 172, 178,
184.

and they can be particularised in terms of ECAM’s classification, as follows:

strong: 9, 10, 11, 15, 22, 24, 25, 26, 30, 35, 41, 42, 46, 54, 57, 58,
62, 106, 108, 110, 122, 126, 130, 138, 146, 152, 162, 170,
178, 184.

moderate: 6, 13, 27, 33, 38, 40, 44, 72, 77, 78, 132, 142, 156, 172.
weak: -

It is remarkable that none of the rules classified in weak class is able to reach complex behaviour. These set
of rules are strongly robust to any perturbation in terms of ECAM’s classification.

4.2 ECA classifications versus ECAM classification

In this instance, we will compare several ECA classifications reported in CA literature all along the CA-history
versus memory classification.
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4.2.1 Wolfram’s classification (1984)

Wolfram’s classification in “Universality and complexity in cellular automata”, establishes four classes:

{uniform (class I), periodic (class II), chaotic (class III), complex (class IV)}

See details in [Wolfram, 1994], [Martin et al., 1984], [Wolfram, 2002].

class I: 0, 8, 32, 40, 128, 136, 160, 168.

strong: 128.
moderate: 8, 32, 40, 136, 160, 168.

weak: 0.

class II: 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25,
26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 50, 51,
56, 57, 58, 62, 72, 73, 74, 76, 77, 78, 94, 104, 108, 130, 132,
134, 138, 140, 142, 152, 154, 156, 162, 164, 170, 172, 178,
184, 200, 204, 232.

strong: 2, 7, 9, 10, 11, 15, 24, 25, 26, 34, 35, 42, 46, 56, 57, 58, 62,
94, 108, 130, 138, 152, 154, 162, 170, 178, 184.

moderate: 1, 3, 4, 5, 6, 13, 14, 27, 28, 29, 33, 37, 38, 43, 44, 72, 73,
74, 77, 78, 104, 132, 134, 140, 142, 156, 164, 172.

weak: 12, 19, 23, 36, 50, 51, 76, 200, 204, 232.

class III: 18, 22, 30, 45, 60, 90, 105, 122, 126, 146, 150.

strong: 18, 22, 30, 45, 122, 126, 146.
moderate: -

weak: 60, 90, 105, 150.

class IV: 41, 54, 106, 110.

strong: 41, 54, 106, 110.
moderate: -

weak: -

4.2.2 Li and Packard’s classification (1990)

Li and Packard’s classification in “The Structure of the Elementary Cellular Automata Rule Space”, establishes
five ECA classes:

{null, fixed point, periodic, locally chaotic, chaotic}.

For details please see [Li & Packard, 1990].

null: 0, 8, 32, 40, 128, 136, 160, 168.

strong: 128.
moderate: 8, 32, 40, 136, 160, 168.

weak: 0.
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fixed point: 2, 4, 10, 12, 13, 24, 34, 36, 42, 44, 46, 56, 57, 58, 72, 76, 77,
78, 104, 130, 132, 138, 140, 152, 162, 164, 170, 172, 184,
200, 204, 232.

strong: 2, 10, 24, 34, 42, 46, 56, 57, 58, 130, 138, 152, 162, 170,
184.

moderate: 4, 13, 44, 72, 77, 78, 104, 132, 140, 164, 172.
weak: 12, 36, 76, 200, 204, 232.

periodic: 1, 3, 5, 6, 7, 9, 11, 14, 15, 19, 23, 25, 27, 28, 29, 33, 35, 37,
38, 41, 43, 50, 51, 74, 94, 108, 131(62), 134, 142, 156, 178.

strong: 7, 9, 11, 15, 25, 35, 41, 62, 94, 108, 178.
moderate: 1, 3, 5, 6, 14, 27, 28, 29, 33, 37, 38, 43, 74, 134, 142, 156.

weak: 19, 23, 50, 51.

locally chaotic: 26, 73, 154.

strong: 26, 154.
moderate: 73.

weak: -

chaotic: 18, 22, 30, 45, 54, 60, 90, 105, 106, 132, 129(126), 137(110),
146, 150, 161(122).

strong: 18, 22, 30, 45, 54, 106, 122, 126, 110, 122, 146.
moderate: -

weak: 60, 90, 105, 150.

4.2.3 Wuensche’s equivalences (1992)

Wuensche in “The Global Dynamics of Cellular Automata”, establishes three ECA kinds of symmetries:

{symmetric, semi-asymmetric, full-asymmetric}.
For details please see [Wuensche & Lesser, 1992].

symmetric: 0, 1, 4, 5, 18, 19, 22, 23, 32, 33, 36, 37, 50, 51, 54, 72, 73,
76, 77, 90, 94, 104, 105, 108, 122, 126, 128, 132, 146, 150,
160, 164, 178, 200, 204, 232.

strong: 18, 22, 54, 108, 122, 126, 128, 146, 178.
moderate: 1, 4, 5, 32, 33, 72, 73, 77, 104, 132, 160, 164.

weak: 0, 19, 23, 36, 50, 51, 76, 90, 105, 150, 200, 204.

semi-asymmetric: 2, 3, 6, 7, 8, 9, 12, 13, 26, 27, 30, 34, 35, 38, 40, 41,
44, 45, 58, 62, 74, 78, 106, 110, 130, 134, 136, 140,
154, 162, 168, 172.

strong: 2, 7, 9, 26, 30, 34, 35, 41, 45, 58, 62, 106, 110, 130,
154, 162.

moderate: 3, 6, 8, 13, 27, 38, 40, 44, 74, 78, 134, 136, 140, 168,
172.

weak: 12.
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full-asymmetric: 10, 11, 14, 15, 24, 25, 28, 29, 42, 43, 46, 57, 60, 138,
142, 152, 156, 170, 184.

strong: 10, 11, 15, 24, 25, 42, 46, 57, 138, 152, 170, 184.
moderate: 14, 28, 29, 43, 142, 156.

weak: 60.

Also, Wuensche classifies a set of “maximally chaotic” rules or known as “chain rules” (for details please see
[Wuensche, 1999]).

chain rules: 30, 45, 106, 154.

strong: 30, 45, 106, 154.
moderate: -

weak: -

4.2.4 Index complexity classification (2002)

Index complexity in “A Nonlinear Dynamics Perspective of Wolframs New Kind of Science. Part I: Threshold
of Complexity”, establishes three ECA classes:

{red (k = 1), blue (k = 2), green (k = 3)}.

For details please see [Chua et al., 2002].

red (k = 1): 0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 19, 23, 32, 34,
35, 42, 43, 50, 51, 76, 77, 128, 136, 138, 140, 142, 160, 162,
168, 170, 178, 200, 204, 232.

strong: 2, 7, 10, 11, 15, 34, 35, 42, 128, 138, 162, 170, 178.
moderate: 1, 3, 4, 5, 8, 13, 14, 32, 43, 77, 136, 140, 142, 160, 168.

weak: 0, 12, 19, 23, 50, 51, 76, 200, 204, 232.

blue (k = 2): 6, 9, 18, 22, 24, 25, 26, 28, 30, 33, 36, 37, 38, 40, 41, 44,
45, 54, 56, 57, 60, 62, 72, 73, 74, 90, 94, 104, 106, 108, 110,
122, 126, 130, 132, 134, 146, 152, 154, 156, 164.

strong: 9, 18, 22, 24, 25, 26, 30, 41, 45, 54, 56, 57, 62, 94, 106, 108,
110, 122, 126, 130, 146, 152, 154.

moderate: 6, 28, 33, 37, 38, 40, 44, 72, 73, 74, 104, 132, 134, 156, 164.
weak: 36, 60, 90.

green (k = 3): 27, 29, 46, 58, 78, 105, 150, 172, 184.

strong: 46, 58, 184.
moderate: 27, 29, 78, 172.

weak: 105, 150.
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4.2.5 Density parameter with d-spectrum classification (2003)

Density parameter with d-spectrum in “Experimental Study of Elementary Cellular Automata Dynamics Using
the Density Parameter”, establishes three ECA classes:

{P, H, C}.

For details please see [Fatès, 2003].

P: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24,
25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 50,
51, 56, 57, 58, 62, 72, 74, 76, 77, 78, 104, 108, 128, 130,
132, 134, 136, 138, 140, 142, 152, 156, 160, 162, 164, 168,
170, 172, 178, 184, 200, 204, 232.

strong: 2, 7, 9, 10, 11, 15, 24, 25, 34, 35, 42, 56, 57, 58, 62, 108,
128, 130, 138, 152, 162, 170, 178, 184.

moderate: 1, 3, 4, 5, 6, 8, 13, 14, 27, 28, 29, 32, 33, 37, 38, 40, 43, 44,
72, 74, 77, 78, 104, 132, 134, 136, 140, 142, 156, 160, 164,
168, 172.

weak: 0, 12, 19, 23, 36, 50, 51, 76, 200, 204, 232.

H: 26, 41, 54, 73, 94, 110, 154.

strong: 26, 41, 94, 110, 154.
moderate: 73.

weak: -

C: 18, 22, 30, 45, 60, 90, 105, 106, 122, 126, 146, 150.

strong: 18, 22, 30, 45, 106, 122, 126, 146.
moderate: -

weak: 60, 90, 105, 150.

4.2.6 Communication complexity classification (2004)

Communication complexity classification in “Cellular Automata and Communication Complexity” establishes
three ECA classes:

{bounded, linear, other}.

For details see [Dürr et al., 2004].

bounded: 0, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 19, 24, 27, 28, 29, 32,
34, 36, 38, 42, 46, 51, 60, 71(29), 72, 76, 78, 90, 105, 108,
128, 130, 136, 138, 140, 150, 154, 156, 160, 162(missing),
170, 172, 200, 204.

strong: 2, 7, 10, 24, 34, 42, 46, 108, 128, 130, 138, 154, 162, 170.
moderate: 1, 3, 4, 5, 8, 13, 15, 27, 28, 29, 32, 38, 72, 78, 136, 140, 156,

160, 172.
weak: 0, 12, 19, 36, 51, 60, 76, 90, 105, 150, 200, 204.

29



linear: 11, 14, 23, 33, 35, 43, 44, 50, 56, 58, 77, 132, 142, 152, 168,
178, 184, 232.

strong: 11, 35, 56, 58, 152, 178, 184.
moderate: 14, 33, 43, 44, 77, 132, 142, 168.

weak: 23, 50, 232.

other: 6, 9, 18, 22, 25, 26, 30, 37, 40, 41, 45, 54, 57, 62, 73, 74, 94,
104, 106, 110, 122, 126, 134, 146, 164.

strong: 9, 18, 22, 25, 26, 30, 41, 45, 54, 57, 62, 94, 106, 110, 122,
126, 146.

moderate: 6, 37, 40, 73, 74, 104, 134, 164.
weak: -

Additionally, bound class can be refined in other four subclasses.

bounded by additivity: 15, 51, 60, 90, 105, 108, 128, 136, 150,
160, 170, 204.

strong: 15, 51, 108, 128, 170.
moderate: 136, 160.

weak: 60, 90, 105, 150, 204.

bounded by limited sensibility: 0, 1, 2, 3, 4, 5, 8, 10, 12,
19, 24, 29, 34, 36, 38, 42,
46, 72, 76, 78, 108, 138,
200.

strong: 2, 10, 24, 34, 42, 46, 108,
138.

moderate: 1, 3, 4, 5, 8, 29, 38, 72, 78.
weak: 0, 12, 19, 36, 76, 200.

bounded by half-limited sensibility: 7, 13, 28, 140, 172.

strong: 7.
moderate: 13, 28, 140, 172.

weak: -

bounded for any other reason: 27, 32, 130, 156, 162.

strong: 130, 162.
moderate: 27, 32, 156.

weak: -

4.2.7 Topological classification (2007)

Topological classification in “A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science. Part VII:
Isles of Eden”, establishes six ECA classes:

{period-1, period-2, period-3, Bernoulli σt-shift, complex Bernoulli-shift, hyper Bernoully-shift}.
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For details please see [Chua et al., 2007].

period-1: 0, 4, 8, 12, 13, 32, 36, 40, 44, 72, 76, 77, 78, 94, 104, 128,
132, 136, 140, 160, 164, 168, 172, 200, 204, 232.

strong: 94, 128.
moderate: 4, 8, 13, 32, 40, 44, 72, 77, 78, 104, 132, 136, 140, 160, 164,

168, 172.
weak: 0, 12, 36, 76, 200, 204, 232.

period-2: 1, 5, 19, 23, 28, 29, 33, 37, 50, 51, 108, 156, 178.

strong: 108, 178.
moderate: 1, 5, 28, 29, 33, 37, 156.

weak: 19, 23, 50, 51.

period-3: 62.

strong: 62.
moderate: -

weak: -

Bernoulli σt-shift: 2, 3, 6 , 7, 9, 10, 11, 14, 15, 24, 25, 27, 34, 35,
38, 42, 43, 46, 56, 57, 58, 74, 130, 134, 138,
142, 152, 162, 170, 184.

strong: 2, 7, 9, 10, 11, 15, 24, 25, 34, 35, 42, 46, 56,
57, 58, 130, 138, 152, 162, 170, 184.

moderate: 3, 6, 14, 27, 38, 43, 74, 134, 142.
weak: -

complex Bernoulli-shift: 18, 22, 54, 73, 90, 105, 122, 126, 146, 150.

strong: 18, 22, 122, 126, 146.
moderate: 73.

weak: 90, 105, 150.

hyper Bernoully-shift: 26, 30, 41, 45, 60, 106, 110, 154.

strong: 26, 30, 41, 45, 110, 154.
moderate: -

weak: 60.

4.2.8 Power spectral classification (2008)

Power spectral classification in “Power Spectral Analysis of Elementary Cellular Automata”, establishes four
ECA classes:

{category 1: extremely low power density, category 2: broad-band noise, category 3: power law spectrum,
exceptional rules}.

For details please see [Ninagawa, 2008].
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category 1 extremely low power density: 0, 1, 4, 5, 8, 12, 13, 19,
23, 26, 28, 29, 33, 37,
40, 44, 50, 51, 72, 76, 77,
78, 104, 128, 132, 133(94),
136, 140, 156, 160, 164,
168, 172, 178, 200, 232.

strong: 26, 94, 128, 178.
moderate: 1, 4, 5, 8, 13, 28, 29, 33,

37, 40, 44, 72, 77, 78, 104,
132, 136, 140, 156, 160,
164, 168, 172.

weak: 0, 12, 19, 23, 50, 51, 76,
200, 232.

category 2 broad-band noise: 2, 3, 6, 7, 9, 10, 11, 14, 15, 18, 22, 24,
25, 26, 27, 30, 34, 35, 38, 41, 42, 43,
45, 46, 56, 57, 58, 60, 74, 90, 105, 106,
129(126), 130, 134, 138, 142, 146, 150,
152, 154, 161(122), 162, 170, 184.

strong: 2, 7, 9, 10, 11, 15, 18, 22, 24, 25, 26, 30,
34, 35, 41, 42, 45, 46, 56, 57, 58, 106,
122, 126, 130, 138, 146, 152, 154, 162,
170, 184.

moderate: 3, 6, 14, 27, 38, 43, 74, 134, 142, .
weak: 60, 90, 105, 150.

category 3 power law spectrum: 54, 62, 110.

strong: 54, 62, 110.
moderate: .

weak: .

exceptional rules: 73, 204.

strong: -
moderate: 73.

weak: 204.

4.2.9 Morphological diversity classification (2010)

Morphological diversity classification in “On Generative Morphological Diversity of Elementary Cellular Au-
tomata”, establishes five ECA classes:

{chaotic, complex, periodic, two-cycle, fixed point, null}.

See details in [Adamatzky & Mart́ınez, 2010].
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chaotic: 2, 10, 18, 22, 24, 26, 30, 34, 42, 45, 56, 60, 73, 74, 90, 94,
105, 106, 126, 130, 138, 150, 152, 154, 161(122), 162, 170,
184.

strong: 2, 10, 18, 22, 24, 26, 30, 34, 42, 56, 94, 106, 122, 126, 130,
138, 152, 154, 162, 170, 184.

moderate: 73, 74.
weak: 60, 90, 105, 150.

complex: 54, 110.

strong: 54, 110.
moderate: -

weak: -

periodic: 18, 26, 60, 90, 94, 154.

strong: 18, 26, 94, 154.
moderate: -

weak: 60, 90.

two-cycle: 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25,
27, 28, 29, 33, 34, 35, 36, 37, 38, 42, 43, 44, 46, 50, 51, 56,
58, 74, 76, 106, 108, 130, 132, 134, 138, 140, 142, 152, 156,
162, 164, 170, 172, 178, 184, 204.

strong: 2, 7, 9, 10, 11, 15, 24, 25, 34, 35, 42, 46, 56, 58, 106, 108,
130, 138, 152, 162, 170, 178, 184.

moderate: 1, 3, 4, 5, 6, 13, 14, 27, 28, 29, 33, 37, 38, 43, 44, 74, 132,
134, 140, 142, 156, 164, 172.

weak: 12, 19, 23, 36, 50, 51, 76, 204.

fixed point: 0, 2, 4, 8, 10, 11, 12, 13, 14, 24, 32, 34, 36, 40, 42, 43, 44,
46, 50, 56, 57, 58, 72, 74, 76, 77, 78, 104, 106, 108, 128,
130, 132, 136, 138, 140, 142, 152, 160, 162, 164, 168, 170,
172, 178, 184, 200, 204, 232.

strong: 2, 10, 11, 24, 34, 42, 46, 56, 57, 58, 106, 108, 128, 130, 138,
152, 162, 170, 178, 184.

moderate: 4, 8, 13, 14, 32, 40, 43, 44, 72, 74, 77, 78, 104, 132, 136,
140, 142, 160, 164, 168, 172.

weak: 0, 12, 36, 50, 76, 200, 204, 232.

null: 0, 8, 32, 40, 72, 104, 128, 136, 160, 168, 200, 232.

strong: 128.
moderate: 8, 32, 40, 72, 104, 136, 160, 168.

weak: 0, 200, 232.
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4.2.10 Distributive and non-distributive lattices classification (2010)

Distributive and non-distributive lattices classification in “Inducing Class 4 Behavior on the Basis of Lattice
Analysis”, establishes four ECA classes:

{class 1, class 2, class 3, class 4}.

See details in [Gunji, 2010].

class 1: 0, 32, 128, 160, 250(160), 254(128).

strong: 128.
moderate: 32, 160.

weak: 0.

class 2: 4, 36, 50, 72, 76, 94, 104, 108, 132, 164, 178, 200, 204,
218(164), 232, 236(200).

strong: 94, 108, 178.
moderate: 4, 72, 104, 132, 164.

weak: 36, 50, 76, 200, 204, 232.

class 3: 18, 22, 54, 122, 126, 146, 150, 182(146).

strong: 18, 22, 54, 122, 126, 146.
moderate: -

weak: 150.

class 4: 110, 124(110), 137(110), 193(110).

strong: 110.
moderate: .

weak: .

4.2.11 Topological dynamics classification (2012)

Topological classification in “A Full Computation-Relevant Topological Dynamics Classification of Elementary
Cellular Automata”, establishes four ECA classes:

{equicontinuous, almost-equicontinuous, sensitive, sensitive positively expansive}.

See details in [Schüle & Stoop, 2012], [Cattaneo et al., 2000].

equicontinuous: 0, 1, 4, 5, 8, 12, 19, 29, 36, 51, 72, 76, 108, 200, 204.

strong: 108.
moderate: 1, 4, 5, 8, 29, 72.

weak: 0, 12, 19, 36, 51, 76, 200, 204.
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almost-equicontinuous: 13, 23, 28, 32, 33, 40, 44, 50, 73, 77, 78,
94, 104, 128, 132, 136, 140, 156, 160,
164, 168, 172, 178, 232.

strong: 94, 128, 178.
moderate: 13, 28, 32, 40, 73, 77, 78, 104, 132, 136,

140, 156, 160, 164, 168, 172.
weak: 23, 50, 232.

sensitive: 2, 3, 6, 7, 9, 10, 11, 14, 15, 18, 22, 24, 25, 26, 27, 30, 34,
35, 37, 38, 41, 42, 43, 45, 46, 54, 56, 57, 58, 60, 62, 74, 106,
110, 122, 126, 130, 134, 138, 142, 146, 152, 154, 162, 170,
184.

strong: 2, 7, 9, 10, 11, 15, 18, 22, 24, 25, 26, 30, 34, 35, 41, 42, 45,
46, 54, 56, 57, 58, 62, 106, 110, 122, 126, 130, 138, 146, 152,
154, 162, 170, 184.

moderate: 3, 6, 14, 27, 37, 38, 43, 74, 134, 142.
weak: 60.

sensitive positively expansive: 90, 105, 150.

strong: -
moderate: -

weak: 90, 105, 150.

Also, this classification can be refined into three sub-classes: weakly periodic, surjective, and chaotic (in the
sense of Denavey).

weakly periodic: 2, 3, 10, 15, 24, 34, 38, 42, 46, 138, 170.

strong: 2, 10, 15, 24, 34, 42, 46, 138, 170.
moderate: 3, 38.

weak: -

surjective: 15, 30, 45, 51, 60, 90, 105, 106, 150, 154, 170, 204.

strong: 15, 30, 45, 154, 170.
moderate: -

weak: 51, 60, 90, 105, 150, 204.

chaotic (in the sense of Denavey): 15, 30, 45, 60, 90, 105, 106, 150,
154, 170.

strong: 15, 30, 45, 106, 154, 170.
moderate: -

weak: 60, 90, 105, 150.

4.2.12 Expressivity analysis (2013)

This is a classification by the evolution of a configuration consisting of an isolated one surrounded by zeros, that
is a bit different from conventional ECA classifications previously displayed. In “Expressiveness of Elementary
Cellular Automata”, we can see five ECA kinds of expressivity:
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{0, periodic patterns, complex, Sierpinski patterns, finite growth}.

See details in [Redeker et al., 2013].

0: 0, 7, 8, 19, 23, 31, 32, 40, 55, 63, 72, 104, 127, 128, 136,
160, 168, 200, 232.

strong: 7, 128.
moderate: 8, 32, 40, 72, 104, 136, 160, 168.

weak: 0, 19, 23, 200, 232.

periodic patterns: 13, 28, 50, 54, 57, 58, 62, 77, 78, 94, 99, 109, 122,
156, 178.

strong: 54, 57, 58, 62, 94, 122, 178.
moderate: 13, 28, 73, 77, 78, 156.

weak: 50.

complex: 30, 45, 73, 75, 110.

strong: 30, 45, 110.
moderate: 73.

weak: -

Sierpinski patterns: 18, 22, 26, 60, 90, 105, 126, 146, 150, 154.

strong: 18, 22, 26, 126, 146, 154.
moderate: -

weak: 60, 90, 105, 150.

finite growth: 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 24, 25, 27, 29, 33, 34,
35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 56, 59, 71, 74,
76, 103, 106, 107, 108, 111, 130, 132, 134, 138, 140, 142,
152, 162, 164, 170, 172, 184, 204.

strong: 2, 9, 10, 11, 15, 24, 25, 34, 35, 41, 42, 46, 56, 106, 108, 130,
152, 162, 170, 184.

moderate: 1, 3, 4, 5, 6, 14, 27, 29, 33, 37, 38, 43, 44, 74, 140, 142, 164,
172.

weak: 12, 36, 51, 76, 204.

4.2.13 Normalised compression classification (2013)

Normalised compression classification in “Asymptotic Behaviour and Ratios of Complexity in Cellular Automata
Rule Spaces”, establishes two ECA classes:

{C1,2, C3,4}.

See details in [Zenil & Zapata].
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C1,2: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24,
25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44,
46, 50, 51, 56, 57, 58, 72, 74, 76, 77, 78, 104, 108, 128, 130,
132, 134, 136, 138, 140, 142, 152, 154, 156, 160, 162, 164,
168, 170, 172, 178, 184, 200, 204, 232.

strong: 2, 7, 9, 10, 11, 15, 24, 25, 26, 34, 35, 42, 46, 56, 57, 58, 108,
128, 130, 138, 152, 154, 170, 178, 184.

moderate: 1, 3, 4, 5, 6, 8, 13, 14, 27, 28, 29, 32, 33, 37, 38, 40, 43, 44,
72, 74, 77, 78, 104, 132, 134, 136, 140, 142, 156, 160.

weak: 0, 12, 19, 23, 36, 50, 51, 76, 200, 204, 232.

C3,4: 18, 22, 30, 41, 45, 54, 60, 62, 73, 90, 94, 105, 106, 110, 122,
126, 146, 150.

strong: 18, 22, 30, 41, 45, 54, 62, 94, 106, 110, 122, 126, 146.
moderate: 73.

weak: 60, 90, 105, 150.

4.2.14 Surface dynamics classification (2013)

Expressivity classification in “Emergence of Surface Dynamics in Elementary Cellular Automata”, establishes
three ECA classes:

{type A, type B, type C}.
See details in [Mora et al.].

type A: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24,
25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43, 44, 46,
50, 51, 56, 57, 58, 72, 74, 76, 77, 78, 94, 104, 108, 128, 130,
132, 134, 136, 138, 140, 142, 152, 156, 160, 162, 164, 168,
170, 172, 178, 184, 200, 204, 232.

strong: 2, 7, 9, 10, 11, 15, 24, 25, 34, 35, 42, 46, 56, 57, 58, 128,
130, 152, 170, 178, 184.

moderate: 1, 3, 4, 5, 6, 8, 13, 14, 27, 28, 29, 32, 33, 37, 38, 40, 43, 44,
72, 74, 77, 78, 104, 108, 132, 134, 136, 140, 142, 156, 160,
164, 168, 172.

weak: 0, 12, 19, 23, 36, 50, 51, 76, 200, 204, 232.

type B: 18, 22, 26, 30, 41, 45, 60, 90, 105, 106, 122, 126, 146, 150,
154.

strong: 18, 22, 26, 30, 45, 106, 122, 126, 146, 154.
moderate: -

weak: 18, 22, 26, 30, 45, 106, 122, 126, 146, 154.

type C: 54, 62, 73, 110.

strong: 54, 62, 110.
moderate: 73.

weak: -
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4.2.15 Spectral classification (2013)

Spectral classification in “A Spectral Portrait of the Elementary Cellular Automata Rule Space”, establishes
four ECA classes:

{DE/SFC, DE/SFC SFC, EB, S}.

See details in [Ruivo & de Oliveira, 2013].

DE/SFC: 0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 22, 23, 24, 25, 26,
27, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 50,
54, 56, 57, 58, 62, 72, 73, 74, 76, 77, 94, 104, 108, 110, 128,
130, 132, 134, 136, 138, 140, 142, 152, 160, 162, 164, 168,
172, 178, 184, 200, 232.

strong: 2, 7, 9, 10, 11, 22, 24, 25, 26, 29, 34, 35, 41, 42, 46, 54, 56,
57, 58, 62, 94, 108, 110, 128, 130, 138, 152, 162, 178, 184.

moderate: 1, 5, 6, 8, 14, 27, 32, 33, 37, 38, 40, 43, 44, 72, 73, 74, 77,
104, 132, 134, 136, 140, 142, 160, 164, 168, 172.

weak: 0, 12, 19, 23, 36, 50, 76, 200, 232.

DE/SFC SFC: 3, 4.

strong: -
moderate: 3, 4.

weak: -

EB: 13, 18, 28, 78, 122, 126, 146, 156.

strong: 18, 122, 126, 146.
moderate: 13, 28, 78, 156.

weak: -

S: 15, 30, 45, 51, 60, 90, 105, 106, 150, 154, 170, 204.

strong: 15, 30, 45, 106, 154, 170.
moderate: -

weak: 51, 60, 90, 105, 150, 204.

4.2.16 Bijective and surjective classification (2013)

In this section, we have just bijective and surjective classification (personal communication, Harold V. McIntosh
and Juan C. Seck Tuoh Mora):

{bijective, surjective}.

See details in [McIntosh, 1990], [McIntosh, 2009].

bijective: 15, 51, 170, 204.

strong: 15, 170.
moderate: -

weak: 51, 204.
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surjective: 30, 45, 60, 90, 105, 106, 150, 154.

strong: 30, 45, 106, 154.
moderate: -

weak: 60, 90, 105, 150.

4.2.17 Creativity classification (2013)

Creativity classification in “On Creativity of Elementary Cellular Automata”, establishes four ECA classes:

{creative, schizophrenic, autistic savants, severely autistic}.
See details in [Adamatzky & Wuensche].

creative: 3, 5, 11, 13, 15, 35.

strong: 11, 15, 35.
moderate: 3, 5, 13.

weak: -

schizophrenic: 9, 18, 22, 25, 26, 28, 30, 37, 41, 43, 45, 54, 57, 60, 62, 73,
77, 78, 90, 94, 105, 110, 122, 126, 146, 150, 154, 156.

strong: 9, 18, 22, 25, 26, 30, 41, 45, 54, 57, 62, 110, 122, 126, 146,
152, 154.

moderate: 28, 37, 43, 73, 77, 78, 156.
weak: 60, 90, 105.

autistic savants: 1, 2, 4, 7, 8, 10, 12, 14, 19, 32, 34, 42, 50, 51, 76,
128, 136, 138, 140, 160, 162, 168, 170, 200, 204.

strong: 2, 7, 10, 34, 42, 128, 138, 162, 170.
moderate: 1, 4, 8, 14, 32, 136, 140, 160, 168.

weak: 12, 19, 50, 51, 76, 200, 204.

severely autistic: 23, 24, 27, 29, 33, 36, 40, 44, 46, 56, 58, 72, 74, 104,
106, 108, 130, 132, 142, 152, 164, 172, 178, 184, 232.

strong: 24, 46, 56, 58, 106, 108, 130, 152, 178, 184.
moderate: 27, 29, 33, 40, 44, 72, 74, 104, 132, 142, 164, 172.

weak: 23, 36, 232.

4.3 Universal relations in ECAM classes

After checking that memory has similar effect for every rule in the same equivalence class (please see a full de-
scription of them in [Wuensche & Lesser, 1992]), we will deal here for simplicity with the canonical representative
rule of every one of the 88 equivalence classes, and not explicitly with the 256 rules.

In what follows, we enumerate the most important relations.

• Transition of uniform to uniform.

uniform
φCAm:τ−−−−−→ uniform (8)

this is transition from ECA ϕR32 to ECAM φR32maj:3.
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• Transition of uniform to periodic.

uniform
φCAm:τ−−−−−→ periodic (9)

this is transition rom ECA ϕR160 to ECAM φR160par:5.

• Transition of uniform to chaos.

uniform
φCAm:τ−−−−−→ chaos (10)

this is transition from ECA ϕR40 to ECAM φR40par:2.

• Transition of uniform to complex.

uniform
φCAm:τ−−−−−→ complex (11)

this is transition from ECA ϕR40 to ECAM φR40par:4.

• Transition of periodic to uniform.

periodic
φCAm:τ−−−−−→ uniform (12)

this is transition from ECA ϕR130 to ECAM φR130maj:4.

• Transition of periodic to periodic.

periodic
φCAm:τ−−−−−→ periodic (13)

this is transition from ECA ϕR130 to ECAM φR130maj:3.

• Transition of periodic to chaos.

periodic
φCAm:τ−−−−−→ chaos (14)

this is transition from ECA ϕR130 to ECAM φR130par:3.

• Transition of periodic to complex.

periodic
φCAm:τ−−−−−→ complex (15)

this is transition from ECA ϕR94 to ECAM φR94par:2.

• Transition of chaos to uniform.

chaos
φCAm:τ−−−−−→ uniform (16)

this is transition from ECA ϕR18 to ECAM φR18maj:10.
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• Transition of chaos to periodic.

chaos
φCAm:τ−−−−−→ periodic (17)

this is transition from ECA ϕR30 to ECAM φR30maj:4.

• Transition of chaos to chaos.

chaos
φCAm:τ−−−−−→ chaos (18)

this is transition from ECA ϕR30 to ECAM φR30par:2.

• Transition of chaos to complex.

chaos
φCAm:τ−−−−−→ complex (19)

this is transition from ECA ϕR126 to ECAM φR126maj:4.

• Transition of complex to uniform.

complex
φCAm:τ−−−−−→ uniform (20)

this is v from ECA ϕR54 to ECAM φR54maj:6.

• Transition of complex to periodic.

complex
φCAm:τ−−−−−→ periodic (21)

this is transition from ECA ϕR54 to ECAM φR54par:2.

• Transition of complex to chaos.

complex
φCAm:τ−−−−−→ chaos (22)

this is transition from ECA ϕR110 to ECAM φR110min:3.

• Transition of complex to complex.

complex
φCAm:τ−−−−−→ complex (23)

this is transition from ECA ϕR54 to ECAM φR54maj:8.

Therefore, from transitions 8–23 we we can reach a class from any other class with some kind of memory at
least once.

ECAM preserves main characteristics of the original evolution rule and they can be found in both ECA and
ECAM rules. As was detailed in ECA rule 126, a glider that is found in ECAM φR126maj:4 already there is
in the conventional ahistoric formulation rule (section 3.6). This way, dynamics in ECA move around of the
memory effect in ECAM. As a consequence from this systematic analysis, we have that:

Proposition 4. Dynamics in ECAM also cannot be induced from some previous ECA.
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I II

III

IV

128

2, 7, 24, 
42, 56, 

130, 152, 
162

2, 7, 9, 11, 15, 34, 
35, 46, 56, 57, 58, 
94, 108, 130, 138, 

152, 154, 162, 
170, 178, 184

9, 15, 24, 25, 
26, 42, 46, 
56, 58, 62, 

94, 130, 138, 
152, 154, 
170, 184

9, 10, 11, 24, 
25, 26, 35, 
42, 46, 58, 

62, 108, 130, 
138, 162, 

170, 178, 184

18, 22, 146
18, 22, 30, 146

22, 30, 
45, 122, 
126, 146

22, 30, 
45, 122, 
126, 146

54 54

41, 54, 
106, 110

41, 54, 
106, 110

Figure 17: “Strong” ECAM class is able to reach some other classes. Starting from a Wolfram’s class (rule)
and selecting some kind of memory inside strong ECAM class, one can reach some other class with such a rule.
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104, 132, 140, 
142, 156, 172

Figure 18: “Moderate” ECAM class is able to reach some other classes. Starting from a Wolfram’s class (rule)
and selecting some kind of memory inside moderate ECAM class, one each some other class with such a rule.
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60, 90, 
105, 150

Figure 19: “Weak” ECAM class is not able to reach other classes. Starting from a Wolfram’s class (rule) and
selecting some kind of memory inside weak ECAM class, one cannot reach some classes with such a rule.

If you have selected a ECA class I, II, III, or IV; you could obtain a ECAM class I, II, III, or IV without
some prefix which determines exactly the result. Diagrams displayed in Fig. 17, 18, 19 show how move between
classes. If you choice a specific ECA rule (that is in some Wolfram’s class) hence with a kind of memory you can
‘move’ to another class if it is the case. You can see these finite machines with respect to ECAM classification,
Fig. 17 for strong class, Fig. 18 for moderate class, and Fig. 19 for the weak class.

Finally, diagram in Fig. 20 (all memories) shows a directed graph strongly connected due to the transitions
8–23. That means than you can reach any class from any class including them self (loops).

As outlined in [Culik II & Yu, 1988] in the conventional ahistoric context, it is not possible to determine the
behaviour of a ECAM from that of its conventional ahistoric ECA. This way, it is undecidable determines the
behaviour of a CAM from any CA. Of course, memory can be selected on any dynamical systems useful mainly
for discover hidden information, such as was studied in excitable CA [Alonso-Sanz & Adamatzky, 2008].

5 Unconventional computing with ECAM

In this section, we present a kind of complex CA derived since ECA rule 22 with memory. Again, we have
selected the majority memory and we focus on τ = 4, generating a new ECAM rule, φR22maj:4.

Figure 21 displays a typical random evolution of ECAM φR22maj:4. There we witness emergence of non-trivial
travelling patterns and outcomes of their collisions.

The main and most interesting characteristic is that this complex ECA with memory has only two gliders,
maybe we can tell only one with its respective reflection. With these gliders GφR22maj:4

= {gL, gR} we can design
computing circuits (this is a partial result of our research detailed in [Mart́ınez et al. a]).

We should start with basic logic gates derived from simple binary collisions. A logic gate performs a logic
operation on one or more logic inputs yielding just one logic output. Normally a logic gate is a Boolean function,
such that for some positive integer n we have that f : Σn → Σ for Σ = {0, 1}, and therefore it can be represented
by a truth table that describes the behaviour of a logic gate [Minsky, 1967].

Figure 22 displays implementation of not and and gates with gliders GφR22maj:4
and a symmetric delay

element.
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Figure 20: Every ECAM class has rules with behaviour class I, II, III, or IV. If you take one ECA rule with
a kind of memory hence you can change to another class. “All memories” diagram show that it is possible to
reach any class from some ECA enriched with memory, thus some ECAM is able to reach any class.
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Figure 21: Typical random evolution of φR22maj:4 from an initial configuration where 37% of cells take state
’1’. The automaton is a ring of 767 cells. Evolution is recorded for 372 generations.

Generally a problem to implement computations in injective CA is related to the synchronisation of collisions
between gliders and accurate positioning of gliders in initial configuration.

A majority gate and and gate as is represented in the Fig. 23. A not gate is aggregated to get a nand
gate (Fig. 23b).

To implement a majority gate we must represent binary values across of gliders (Fig. 24(a)). Later, let use
this construction to implement a nand gate by gliders collisions as Fig. 24(b) display. This way, we use a gR
glider that works as an operator processing three input values at the same time. A not gate is represented by a
second gR glider inverting the final result. Also, we can utilise this scheme to design a modified chip related to
7400 chip6 but with four majority and not gates instead of four nand gates, working with three independent
inputs per gate on 18 pins as in the Fig. 24(c).

Figures 25 and 26 show the implementation of nand gate with φR22maj:4. As illustrated in diagram (Fig. 24c)
a glider works as an operator of the majority gate and this operator is reused in the next majority gate. We
present all stages where the nand gate works, thus proving functionality of the design.

6 Final remarks

We demonstrated that a memory is a ‘universal’ switch which allows us to change dynamics of a complex
spatially extended systems and to guide the system in a ‘labyrinth’ of complexity classes. Memory allows us to
make complex systems simple and to simple ones complex.

The memory implementation mechanism studied here constitute a simple extension (of straightforward
computer codification) of the basic CA paradigm allowing for an easy systematic study of the effect of memory
in cellular automata (and other discrete dynamical systems). This may inspire some useful ideas in using cellular

6National semiconductor web site. Device 5400/DM5400/DM7400 Quad 2-Input NAND Gates http://www.national.com/ds/
54/5400.pdf
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Figure 22: We implement basic logic functions as not and and gates via collisions of gliders and a delay
element. Single or pair of particles represent bits 0’s or 1’s respectively.
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Figure 23: A nand gate based in majority and not gates.
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Figure 24: (a) binary values by gliders codification, (b) scheme of a nand gate from majority and not gates
with glider reaction, and (c)circuit based on four nand gates like a modified 7400 chip but now with 18 pins
(for the majority gate).
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Figure 25: nand gate implemented from majority and not gates in φR22maj:4. Inputs (a) 000 and (b) 010.

48



0

0 0

1

1

(a)

0

0

1

11

(b)

Figure 26: nand gate implemented from majority and not gates in φR22maj:4. Inputs (a) 100 and (b) 110.
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automata as a tool for modeling phenomena with memory. This task has been traditionally attacked by means
of differential, or finite-difference, equations, with some (or all) continuous component. In contrast, full discrete
models are ideally suited to digital computers. Thus, it seems plausible that further study on cellular automata
with memory should prove profitable, and may be possible to paraphrase T. Toffoli [Toffoli, 1984] in presenting
cellular automata with memory as an alternative to (rather than an approximation of) integro-differential
equations in modeling phenomena with memory. Besides their potential applications, cellular automata with
memory have an aesthetic and mathematical interest on their own, so that we believe that the subject is worth
to studying.

Last but not least, other memories are possible. In this study we have implemented an explicit dependence
in the dynamics of the past states in the manner: first summary then rule. But the order summary-rule may be
inverted, i.e., the rule is first applied and a summary is then presented as new state (for details see [Alonso-Sanz,
2013]. This alternative memory implemention enriches the potential use of memory in discrete systems as a
tool for modeling, and, again, in our opinion deserves attention on its own.
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7 Appendix A

Appendix and full paper is available in http://eprints.uwe.ac.uk/21980/.
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