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Abstract

For the so(4) free rigid body the stability problem for isolated equilibria has been completely
solved using Lie-theoretical and topological arguments. For each case of nonlinear stability previ-
ously found we construct a Lyapunov function. These Lyapunov functions are linear combinations
of Mishchenko’s constants of motion.
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1 Introduction

The goal of this paper is to prove stability using energy methods for the Cartan type equilibria of
so(4) free rigid body. More precisely, for each case of nonlinear stability, we will explicitly construct
a Lyapunov function. We find these Lyapunov functions to be linear combinations of four integrals of
motion which make the system completely integrable. These linear combinations of constants of motion
are distinct for different nonlinear stable equilibria.

As proved in [2], there are three Cartan families of equilibria, organized in Weyl group orbits ge-
nerated by three coordinate type Cartan subalgebras intersected with a regular adjoint orbit. Their
stability is studied in [2] using exclusively a Lie-theoretical result due to Williamson [24]. The above
equilibria are grouped in three categories:

(I) a class of center-saddle unstable equilibria;

(II) a class of center-center stable equilibria for which the stability does not depend on the parameters
defining the corresponding orbit;

(III) a class of equilibria for which a bifurcation phenomenon occurs, depending on the parameters
defining the corresponding orbit (the stability region being also of center-center type).

For equilibria of type (II) we find Lyapunov functions which guarantee their stability using linear
combinations of Mishchenko’s constants of motion, as described in [19].

For equilibria of type (III) we first study their spectral stability and we find that a bifurcation
phenomenon in the spectral stability occurs. The region of spectral stability overlaps the region of
nonlinear stability previously discovered in [2]. For each region of nonlinear stability found in [2] we
construct a Lyapunov function. We also point out a frontier case of spectral stability which is nonlinear
unstable.

Although the constants of motion used in our paper are functionally dependent of the Mishchenko’s
first integrals, they prove their utility in applying energy methods for studying stability of equilibria.
This paper completes previous results on nonlinear stability using energy methods [9], [22]. The sta-
bility problem and the implication of the topological structure of the energy-momentum level sets on
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bifurcation phenomena in the dynamics of the so(4) free rigid body was extensively studied in [15], [16],
[17], [18], [23].

We prove that Lyapunov functions are positive or negative definite studying the non-degeneracy of
the Hessian matrix associated to the Lyapunov function at the equilibrium point. If the Hessian is
degenerate at an equilibrium point, one can still study the Lyapunov stability using algebraic methods,
see [6], [7], [8].

2 The geometry and stability problem for the so(4) free rigid

body

In the first part of this section, we recall the geometry underlying the system of the free rigid body on
the Lie algebra so(4), as it was presented in [2]. The equations of the rigid body on so(4) are given by

Ṁ = [M,Ω], (2.1)

where Ω ∈ so(4), M = ΩJ + JΩ ∈ so(4) with J = diag(λi), a real constant diagonal matrix satisfying
λi + λj ≥ 0, for all i, j = 1, . . . , 4, i 6= j (see, for example, [20]). Note that M = [mij ] and Ω = [ωij ]
determine each other if and only if λi + λj > 0 since mij = (λi + λj)ωij which physically means that
the rigid body is not concentrated on a lower dimensional subspace of R6.

It is well known that equations (2.1) are Hamiltonian relative to the minus Lie-Poisson bracket on
so(4)

{F,G}(M) :=
1

2
Trace(M [∇F (M),∇G(M)]), (2.2)

and the Hamiltonian function

H(M) := −1

4
Trace(MΩ). (2.3)

We choose as basis of so(4) the matrices

E1 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 ; E2 =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 ; E3 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ;

E4 =




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


 ; E5 =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 ; E6 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0




and hence we represent so(4) as

so(4) =





M =




0 −x3 x2 y1
x3 0 −x1 y2
−x2 x1 0 y3
−y1 −y2 −y3 0




∣∣∣∣∣∣∣∣
x1, x2, x3, y1, y2, y3 ∈ R





. (2.4)

Since rank so(4) = 2, we have two functionally independent Casimir functions which are given respec-
tively by

C1(M) := −1

4
Trace(M2) =

1

2

(
3∑

i=1

x2
i +

3∑

i=1

y2i

)

and

C2(M) := −Pf(M) =

3∑

i=1

xiyi.
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Thus the generic adjoint orbits are the level sets

Orbc1c2(M) = (C1 × C2)
−1(c1, c2), (c1, c2) ∈ R

2.

In all that follows we will denote by Orbc1;c2 the regular adjoint orbit Orbc1c2 , where c1 > 0 and
c1 > |c2|.

We will work from now on with a generic so(4)-rigid body, that is, λi+λj > 0 for i 6= j and all λi are
distinct. The relationship between Ω = [ωij ] ∈ so(4) and the matrix M ∈ so(4) in the representation
(2.4) is hence given by

(λ3 + λ2)ω32 = x1 (λ1 + λ3)ω13 = x2 (λ2 + λ1)ω21 = x3

(λ1 + λ4)ω14 = y1 (λ2 + λ4)ω24 = y2 (λ3 + λ4)ω34 = y3

and thus the equations of motion (2.1) are equivalent to the system





ẋ1 =
(

1
λ1+λ2

− 1
λ1+λ3

)
x2x3 +

(
1

λ3+λ4
− 1

λ2+λ4

)
y2y3

ẋ2 =
(

1
λ2+λ3

− 1
λ1+λ2

)
x1x3 +

(
1

λ1+λ4
− 1

λ3+λ4

)
y1y3

ẋ3 =
(

1
λ1+λ3

− 1
λ2+λ3

)
x1x2 +

(
1

λ2+λ4
− 1

λ1+λ4

)
y1y2

ẏ1 =
(

1
λ3+λ4

− 1
λ1+λ3

)
x2y3 +

(
1

λ1+λ2
− 1

λ2+λ4

)
x3y2

ẏ2 =
(

1
λ2+λ3

− 1
λ3+λ4

)
x1y3 +

(
1

λ1+λ4
− 1

λ1+λ2

)
x3y1

ẏ3 =
(

1
λ2+λ4

− 1
λ2+λ3

)
x1y2 +

(
1

λ1+λ3
− 1

λ1+λ4

)
x2y1.

(2.5)

The Hamiltonian (2.3) has the expression

H(M) = −1

4
Trace(MΩ)

=
1

2

(
1

λ2 + λ3
x2
1 +

1

λ1 + λ3
x2
2 +

1

λ1 + λ2
x2
3 +

1

λ1 + λ4
y21 +

1

λ2 + λ4
y22 +

1

λ3 + λ4
y23

)
.

Theorem 2.1. [2] If E denotes the set of the equilibrium points of (2.5), then E = t1∪ t2 ∪ t3 ∪ s+ ∪ s−,
where

t1 :=





M1

a,b :=




0 0 0 b

0 0 −a 0
0 a 0 0
−b 0 0 0




∣∣∣∣∣∣∣∣
a, b ∈ R





,

t2 :=




M2

a,b :=




0 0 a 0
0 0 0 b

−a 0 0 0
0 −b 0 0




∣∣∣∣∣∣∣∣
a, b ∈ R





,

t3 :=





M3

a,b :=




0 −a 0 0
a 0 0 0
0 0 0 b

0 0 −b 0




∣∣∣∣∣∣∣∣
a, b ∈ R






are the coordinate type Cartan subalgebras of so(4) and s± are the three dimensional vector subspaces
given by

s± := spanR

{(
1

λ1+λ4

E1 ± 1

λ2+λ3

E4

)
,

(
1

λ2+λ4

E2 ± 1

λ1+λ3

E5

)
,

(
1

λ3+λ4

E3 ± 1

λ1+λ2

E6

)}
.
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The intersection of a regular adjoint orbit and a coordinate type Cartan subalgebra has four elements
which represents a Weyl group orbit. Thus we expect twelve isolated equilibria for the rigid body
equations (2.1). Specifically, we have the following result.

Theorem 2.2. [2] The following equalities hold:

(i) t1 ∩Orbc1;c2 =
{
M1

a,b,M
1
−a,−b,M

1
b,a,M

1
−b,−a

}
,

(ii) t2 ∩Orbc1;c2 =
{
M2

a,b,M
2
−a,−b,M

2
b,a,M

2
−b,−a

}
,

(iii) t3 ∩Orbc1;c2 =
{
M3

a,b,M
3
−a,−b,M

3
b,a,M

3
−b,−a

}
,

where 




a =
1√
2

(√
c1 + c2 +

√
c1 − c2

)

b =
1√
2

(√
c1 + c2 −

√
c1 − c2

)
.

(2.6)

Further we remind the main results obtained in [2] on the nonlinear stability of the equilibrium
states E ∩Orbc1;c2 for the dynamics (2.5) on a generic adjoint orbit.

Since the system (2.5) on a generic adjoint orbit is completely integrable ([4], [10], [12], [13]), for the
so(4) free rigid body we have a supplementary constant of motion. Using Mishchenko’s method [12],
[20], we obtain the following additional constant of the motion for the equations (2.5) commuting with
H :

I(M) = (λ2
2 + λ2

3)x
2
1 + (λ2

1 + λ2
3)x

2
2 + (λ2

1 + λ2
2)x

2
3 + (λ2

1 + λ2
4)y

2
1 + (λ2

2 + λ2
4)y

2
2 + (λ2

3 + λ2
4)y

2
3 .

Without loss of generality, we can choose an ordering for λi’s, namely

λ1 > λ2 > λ3 > λ4.

The following results on nonlinear stability hold [2].

Theorem 2.3. [2] The equilibria M1
a,b,M

1
−a,−b ∈ t1 ∩Orbc1;c2 are non-degenerate of center-center type

and therefore nonlinearly stable on the corresponding adjoint orbit and also nonlinearly stable for the
Lie-Poisson dynamics on so(4).

We denote by α1, α2 (α1 < α2) the distinct real roots of the quadratic function

f̃(t) = S̃t2 + T̃ t+ Ũ ,

where
S̃ = (λ2

1 − λ2
4)

2 > 0; Ũ = (λ2
2 − λ2

3)
2 > 0;

T̃ = −2[(λ2
1 − λ2

2)(λ
2
3 − λ2

4) + (λ2
1 − λ2

3)(λ
2
2 − λ2

4)] < 0.

Theorem 2.4. [2] Under the hypothesis λ2
1 + λ2

4 6= λ2
2 + λ2

3 the following hold:

(i) If b2

a2 ∈ [0, α1), then the equilibria M1
b,a,M

1
−b,−a ∈ t1 ∩ Orbc1;c2 are non-degenerate unstable of

saddle-saddle type on the adjoint orbit determined by a and b and hence are also unstable for the
Lie-Poisson dynamics on so(4).

(ii) If b2

a2 ∈ (α1, α2), then the equilibria M1
b,a,M

1
−b,−a ∈ t1 ∩ Orbc1;c2 are non-degenerate unstable of

focus-focus type on the adjoint orbit determined by a and b and hence are also unstable for the
Lie-Poisson dynamics on so(4).
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(iii) If b2

a2 ∈ (α2, 1), then the equilibria M1
b,a,M

1
−b,−a ∈ t1∩Orbc1;c2 are non-degenerate stable of center-

center type on the adjoint orbit determined by a and b and hence are also nonlinearly stable for
the Lie-Poisson dynamics on so(4).

(iv) If b2

a2 = α1, then the equilibria M1
b,a,M

1
−b,−a ∈ t1 ∩ Orbc1;c2 are degenerate and unstable on the

adjoint orbit determined by a and b and hence are also unstable for the Lie-Poisson dynamics on
so(4).

(v) If b2

a2 = α2, then the equilibria M1
b,a,M

1
−b,−a ∈ t1∩Orbc1;c2 are degenerate and the stability problem

on the adjoint orbit determined by a and b remains open.

Theorem 2.5. [2] Under the hypothesis λ2
1 + λ2

4 = λ2
2 + λ2

3 the following holds:

(i) If b2

a2 ∈ [0, α1), then the equilibria M1
b,a,M

1
−b,−a ∈ t1 ∩ Orbc1;c2 are non-degenerate unstable of

saddle-saddle type.

(ii) If b2

a2 ∈ (α1, 1), then the equilibria M1
b,a,M

1
−b,−a ∈ t1 ∩ Orbc1;c2 are non-degenerate unstable of

focus-focus type.

(iii) If b2

a2 = α1, then the equilibria M1
b,a,M

1
−b,−a ∈ t1 ∩Orbc1;c2 are degenerate and unstable.

Thus these equilibria are also unstable for the Lie-Poisson dynamics on so(4).

Theorem 2.6. [2] All four equilibria in t3 ∩ Orbc1;c2 are non-degenerate of center-center type and
therefore nonlinearly stable on the corresponding adjoint orbit. These equilibria are also nonlinearly
stable for the Lie-Poisson dynamics on so(4).

Theorem 2.7. [2] All four equilibria in t2 ∩ Orbc1;c2 are non-degenerate, of center-saddle type and
therefore unstable on the corresponding adjoint orbit. Thus these equilibria are also unstable for the
Lie-Poisson dynamics on so(4).

3 Nonlinear stability using energy methods for equilibria with-

out bifurcation behavior

We study nonlinear stability using Arnold’s method, which is equivalent [3] with Energy-Casimir method
[11] and with Ortega-Ratiu method [14], for the equilibria listed in Theorems 2.3 and 2.6. The nonlinear
stability of these equilibria has been proved in [2] using a Lie-theoretical result of Williamson. In this
section we will find a Lyapunov function for these equilibria.

For the equilibria M1
a,b and M1

−a,−b in t1 ∩Orbc1;c2 the computations are more precisely as follows.
Consider the smooth function Fmn ∈ C∞(so(4),R), where m,n are real numbers

Fmn(M) = I(M) +mC1(M) + nC2(M).

Choosing m,n such that dFmn(M
1
a,b) = 0 and taking into account that d2Fmn(M

1
a,b)|W×W is indefinite,

where W := ker dC1(M
1
a,b) ∩ ker dC2(M

1
a,b), Arnold’s method shows its limitations when used with the

constant of motion I.
Using Arnold’s method with the Hamiltonian of the system, i.e. an energy function of the form

Fmn(M) = H(M) + mC1(M) + nC2(M), we obtain that equilibria M1
a,b and M1

−a,−b are nonlinear
stable under the sufficient conditions on λi and respectively on a, b:

λ1 + λ4 < λ2 + λ3

and
b2

a2
>

(λ1 + λ4)
2

(λ2 + λ3)2
.
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These stability conditions were also obtained in [21]. This stability result is weaker than Theorem 2.3.
From the above considerations it becomes necessary to look for a Lyapunov function that involves

all four constants of motion,
Fµ1µ2

mn := µ1H + µ2I +mC1 + nC2, (3.1)

where µ1, µ2,m, n ∈ R.
In [19] it has been presented another set of constants of motion for the so(4) rigid body. Following

the same ideas as in [5], we approach the stability problem by energy methods using these constants of
motion. They have simple and elegant expressions:

G1(M) =
x2
2

λ2
1 − λ2

3

+
x2
3

λ2
1 − λ2

2

+
y21

λ2
1 − λ2

4

;

G2(M) =
x2
1

λ2
2 − λ2

3

+
x2
3

λ2
2 − λ2

1

+
y22

λ2
2 − λ2

4

;

G3(M) =
x2
1

λ2
3 − λ2

2

+
x2
2

λ2
3 − λ2

1

+
y23

λ2
3 − λ2

4

;

G4(M) =
y21

λ2
4 − λ2

1

+
y22

λ2
4 − λ2

2

+
y23

λ2
4 − λ2

3

.

By direct computation we observe that Gk, k = 1, 2, 3, 4, are of the form (3.1). More precisely,

• G1 = µ1 ·H + µ2 · I +m′ · C1, where

µ1 =
2(λ2 + λ3)(λ2 + λ4)(λ3 + λ4)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
;

µ2 =
1

(λ1 + λ2 + λ3 + λ4)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
;

m′ = − 2(λ2
2 + λ2

3 + λ2
4 + λ2λ3 + λ2λ4 + λ3λ4)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
;

• G2 = µ1 ·H + µ2 · I +m′ · C1, where

µ1 = − 2(λ1 + λ3)(λ1 + λ4)(λ3 + λ4)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
;

µ2 = − 1

(λ1 + λ2 + λ3 + λ4)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
;

m′ =
2(λ2

1 + λ2
3 + λ2

4 + λ1λ3 + λ1λ4 + λ3λ4)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)
;

• G3 = µ1 ·H + µ2 · I +m′ · C1, where

µ1 =
2(λ1 + λ2)(λ1 + λ4)(λ2 + λ4)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
;

µ2 =
1

(λ1 + λ2 + λ3 + λ4)(λ1 − λ3)(λ2 − λ3)(λ2 − λ4)
;

m′ = − 2(λ2
1 + λ2

2 + λ2
4 + λ1λ2 + λ1λ4 + λ2λ4)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)
;
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• G4 = µ1 ·H + µ2 · I +m′ · C1, where

µ1 = − 2(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
;

µ2 = − 1

(λ1 + λ2 + λ3 + λ4)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
;

m′ =
2(λ2

1 + λ2
2 + λ2

3 + λ1λ2 + λ1λ3 + λ2λ3)

(λ1 + λ2 + λ3 + λ4)(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
.

For the equilibrium M1
a,b in t1∩Orbc1;c2 let us consider the Lyapunov function Fµ1µ2

mn ∈ C∞(so(4),R)

Fµ1µ2

mn (M) = G3(M) +mC1(M) + nC2(M),

where m,n are real numbers.
Choosing m,n such that dFµ1µ2

mn (M1
a,b) = 0 and denoting W := kerdC1(M

1
a,b) ∩ ker dC2(M

1
a,b) we

obtain the determinants associated with all upper-left submatrices of the Hessian d2Fµ1µ2
mn (M1

a,b)|W×W

D1 = 2 · a2(λ2
1 − λ2

2) + b2(λ2
2 − λ2

3)

(λ2
1 − λ2

3)(λ
2
2 − λ2

3)(a
2 − b2)

> 0;

D2 = 4a2 · a2(λ2
1 − λ2

2) + b2(λ2
2 − λ2

3)

(λ2
1 − λ2

3)(λ
2
2 − λ2

3)
2(a2 − b2)2

> 0;

D3 = 8a4 · λ2
1 − λ2

2

(λ2
1 − λ2

3)(λ
2
2 − λ2

3)
3(a2 − b2)2

> 0;

D4 = 16a4 · (λ2
1 − λ2

2)(λ
2
2 − λ2

4)

(λ2
1 − λ2

3)(λ
2
3 − λ2

4)(λ
2
2 − λ2

3)
4(a2 − b2)2

> 0.

It follows that d2Fµ1µ2
mn (M1

a,b)|W×W is positive definite and thus the equilibrium M1
a,b in t1 ∩ Orbc1;c2

is nonlinear stable. A similar computation proves that the equilibrium M1
−a,−b in t1 ∩ Orbc1;c2 is also

nonlinear stable.

Analogously, for equilibria M3
a,b and M3

−a,−b in t3 ∩ Orbc1;c2 a convenient Lyapunov function for
applying Arnold’s energy method is Fµ1µ2

mn (M) = G1(M) + mC1(M) + nC2(M), while for equilibria
M3

b,a and M3
−b,−a in t3 ∩Orbc1;c2 a convenient Lyapunov function for applying Arnold’s energy method

is Fµ1µ2
mn (M) = G4(M) +mC1(M) + nC2(M).
Thus, we have obtained the following result:

Theorem 3.1. Using Lyapunov functions, we have the following stability results.

(i) The equilibria M1
a,b,M

1
−a,−b are nonlinear stable with Lyapunov function

Fµ1µ2

mn (M) = G3(M) +mC1(M) + nC2(M).

(ii) The equilibria M3
a,b,M

3
−a,−b are nonlinear stable with Lyapunov function

Fµ1µ2

mn (M) = G1(M) +mC1(M) + nC2(M).

(iii) The equilibria M3
b,a,M

3
−b,−a are nonlinear stable with Lyapunov function

Fµ1µ2

mn (M) = G4(M) +mC1(M) + nC2(M).
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4 Spectral stability for equilibria with bifurcation behavior

As we have seen in Theorem 2.4, for equilibria M1
b,a,M

1
−b,−a a bifurcation in the stability behavior

does occur. In this section we aim to find the region of spectral stability for the equilibria M1
b,a and

M1
−b,−a. Notice that from Theorem 2.6 we have a ∈ (0,∞), b ∈ [0,∞) and b < a, which also implies

that 0 ≤ b2

a2 < 1.
Before we start the spectral stability analysis, we need a few considerations about the position on

the real line of the roots α1 < α2 of the function f̃ defined in Section 2. The discriminant of f̃ is given
by

∆
f̃
= 16(λ2

1 − λ2
2)(λ

2
1 − λ2

3)(λ
2
2 − λ2

4)(λ
2
3 − λ2

4) > 0.

Since ∆
f̃
> 0,− T̃

S̃
> 0 and Ũ

S̃
> 0, the quadratic equation associated to f̃ has two distinct strictly

positive real solutions. We notice that f̃(1) = (λ2
1 + λ2

4 − λ2
2 − λ2

3)
2 ≥ 0 and

− T̃

2S̃
− 1 = − (λ2

1 − λ2
2)(λ

2
1 − λ2

3) + (λ2
2 − λ2

4)(λ
2
3 − λ2

4)

(λ2
1 − λ2

4)
2

< 0,

which implies the following ordering
0 < α1 < α2 ≤ 1.

The above computation also shows that α2 6= 1 if and only if λ2
1 + λ2

4 6= λ2
2 + λ2

3.
The characteristic equation for the linearized system LM1

b,a
XH |Orbc1;c2

is given by

ut4 + vt2 + w = 0, (4.1)

where
u = (λ1 + λ2)(λ1 + λ3)(λ1 + λ4)

4(λ2 + λ3)
4(λ2 + λ4)(λ3 + λ4) > 0;

w = (λ1 − λ2)(λ1 − λ3)(λ2 − λ4)(λ3 − λ4)[(λ2 + λ3)
2a2 − (λ1 + λ4)

2b2]2 ≥ 0

and

v = −2(λ1 + λ4)
2(λ2 + λ3)

2a2T

(
S

T
− b2

a2

)
.

We have made the notations

S = (λ2 + λ3)
2
E2; E2 = −(λ2

2 + λ1λ4)(λ
2
3 + λ1λ4) + λ2λ3(λ1 + λ4)

2

and respectively

T = (λ1 + λ4)
2
E1; E1 = (λ2

1 + λ2λ3)(λ
2
4 + λ2λ3)− λ1λ4(λ2 + λ3)

2.

Next, we will prove that T > 0. Indeed, if λ4 ≤ 0, from the conditions λi + λj > 0 we obtain
0 < λ3 < λ2 < λ1 and consequently, T > 0. If λ4 > 0, then λ2

1 + λ2λ3 > λ1(λ2 + λ3) as it is equivalent
with (λ1 −λ2)(λ1 −λ3) > 0 and λ2

4+λ2λ3 > λ4(λ2 +λ3) as it is equivalent with (λ4 −λ2)(λ4 −λ3) > 0.
By multiplication we obtain that E1 > 0 and consequently, T > 0.

In equation (4.1) we denote t2 = s and the discriminant of the corresponding quadratic equation is

∆ = 4(λ1 + λ4)
6(λ2 + λ3)

6(λ1λ4 − λ2λ3)
2a4f̃

(
b2

a2

)
.

Now, we study the position of S
T

with respect to the roots α1, α2. We notice that

f̃

(
S

T

)
= − (λ2

1 − λ2
2)(λ

2
1 − λ2

3)(λ
2
2 − λ2

4)(λ
2
3 − λ2

4)(λ2 + λ3)
2(λ1λ4 − λ2λ3)

2

E2
1(λ1 + λ4)2

≤ 0

and consequently α1 ≤ S
T
≤ α2.
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We discuss the spectral stability problem for LM1
b,a

XH |Orbc1;c2
by analyzing the position of the num-

ber b2

a2 in the interval [0, 1). Taking into account the expression of ∆, the following two cases: (I)
λ1λ4 6= λ2λ3 and (II) λ1λ4 = λ2λ3 arise naturally.

Case I (λ1λ4 6= λ2λ3)
In this case f̃

(
S
T

)
< 0 and consequently, α1 < S

T
< α2.

Subcase 1 b2

a2 ∈ [0, α1).

We have b2

a2 < α1 < S
T
, which implies S

T
− b2

a2 > 0 and consequently, v < 0. Also ∆ > 0 as we are outside

the roots of f̃ . It follows that the equation us2+ vs+w = 0 has two distinct real positive roots s1 < s2,
where at least the root s2 is strictly positive. Solving t2 = s2, we obtain that equation (4.1) has at least
a solution with strictly positive real part, which implies spectral instability.

Subcase 2 b2

a2 = α1.

Then, b2

a2 = α1 < S
T
, which implies v < 0. Also ∆ = 0. It follows that the equation us2 + vs + w = 0

has a double real strictly positive root. Consequently, as before, we obtain spectral instability.

Subcase 3 b2

a2 ∈ (α1, α2).
Then, ∆ < 0. The characteristic equation (4.1) has complex roots of the form ±A± ıB, with A,B ∈ R

∗.
We obtain again spectral instability.

Subcase 4 b2

a2 ∈ [α2, 1).
If λ2

1 + λ2
4 = λ2

2 + λ2
3, then α2 = 1 and consequently, the previous three subcases completely cover

the interval [0, 1).

Next, we analyze the situation when λ2
1 + λ2

4 6= λ2
2 + λ2

3. Then, α2 < 1 and we consider b2

a2 ∈ [α2, 1).

a) b2

a2 = α2. Then, ∆ = 0. Also S
T
< α2 = b2

a2 , which implies S
T
− b2

a2 < 0 and consequently, v > 0. The
equation us2 + vs+w = 0 has a double real strictly negative root. Then, equation (4.1) has two double
conjugate purely imaginary roots; we are in the case of spectral stability.

b) b2

a2 ∈ (α2, 1). Then, ∆ > 0. Also S
T

< α2 < b2

a2 , which implies S
T
− b2

a2 < 0 and consequently, v > 0.
The equation us2 + vs+ w = 0 has two distinct negative real roots, at least one of them being strictly
negative. Then, equation (4.1) has roots of the form ±ıA and ±ıB, A 6= B,A > 0, B ≥ 0. We are in
the case of spectral stability.

Case II (λ1λ4 = λ2λ3)
First of all, we notice that in this case λ2

1+λ2
4 6= λ2

2+λ2
3; otherwise, one would obtain λ1+λ4 = λ2+λ3

and consequently, we obtain the set equality {λ1, λ4} = {λ2, λ3}. This, in turn, would contradict the
initial hypothesis λ1 > λ2 > λ3 > λ4. Thus, for this case we have α2 6= 1. We have ∆ = 0 and

f̃
(
S
T

)
= 0. By direct computation, α1 =

λ2
4(λ2−λ3)

2

(λ2λ3−λ2
4)

2 and α2 = S
T
=

λ2
4(λ2+λ3)

2

(λ2λ3−λ2
4)

2 .

Subcase 1 b2

a2 ∈ [0, α2). Then, S
T

= α2 > b2

a2 , which implies S
T
− b2

a2 > 0 and consequently, v < 0.
As in case I we obtain that equation (4.1) has double roots of the form ±A, with A > 0. We are in the
case of spectral instability.

Subcase 2 b2

a2 = α2. Then, S
T

= b2

a2 , which implies v = 0. The equation us2 + vs + w = 0 has 0
as a double solution. Consequently, equation (4.1) has 0 as a root of multiplicity 4; we are in the case
of spectral stability.

Subcase 3 b2

a2 ∈ (α2, 1). Then, α2 = S
T

< b2

a2 , which implies v > 0. The equation us2 + vs + w = 0
has a double strictly negative real solution. Consequently, equation (4.1) has double conjugate purely
imaginary roots, which leads to spectral stability.

Identical results hold for the equilibrium M1
−b,−a. The above discussion can be summarized as

9



follows:

Theorem 4.1. The equilibria M1
b,a and M1

−b,−a have the following spectral stability behavior:

(i) if λ2
1 + λ2

4 = λ2
2 + λ2

3, then M1
b,a and M1

−b,−a are spectrally unstable; if λ2
1 + λ2

4 6= λ2
2 + λ2

3, then

M1
b,a and M1

−b,−a are spectrally unstable for b2

a2 ∈ [0, α2).

(ii) if λ2
1 + λ2

4 6= λ2
2 + λ2

3, then M1
b,a and M1

−b,−a are spectrally stable for b2

a2 ∈ [α2, 1).

We notice that this result is in agreement with Theorem 2.4 and Theorem 2.5.

5 Nonlinear stability using energy methods for equilibria with

bifurcation behavior

For the equilibrium M1
b,a, under the condition λ2

1 + λ2
4 6= λ2

2 + λ2
3, we have found spectral stability for

b2

a2 ∈ [α2, 1). For the equilibrium M1
b,a in t1 ∩Orbc1;c2 it is natural to choose a Lyapunov function of the

form Fµ1 u2
mn = G2 +mC1 + nC2. Applying Arnold’s method we find indefiniteness. We will introduce

an additional degree of freedom and thus we search for a Lyapunov function of the following form:

F p
mn = H +

1

2(λ1 + λ3)(λ1 + λ4)(λ3 + λ4)
· p · I +m · C1 + n · C2.

The coefficient
1

2(λ1 + λ3)(λ1 + λ4)(λ3 + λ4)
is equal with µ2

µ1
, where µ1, µ2 are the coefficients that

appear in the expression of G2.
Choosing m,n such that dF p

mn(M
1
b,a) = 0 and denoting W := ker dC1(M

1
b,a)∩ ker dC2(M

1
b,a), we obtain

the determinants associated with all upper-left submatrices of the Hessian d2F p
mn(M

1
b,a)|W×W :

• D1 =
(S1a

2 − T1b
2)p+ S′

1a
2 + T ′

1b
2

(λ1 + λ3)(λ1 + λ4)(λ2 + λ3)(λ3 + λ4)(a2 − b2)
.

We denote D′
1 := (S1a

2 − T1b
2)p+ S′

1a
2 + T ′

1b
2, where:

S1 = (λ2 + λ3)(λ
2
3 − λ2

4) > 0;T1 = (λ2 + λ3)(λ
2
1 − λ2

2) > 0;

S′

1 = −(λ2 + λ3)(λ
2
3 − λ2

4);T
′

1 = (λ1 − λ2)(λ1 + λ4)(λ3 + λ4).

• D2 =
D′

1 · [(S2a
2 − T2b

2)p+ S′
2a

2 + T ′
2b

2]

(λ1 + λ2)(λ1 + λ3)2(λ1 + λ4)2(λ2 + λ3)2(λ3 + λ4)2(a2 − b2)2
.

We denote D′
2 := (S2a

2 − T2b
2)p+ S′

2a
2 + T ′

2b
2, where:

S2 = (λ1 + λ2)(λ2 + λ3)(λ
2
2 − λ2

4) > 0;T2 = (λ1 + λ2)(λ2 + λ3)(λ
2
1 − λ2

3) > 0;

S′

2 = −(λ1 + λ3)(λ2 + λ3)(λ3 + λ4)(λ2 − λ4);T
′

2 = (λ1 + λ3)(λ1 + λ4)(λ3 + λ4)(λ1 − λ3).

• D3 = − D′
2(S3p

2 + T3p+ U3)(λ1 − λ2)(λ3 − λ4)

(λ1 + λ2)(λ1 + λ3)3(λ1 + λ4)3(λ2 + λ3)3(λ2 + λ4)(λ3 + λ4)2(a2 − b2)2
.

We denote g(p) := S3p
2 + T3p+ U3, where:

S3 = (λ1 + λ2)(λ2 + λ4)(λ2 + λ3)
2(a2 − b2) > 0;

T3 = −2(λ2 + λ3){(λ2 + λ3)[(λ1 + λ2)(λ2 + λ4) + (λ1 + λ3)(λ3 + λ4)]a
2−

− (λ1 + λ4)[(λ1 + λ2)(λ1 + λ3) + (λ2 + λ4)(λ3 + λ4)]b
2};

U3 = (λ1 + λ3)(λ3 + λ4)[(λ2 + λ3)
2a2 − (λ1 + λ4)

2b2].
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• D4 =
(λ1 − λ2)(λ1 − λ3)(λ2 − λ4)(λ3 − λ4)(S3p

2 + T3p+ U3)
2

(λ1 + λ2)(λ1 + λ3)3(λ1 + λ4)4(λ2 + λ3)4(λ2 + λ4)(λ3 + λ4)3(a2 − b2)2
.

We are looking for p ∈ R such that HessF p
mn(M

1
b,a)|W×W is definite. This is equivalent with D1D3 >

0, D2 > 0, D4 > 0. We notice that D1D3 has the sign of −D′
1D

′
2g(p). Since D2 has the sign of D′

1D
′
2,

for definiteness we need to have g(p) < 0. Thus, definiteness is equivalent with the existence of a real
number p such that

D′

1(p)D
′

2(p) > 0, g(p) < 0. (5.1)

We distinguish two cases: (I) λ2
1 + λ2

4 < λ2
2 + λ2

3 and (II) λ2
1 + λ2

4 > λ2
2 + λ2

3.

Case I λ2
1 + λ2

4 < λ2
2 + λ2

3

We notice that S1

T1
=

λ2
3−λ2

4

λ2
1−λ2

2

> 1 > b2

a2 and S2

T2
=

λ2
2−λ2

4

λ2
1−λ2

3

> 1 > b2

a2 , thus
S1

T1
− b2

a2 > 0 and S2

T2
− b2

a2 > 0.

It follows that the linear functions D′
1(p), D

′
2(p), as functions of variable p, are strictly increasing and

the associated equations D′
1(p) = 0 and D′

2(p) = 0 have each a unique root, which we denote by p1,
respectively p2. We notice that

p1 − p2 =
(λ2 − λ3)(λ2 − λ4)(λ

2
3 − λ2

4)(λ1 + λ2 + λ3 + λ4)(a
2 − b2)

a2(λ2
1 − λ2

2)(λ
2
1 − λ2

3)(λ1 + λ2)
(

S1

T1
− b2

a2

)(
S2

T2
− b2

a2

) > 0,

which implies p1 > p2.
By direct computation we obtain that the discriminant of the quadratic equation g(p) = 0 is

∆3 = T 2
3 − 4S3U3 = (λ1 + λ2 + λ3 + λ4)

2(λ2 + λ3)
2a4f̃

(
b2

a2

)
.

For b2

a2 = α2 we have that ∆3 = 0 and consequently (5.1) does not have a solution.

For b2

a2 > α2 we have ∆3 > 0 and the equation g(p) = 0 has two distinct real roots, which we denote by
p3 < p4.

In order to solve the system of inequalities (5.1) we need to study the position of p1, p2 with respect
to p3, p4. For this, we need the following computations:

g(p1) =
b2(λ1 − λ2)(λ2 − λ4)

2(λ2
3 − λ2

4)(λ1 + λ2 + λ3 + λ4)
2(a2 − b2)

a2(λ1 + λ2)(λ2
1 − λ2

2)
(

S1

T1
− b2

a2

)2 > 0

and

g(p2) =
b2(λ2 − λ4)(λ

2
3 − λ2

4)
2(λ1 + λ2 + λ3 + λ4)

2(a2 − b2)

a2(λ1 + λ2)(λ2
1 − λ2

3)
(

S2

T2
− b2

a2

)2 > 0.

Consequently, p1 and p2 are outside of the interval (p3, p4).
Next, in order to compare p1 with the minimum point − T3

2S3
of the parabola g(p), we prove:

Lemma 5.1. If λ2
1 + λ2

4 < λ2
2 + λ2

3, then the following inequality holds:

p1 −
(
− T3

2S3

)
< 0.

Proof. By direct computation we obtain

p1 −
(
− T3

2S3

)
=

1

2
·

(λ1 + λ2 + λ3 + λ4)b
4

[
S4

(
a2

b2

)2
+ T4

a2

b2
+ U4

]

(λ1 + λ2)(λ2 + λ3)(λ2 + λ4)(a2 − b2)a2(λ2
1 − λ2

2)
(

S1

T1
− b2

a2

) ,
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where:

S4 = (λ2
2 − λ2

3)(λ
2
3 − λ2

4) > 0;

T4 = 2λ1
2λ3

2 − 3λ4
2λ1

2 + λ1
2λ2

2 + 4λ2
2λ4

2 − λ2
4 + λ4

2λ3
2 − 3λ2

2λ3
2 − λ4

4;

U4 = −(λ2
1 − λ2

2)(λ
2
1 − λ2

4).

We denote h1(t) := Ũ t2 + T̃ t+ S̃ and h2(t) := S4t
2 + T4t + U4. Obviously, the quadratic equation

h1(t) = 0 has the roots 1
α2

< 1
α1

. We notice that the quadratic function h3(t) := h1(t) + h2(t) has the
distinct real roots:

θ1 = 1; θ2 =
λ2
1 − λ2

4

λ2
2 − λ2

3

> 1.

It follows that

h3(t) = (S4 + Ũ)(t− 1)

(
t− λ2

1 − λ2
4

λ2
2 − λ2

3

)
.

It is easy to see that S4 + Ũ = (λ2
2 − λ2

3)(λ
2
2 − λ2

4) > 0. Also,

h1

(
λ2
1 − λ2

4

λ2
2 − λ2

3

)
= −4(λ2

1 − λ2
2)(λ

2
1 − λ2

4)(λ
2
3 − λ2

4)

λ2
2 − λ2

3

< 0,

which implies that 1
α2

<
λ2
1−λ2

4

λ2
2
−λ2

3

< 1
α1

.

Consequently, we have that
(
1, 1

α2

)
⊂
(
1,

λ2
1−λ2

4

λ2
2−λ2

3

)
, which implies that for t ∈

(
1, 1

α2

)
we have that

h3(t) < 0, which leads to h2(t) < −h1(t) < 0. Since a2

b2
∈
(
1, 1

α2

)
one obtains h2

(
a2

b2

)
< 0. This implies

p1 −
(
− T3

2S3

)
< 0.

The above Lemma implies the following ordering

p2 < p1 < p3 < p4.

The system of inequalities (5.1) has as solutions any p ∈ (p3, p4); for such p we have D′
1(p) > 0,

D′
2(p) > 0 and g(p) < 0. In conclusion, there exists a real number p such that HessF p

mn(M
1
b,a)|W×W is

positive definite.

Case II λ2
1 + λ2

4 > λ2
2 + λ2

3

First of all, as we did in Case I, we need to establish the signs of the expressions S1

T1
− b2

a2 and S2

T2
− b2

a2 .
By direct computations we obtain

f̃

(
S2

T2

)
= − (λ2

3 − λ2
4)(λ

2
1 + λ2

4 − λ2
2 − λ2

3) · E
(λ2

1 − λ2
3)

2
,

where
E = −3λ2

2λ3
2 − λ2

2λ4
2 + 4λ1

2λ2
2 + λ3

4 − 3λ4
2λ1

2 − λ1
2λ3

2 + 2λ4
2λ3

2 + λ4
4.

In order to decide the sign of the expression E, we make the following notations:

A2 := λ2
1 − λ2

2, A3 := λ2
1 − λ2

3, A4 := λ2
1 − λ2

4.

From the ordering λ1 > λ2 > λ3 > λ4 we obtain that A4 > A3 > A2 > 0. We have

E = 2A3(A4 −A2) +A4(A4 −A2) + A3(A3 −A2) > 0.

Consequently, f̃
(

S2

T2

)
< 0, thus S2

T2
< α2. Since

b2

a2 ∈ [α2, 1), it follows that
S2

T2
− b2

a2 < 0.

We also have
S1

T1
− S2

T2
= − (λ2

2 − λ2
3)(λ

2
1 + λ2

4 − λ2
2 − λ2

3)

(λ2
1 − λ2

2)(λ
2
1 − λ2

3)
< 0,
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which implies S1

T1
< S2

T2
< b2

a2 and consequently, S1

T1
− b2

a2 < 0.
It follows that the linear functions D′

1(p), D
′
2(p), as functions of variable p, are strictly decreasing

and the associated equations D′
1(p) = 0 and D′

2(p) = 0 have each a unique root, which we denote by
p1, respectively p2. We notice that

p1 − p2 =
(λ2 − λ3)(λ2 − λ4)(λ

2
3 − λ2

4)(λ1 + λ2 + λ3 + λ4)(a
2 − b2)

a2(λ2
1 − λ2

2)(λ
2
1 − λ2

3)(λ1 + λ2)
(

S1

T1
− b2

a2

)(
S2

T2
− b2

a2

) > 0,

which implies p1 > p2.
By direct computation we obtain that the discriminant of the quadratic equation g(p) = 0 is

∆3 = T 2
3 − 4S3U3 = (λ1 + λ2 + λ3 + λ4)

2(λ2 + λ3)
2a4f̃

(
b2

a2

)
.

For b2

a2 = α2 we have that ∆3 = 0 and consequently (5.1) does not have a solution.

For b2

a2 > α2 we have ∆3 > 0 and the equation g(p) = 0 has two distinct real roots, which we denote by
p3 < p4.

In order to solve the system of inequalities (5.1) we need to study the position of p1, p2 with respect
to p3, p4. For this, we need the following computations:

g(p1) =
b2(λ1 − λ2)(λ2 − λ4)

2(λ2
3 − λ2

4)(λ1 + λ2 + λ3 + λ4)
2(a2 − b2)

a2(λ1 + λ2)(λ2
1 − λ2

2)
(

S1

T1
− b2

a2

)2 > 0

and

g(p2) =
b2(λ2 − λ4)(λ

2
3 − λ2

4)
2(λ1 + λ2 + λ3 + λ4)

2(a2 − b2)

a2(λ1 + λ2)(λ2
1 − λ2

3)
(

S2

T2
− b2

a2

)2 > 0.

Consequently, p1 and p2 are outside of the interval (p3, p4).
Next, in order to compare p2 with the minimum point − T3

2S3
of the parabola g(p), we prove

Lemma 5.2. If λ2
1 + λ2

4 > λ2
2 + λ2

3, then the following inequality holds:

p2 −
(
− T3

2S3

)
> 0.

Proof. By direct computation we obtain

p2 −
(
− T3

2S3

)
= −1

2
·

(λ1 + λ2 + λ3 + λ4)b
4

[
S5

(
a2

b2

)2
+ T5

a2

b2
+ U5

]

(λ1 + λ2)(λ2 + λ3)(λ2 + λ4)(a2 − b2)a2(λ2
1 − λ2

3)
(

S2

T2
− b2

a2

) ,

where

S5 = (λ2
2 − λ2

3)(λ
2
2 − λ2

4);

T5 = 3λ4
2λ1

2 − λ1
2λ3

2 − 2λ1
2λ2

2 + λ3
4 − 4λ4

2λ3
2 + λ4

4 + 3λ2
2λ3

2 − λ2
2λ4

2;

U5 = (λ2
1 − λ2

3)(λ
2
1 − λ2

4).

We denote by h4(t) := S5t
2 + T5t + U5. We notice that the quadratic function h5(t) := h4(t) − h1(t)

has the distinct real roots:

θ3 = −λ2
1 − λ2

4

λ2
2 − λ2

3

< 0; θ4 = 1.

It follows that

h5(t) = (S5 − Ũ)

(
t+

λ2
1 − λ2

4

λ2
2 − λ2

3

)
(t− 1).
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It is easy to see that S5 − Ũ = (λ2
2 − λ2

3)(λ
2
3 − λ2

4) > 0. Consequently, for t > 1 we have that h5(t) > 0,

which is equivalent to h4(t) > h1(t) for all t > 1. Since a2

b2
∈
(
1, 1

α2

)
one obtains h4

(
a2

b2

)
> h1

(
a2

b2

)
> 0.

This implies p2 −
(
− T3

2S3

)
> 0.

The above Lemma implies the following ordering

p3 < p4 < p2 < p1.

The system of inequalities (5.1) has as solutions any p ∈ (p3, p4). More precisely, for p ∈ (p3, p4)
we have D′

1(p) > 0, D′
2(p) > 0 and g(p) < 0. In conclusion, there exists a real number p such that

HessF p
mn(M

1
b,a)|W×W is positive definite.

The nonlinear stability for equilibria M1
b,a and M1

−b,−a can be summarized as follows:

Theorem 5.3. We have the following stability behavior on regular orbits Orbc1;c2 :

(i) for b2

a2 ∈ (α2, 1) the equilibria M1
b,a and M1

−b,−a are nonlinear stable with Lyapunov function

F p
mn = H +

p

2(λ1 + λ3)(λ1 + λ4)(λ3 + λ4)
I +mC1 + nC2,

where p ∈ (p3, p4);

(ii) for b2

a2 = α2 the stability problem for the equilibria M1
b,a and M1

−b,−a cannot be decided using the
set of constants of motion {H, I, C1, C2};

(iii) for b2

a2 ∈ [0, α2) the equilibria M1
b,a and M1

−b,−a are unstable.
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