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Abstract

We study the stability of a vector field associated to a nearly–integrable Hamiltonian
dynamical system to which a dissipation is added. Such a system is governed by two
parameters, named the perturbing and dissipative parameters, and it depends on a drift
function. Assuming that the frequency of motion satisfies some resonance assumption, we
investigate the stability of the dynamics, and precisely the variation of the action variables
associated to the conservative model. According to the structure of the vector field, one
can find linear and exponential stability times, which are established under smallness con-
ditions on the parameters. We also provide some applications to concrete examples, which
exhibit a linear or exponential stability behavior.
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1 Introduction

We investigate the behavior of nearly–integrable Hamiltonian vector fields to which a dissipa-
tive contribution is added. The vector field is ruled by two parameters, namely the perturbing
parameter (measuring the non–integrability of the system)and the dissipative parameter (pro-
viding the size of the dissipative term). We assume that the phase space is contracted by time
evolution. A drift function enters the equations of motion as an unknown function; its role is
fundamental, since it must be properly chosen in order to meet some compatibility conditions
ensuring the existence of a normal form (compare with KAM results as in [4]). We concentrate
on the behavior of the variables which are actions of the conservative system (i.e. setting to zero
the dissipative parameter). We assume that the initial conditions define a resonant frequency
for the integrable conservative system (i.e. setting to zero both the perturbing and dissipative
parameters). Under smallness conditions on the parameters, we prove that the action variables
stay locally bounded over a given time interval (see also [20]). The length of the time interval
depends on the functions defining the equations of motion and, precisely, whether there appear
also dissipative resonant terms in the original as well as inthe normalized vector field. Notice
that such a result provides a useful information concerningthe transient time, namely the time
needed to reach the attractor.
The proof of the result is based on the construction of a suitable coordinate transformation,
which is provided by the composition of a conservative and a dissipative change of variables.
A similar technique, based on a non–resonant normal form, has been already implemented in
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[8] in order to investigate a vector field of the type studied in this paper, but in the simplest case
of non–resonant frequency. In this case, under smallness conditions on the parameters, one can
prove that the actions stay always bounded for exponential times. As in classical perturbation
theory, the first transformation removes the conservative perturbation to higher orders (see,
e.g., [5]); the corresponding normal form is composed by resonant or average terms. The sec-
ond transformation is performed to normalize the dissipative terms; the normal form equations
defining the dissipative change of variables can be solved, provided that the drift function
is chosen in such a way that the compatibility condition is satisfied. The final normal form
contains just resonant and average terms up to a given order in the perturbing and dissipative
parameters. As in classical Nekhoroshev’s theorem ([20], [21], see also [2], [13]) by properly
choosing the order of the normal form, one can determine stability bounds. The stability time
is exponential, whenever conservative resonant terms do not appear in the equation for the
time variation of the normalized action variable or whenever the dissipative resonant contri-
butions are zero. In the other cases the stability time depends on the inverse of the product
of the perturbing and dissipative parameters. The scheme ofthe proof, which is presented for
a non–autonomous, time–periodic system (see also [16]) follows closely [22], where a very
clear and enlightening proof of Nekhoroshev’s theorem is given. The proof is constructive and
it allows us to provide explicit expressions for the conservative and dissipative transformations
(see also [3], [10], [18]). In our opinion there are several physical problems, which can be
analyzed by our method. For example, there are many results concerning the stability of the
(resonant) Lagrangian points in a conservative framework (see [6], [7], [14], [15], [19]), but
none of them takes into account dissipative effects (like Solar radiation, Poynting–Roberston
drag, Yarkowsky effect, etc.), which might significantly affect the dynamics. In this respect,
we believe that it would be interesting to analyze these models including a dissipative effect
by using the results contained in this paper. We provide examples of normal forms in some
concrete one–dimensional, time–dependent model problems, which illustrate different cases
corresponding to linear (i.e., proportional to the inverseof the product of the perturbing and
dissipative parameters) or exponential stability times. We also provide an application of the
theorem in order to obtain rigorous stability bounds for theprevious model problems.

The paper is organized as follows. Notations and assumptions are defined in Section 2. The
resonant normal form Lemma and the stability Theorem are proven in Section 3. Examples of
normal form constructions to concrete model problems is given in Section 4. An application
of the stability theorem is provided in Section 5.
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2 Notations and assumptions

We introduce theℓ–dimensional, time–dependent vector field, described by the equations

ẋ = ω(y) + εh10,y(y, x, t) + µf01(y, x, t)

ẏ = −εh10,x(y, x, t)− µ
(

g01(y, x, t)− η(y, x, t)
)

, (1)

wherey ∈ Rℓ, (x, t) ∈ Tℓ+1, while the definitions and assumptions on the parameters and
functions are the following1.

1. Having fixed an initial datumy0 ∈ Rℓ, we denote byA ⊂ Rℓ an open neighborhood of
y0.

2. The vector field depends on the parametersε ∈ R+ (perturbing parameter),µ ∈ R+

(dissipative parameter); we remark that we could equally admit vector parameters, i.e.
ε ∈ Rℓ

+, µ ∈ Rℓ
+, but for simplicity of exposition we present the details just for the

scalar caseε ∈ R+, µ ∈ R+.

3. The functionsω andη are real–analytic,ℓ–dimensional vector functions with compo-
nents(ω(1), ..., ω(ℓ)) and (η(1), ..., η(ℓ)). We assume that there exists a regular function
h00 = h00(y) such that∂h00(y)

∂y
= ω(y). Let h0(y, u) = h00(y) + u, u ∈ R, be the unper-

turbed Hamiltonian function associated to the conservative vector field (µ = 0) in the
extended phase space. Letωe(y) ≡ (ω(y), 1) be the frequency vector in the extended
phase space. Following [22] we make the hypothesis thath0 is L,M–quasi convex,
namely there existL, M > 0, such that for allz ≡ (y, u) ∈ A × R at least one of the
following inequalities is satisfied:

|ωe(y) · v| > L‖v‖ , ∂2h0(z)

∂z2
v · v ≥M‖v‖2 , ∀v ∈ R

ℓ+1 , (2)

where the dot denotes the scalar product and‖ · ‖ denotes the Euclidean norm.

4. In the following we will use the vector field (1) in the extended phase space witḣt = 1
and withu conjugated to time:

ẋ = ω(y) + εh10,y(y, x, t) + µf01(y, x, t)

ẏ = −εh10,x(y, x, t)− µ
(

g01(y, x, t)− η(y, x, t)
)

u̇ = −εh10,t(y, x, t) + µσ(y, x, t) , (3)

where the unknown functionσ is introduced for later convenience (see next point).

1The subscriptsx, y, t denote derivatives with respect tox, y, t, i.e.hx ≡ ∂h
∂x

, hy ≡ ∂h
∂y

, ht ≡ ∂h
∂t

.
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5. We assume thatf01, g01, η are real–analytic,ℓ–dimensional vector functions fromA ×
Tℓ+1 to Rℓ, while h10, σ are periodic and real–analytic fromA × Tℓ+1 to R. We re-
mark thatη, σ are unknown functions, which will be properly chosen so to meet some
compatibility requirements in order to obtain a suitable normal form (see Section 3).

6. We assume that the vector field is dissipative and that the phase space volume is con-
tracted by the time evolution.

7. For a given initial datumy0 = y(0) ∈ A, we assume that there exists a latticeΛ ⊂ Zℓ+1,
such that the vector functionω = ω(y0) satisfies theresonance condition

|ω(y0) · k + j| = 0 for all (k, j) ∈ Λ . (4)

We also assume that there existsK ∈ Z+, a > 0 and a subsetD ⊆ A, such that for any
y ∈ D the following condition is satisfied:

|ω(y) · k + j| ≥ a for all (k, j) ∈ Z
ℓ+1\Λ , |k|+ |j| ≤ K , (5)

where fork = (k1, ..., kℓ) ∈ Zℓ we define the norm|k| ≡ |k1|+ ...+ |kℓ|.

8. We refer toη = η(y, x, t) as thedrift vector function with components(η(1)(y, x, t), ...,
η(ℓ)(y, x, t)) that we expand as

η(k)(y, x, t) =

∞
∑

m=0

m
∑

j=0

η
(k)
j,m−j+1(y, x, t)ε

jµm−j , k = 1, ..., ℓ .

In a similar way we expandσ in (3) as

σ(y, x, t) =
∞
∑

m=0

m
∑

j=0

σj,m−j+1(y, x, t)ε
jµm−j .

Remark 1. We remark that forµ = 0 the equations (3) reduce to the conservative vector field,
associated to the nearly–integrable Hamiltonian functionin the extended phase space

H(y, x, u, t) = h00(y) + u+ εh10(y, x, t) , (6)

whereω(y) = ∂h00(y)/∂y. Notice that the Hamiltonian (6) is integrable as far as the perturb-
ing parameter is zero, i.e.ε = 0. Since the vector field (3) is dissipative (see assumption 6.),
the energy associated to (6) is decreasing with time.

We adopt the following notations and definitions for functions and norms.
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i) Integer subscripts denote the order in the perturbing and dissipative parameters, i.e.Fij

denotes a function of orderεiµj.

ii) For a functionf = f(y, x, t) and for any positive integerK, we decomposef as

f(y, x, t) = f̄(y) + f (nr,≤K)(y, x, t) + f (r,≤K)(y, x, t) + f (>K)(y, x, t) ,

being, respectively, the average, the sum over the non–resonant components with Fourier
modes less or equal thanK, the projection over the resonant space defined by the lat-
ticeΛ excluding the origin with Fourier modes less or equal thanK, the sum over the
components with Fourier modes greater thanK, namely:

f̄(y) ≡ 1

(2π)ℓ+1

∫

Tℓ+1

f(y, x, t) dxdt

f (nr,≤K)(y, x, t) ≡
∑

(k,j)∈Zℓ+1\Λ, |k|+|j|≤K

f̂kj(y)e
ı(k·x+jt)

f (r,≤K)(y, x, t) ≡
∑

(k,j)∈Λ\{0}, |k|+|j|≤K

f̂kj(y)e
ı(k·x+jt)

f (>K)(y, x, t) ≡
∑

(k,j)∈Zℓ+1, |k|+|j|>K

f̂kj(y)e
ı(k·x+jt) ,

whereı =
√
−1 andf̂kj are the Fourier coefficients.

iii) We say that a function is of orderk in ε andµ, in symbolsOk(ε, µ), if its Taylor series
expansion inε, µ contains powers ofεiµj with i+ j ≥ k, i ≥ 0, j ≥ 0.

iv) We denote byCr0(A) the complex neighborhood ofA of radiusr0, namely

Cr0(A) ≡ {y ∈ C
ℓ : ‖y − yA‖ ≤ r0 for all yA ∈ A} .

Moreover, letCs0(T
ℓ+1) be the complex strip of radiuss0 aroundTℓ+1, namely

Cs0(T
ℓ+1) ≡ {(x, t) ∈ C

ℓ+1 : max
1≤j≤ℓ

|ℑ(xj)| ≤ s0 , |ℑ(t)| ≤ s0} ,

whereℑ denotes the imaginary part.

v) Denoting the Fourier expansion of a functionf = f(y, x, t) as

f(y, x, t) =
∑

(k,j)∈Zℓ+1

f̂kj(y)e
ı(k·x+jt) ,
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we introduce the norm

‖f‖r0,s0 ≡ sup
y∈Cr0

(A)

∑

(k,j)∈Zℓ+1

|f̂kj(y)|e(|k|+|j|)s0 .

For a functiong = g(y) we define‖g‖r0 ≡ supy∈Cr0
(A) ‖g(y)‖, where‖ · ‖ denotes the

Euclidean norm. For a vector functionf = (f1, .., fℓ) we define

‖f‖r0,s0 ≡

√

√

√

√

ℓ
∑

j=1

‖fj‖2r0,s0 .

3 Bounds on the variation of the action variables

In order to bound the variation of the action variables, we implement a change of coordinates
such that the vector field (3) is transformed to a resonant normal form, up to a suitable order
N . To this end we introduce a change of coordinates close to theidentity and leaving time
unaltered, say

(Y,X, U, t) = Ξ(N)(y, x, u, t) , (Y, U) ∈ R
ℓ+1 , (X, t) ∈ T

ℓ+1 , (7)

whereΞ(N) depends parametrically also onε,µ,Ξ(N) = Ξ(N)(y, x, u, t; ε, µ)withΞ(N)(y, x, u, t; 0, 0) =
Id. LetK be as in (5); in the forthcoming Resonant Normal Form Lemma weaim to determine
the transformation of coordinates (7), so that (3) takes a resonant normal form of orderN , that
we write as

Ẋ = Ω
(N)
d (Y ) + F (r,≤K)(Y,X, t) + FN+1(Y,X, t) + F (>K)(Y,X, t)

Ẏ = G(r,≤K)(Y,X, t) +GN+1(Y,X, t) +G(>K)(Y,X, t)

U̇ = H(r,≤K)(Y,X, t) +HN+1(Y,X, t) +H(>K)(Y,X, t) , (8)

whereΩ(N)
d : Rℓ → Rℓ is the normalized frequency, related toω(Y ) by

Ω
(N)
d (Y ) = Ω

(N)
d (Y ; ε, µ) ≡ ω(Y ) +

N
∑

i=1

Ωi0(Y )ε
i +

N
∑

j=1

N−j
∑

i=0

Ωij(Y )ε
iµj ,

whereΩij(Y ) are known vector functions;F (r,≤K),G(r,≤K),H(r,≤K) have Fourier components
belonging to the resonant latticeΛ\{0} with F (r,≤K) depending on bothε, µ, whileG(r,≤K),
H(r,≤K) depend only onε; FN+1, GN+1, HN+1 are vector functions of orderON+1(ε, µ);
F (>K),G(>K),H(>K) denote functions with Fourier modes greater thanK.
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Similarly to [8] we decompose the coordinate transformation Ξ(N) as the composition of two
transformationsΞ(N)

c (conservative part) andΞ(N)
d (dissipative part):

(Y,X, U, t) = Ξ
(N)
d ◦ Ξ(N)

c (y, x, u, t) . (9)

Setting(ỹ, x̃, ũ, t) ≡ Ξ
(N)
c (y, x, u, t), the conservative transformationΞ(N)

c is defined through
a sequence of generating functions close to the identity, say ψj0 = ψj0(ỹ, x, t), j = 1, ..., N ,
such that

x̃ = x+
N
∑

j=1

ψj0,y(ỹ, x, t)ε
j ≡ x+ ψ(N)

y (ỹ, x, t)

y = ỹ +

N
∑

j=1

ψj0,x(ỹ, x, t)ε
j ≡ ỹ + ψ(N)

x (ỹ, x, t)

u = ũ+
N
∑

j=1

ψj0,t(ỹ, x, t)ε
j ≡ ũ+ ψ

(N)
t (ỹ, x, t) . (10)

Notice that we can assume that the functionsψj0 (as well asαjk, βjk, γjk in (12) below) do not
depend onu, since the functions appearing in (1) (or equivalently in (3)) do not depend onu.
We denote the inversion of (10) as

x = x(ỹ, x̃, t) = x̃+ Γ(x,N)(ỹ, x̃, t)

y = y(ỹ, x̃, t) = ỹ + Γ(y,N)(ỹ, x̃, t)

u = u(ỹ, x̃, t) = ũ+ Γ(u,N)(ỹ, x̃, t) . (11)

The dissipative transformationΞ(N)
d is defined by introducing suitable functions with zero

average over̃x andt, sayα(N), β(N), γ(N) defined through series by the coefficientsαji, βji,
γji, j, i ∈ Z+, such that

X = x̃+

N
∑

i=0

i
∑

j=0

αj,i−j(ỹ, x̃, t)ε
jµi−j ≡ x̃+ α(N)(ỹ, x̃, t)

Y = ỹ +
N
∑

i=0

i
∑

j=0

βj,i−j(ỹ, x̃, t)ε
jµi−j ≡ ỹ + β(N)(ỹ, x̃, t)

U = ũ+
N
∑

i=0

i
∑

j=0

γj,i−j(ỹ, x̃, t)ε
jµi−j ≡ ũ+ γ(N)(ỹ, x̃, t) , (12)

with αi0(ỹ, x̃, t) = βi0(ỹ, x̃, t) = γi0(ỹ, x̃, t) = 0 for anyi ≥ 0. An iterative explicit construc-
tion of the vector functionsψj0, αji, βji, γji will be given within the proof of the Resonant
Normal Form Lemma stated below.
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Remark 2. The normal form equation defining the generating functionψj0(ỹ, x̃, t) at orderj
is given by

ω(ỹ) ψj0,x(ỹ, x̃, t) + ψj0,t(ỹ, x̃, t) + L
(nr,≤K)
j0 (ỹ, x̃, t) = 0 ,

for a suitable known functionL(nr,≤K)
j0 (ỹ, x̃, t) with zero average over(x̃, t) and not containing

resonant terms, say

L
(nr,≤K)
j0 (ỹ, x̃, t) =

∑

(k,j)∈Zℓ+1\Λ, |k|+|j|≤K

L̂j0,kj(ỹ) e
i(k·x̃+jt) .

This equation can be solved providedω = ω(ỹ) satisfies a non–resonance condition of the
form

ω(ỹ) · k + j 6= 0 for all (k, j) ∈ Z
ℓ+1\Λ , |k|+ |j| ≤ K ,

which is guaranteed by (5), providedε satisfies a smallness condition. Analogously, the dissi-
pative normal form provides an explicit construction of thefunctionsα(N), β(N), γ(N), thanks
to a suitable choice of the driftsη, σ and to the assumption (5). More precisely, once expressed
in terms of the new variables(Y,X, t), the functionsβji must satisfy a normal form equation
of the form

ω(Y )βji,x(Y,X, t)+βji,t(Y,X, t)+N
(nr,≤K)
ji (Y,X, t)+N̄ji(Y )+N

(r,≤K)
ji (Y,X, t)+ηji(Y,X, t) = 0 ,

(13)
for some known functionNji ≡ N̄ji +N

(nr,≤K)
ji +N

(r,≤K)
ji +N

(>K)
ji ; therefore, equation (13)

can be solved provided the drift componentsηji(Y,X, t) are chosen as the opposite of the sum
of the average and of the resonant parts:

ηji(Y,X, t) = −
(

N̄ji(Y ) +N
(r,≤K)
ji (Y,X, t)

)

.

An analogous relation holds forγji andσji. This explains why the drift must be properly
defined in order to be able to build the coordinate transformation (7). This is not unusual, but it
happens also in KAM theory (see e.g.[4]). We proceed now to state the Resonant Normal Form
Lemma, which extends the Normal Form Lemma of [8] to the resonant case of a frequency
vector satisfying (4), (5).

Resonant Normal Form Lemma.Consider the vector field(1) analytic in the complex ex-
tensionCr0(A) × Cs0(T

ℓ+1) for somer0, s0 > 0. Consider the extended vector field(3) on
A × R × Tℓ+1. For a given latticeΛ ⊂ Zℓ+1, let y0 ∈ A, K ∈ Z+, D ⊆ A, a > 0 be such
that(4) and(5) are satisfied. There exist suitable drift functionsη = η(y, x, t), σ = σ(y, x, t),
and there existε0, µ0 > 0 depending onr0, s0, K, a and on the norms ofω, h, f , g, such
that for any(ε, µ) ≤ (ε0, µ0), one can construct a change of variables close to the identity, say
Ξ(N) : A×R×T

ℓ+1 → R
ℓ+1×T

ℓ+1 with (Y,X, U, t) = Ξ(N)(y, x, u, t), being(Y, U) ∈ R
ℓ+1,

9



(X, t) ∈ Tℓ+1, N ∈ Z+, which transforms(3) into a normal form of orderN as in(8). Let
R0 < r0, S0 < s0; having setλ = max(ε, µ), the normalized frequency is bounded by

‖Ω(N)
d − ω‖R0

≤ Cωλ , (14)

whereCω is a positive constant depending onr0, N and on the norms ofω, h, f , g. Denoting
byΠy the projection on they–coordinate, one gets

‖Πy(Ξ
(N)
d ◦ Ξ(N)

c )− Id‖ ≤ Cpλ , (15)

for some positive constantCp depending onr0, s0, N and on the norms ofω, h, f , g. With
reference to the normal form(8), one has the following estimate

‖G(r,≤K)‖R0,S0
+ ‖GN+1‖R0,S0

+ ‖G(>K)‖R0,S0
≤ λG+ CY λ

N+1 , (16)

for some constantCY and having bounded‖G(r,≤K)‖R0,S0
byλG, whereG andCY depend on

r0, s0, N , K and on the norms ofω, h, f , g. Choosing2 N = [Kτ0/| log λ|] for someτ0 > 0,
one obtains that(16)becomes

‖G(r,≤K)‖R0,S0
+ ‖GN+1‖R0,S0

+ ‖G(>K)‖R0,S0
≤ λG+ CY λe

−Kτ0 . (17)

Before giving the proof of the Lemma, we provide the statement of the main result, namely
a bound on the variation of the variables which are actions ofthe conservative system. The
following Theorem will be obtained through the Resonant Normal Form Lemma under the
resonance condition (4) and the quasi–convexity assumption (2). Let us write the normal form
equations (8) using the following notation:

Ẋ = ω(Y ) + εp
(≤K)
Y (Y,X, t) + µs(≤K)(Y,X, t) + FN+1(Y,X, t) + F (>K)(Y,X, t)

Ẏ = −εp(≤K)
X (Y,X, t) +GN+1(Y,X, t) +G(>K)(Y,X, t)

U̇ = −εp(≤K)
t (Y,X, t) +HN+1(Y,X, t) +H(>K)(Y,X, t) , (18)

wherep(≤K)
X , p(≤K)

Y , p(≤K)
t (independent ofµ) are the resonant contributions stemming just

from the conservative transformation, whiles(≤K) (depending onµ andε) represents the reso-
nant part coming from the dissipative transformation.

Theorem Consider the vector field(1) defined onA × Tℓ+1, satisfying the quasi–convexity
assumption(2). Let y0 ∈ A, K ∈ Z+, D ⊆ A, a > 0 be such that(4) and(5) are satisfied.
Assume there existsε0, µ0, such that for(ε, µ) ≤ (ε0, µ0), the Resonant Normal Form Lemma
holds. Letτ0, Cp, λ, r0, s0 as in the Resonant Normal Form Lemma. With reference to(18),
we have that:

2The choice ofN is motivated as follows. The relationλN = e−Kτ0 impliesN logλ = −Kτ0, namely
N = [Kτ0/| logλ|], where[·] denotes the integer part.
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i) if p(≤K)
X = 0 or s(≤K) = 0, then there existρ1 > 0, C0 > 0, such that‖y(t) − y(0)‖ ≤
2Cpλ + ρ1 for t ≤ T1 ≡ C0e

Kτ0 , whereC0 depends onM , r0, s0, K, N and on the
norms ofω, h, f , g, while ρ1 depends on the above and onm, λ, Λ;

ii) if p(≤K)
X 6= 0 ands(≤K) 6= 0, then there existρ2 > 0, C ′

0 > 0, C ′′
0 > 0, such that if

t ≤ T2 ≡ min(C ′
0e

Kτ0 ,
C′′

0

εµ
), then‖y(t)− y(0)‖ ≤ 2Cpλ + ρ2, whereC ′

0, C
′′
0 depend on

M , r0, s0, K, N and on the norms ofω, h, f , g, while ρ2 depends on the above and on
m, λ, Λ.

Remark 3. The above theorem is stated in terms of the functionsp
(≤K)
X ands(≤K) appearing

in the normal form equations (18); in order to decide which ofthe conditionsi) or ii) of the
Theorem is satisfied, one needs to know the explicit expression of the functionsf01, g01, h10
appearing in the vector field (1), tracing the resonant termswhich could generatep(≤K)

X and
s(≤K) by means of an explicit construction of the normal form or by means of atree algorithm
(see, e.g., [9], [11], [17] and references therein).

Remark 4. The Theorem states that in the non–resonant case (compare with [8]), as well as
whenever the dissipative contribution to the resonant normal form is zero (at least up to the
normalization order), one finds a variation of the actions onexponential times; otherwise, there
appears a fast drift of the actions on linear (inε µ) times.

Proof of the Resonant Normal Form Lemma.By induction on the normalization order we
prove that we can construct a normal form of type (8) by means of suitable transformations
as in (10) and (12). First we prove the statement by constructing the first order normal form
using the conservative and then the dissipative transformation; next, we proceed to construct
the conservative and dissipative transformations at the orderN . For sake of clarity, we split
the proof into four separate steps, referring, respectively, to the first order conservative and
dissipative normal forms, and to theN–th order conservative and dissipative transformations.
Since the conservative transformation is standard, we omitsome details.

Step 1: Conservative transformation forN = 1.
We start by implementing the first order transformation

x̃ = x+ εψ10,y(ỹ, x, t)

y = ỹ + εψ10,x(ỹ, x, t)

u = ũ+ εψ10,t(ỹ, x, t) , (19)

whereψ10 = ψ10(ỹ, x, t) is an unknown function. Let̃r0 < r0, δ0 < s0, s̃0 ≡ s0 − δ0; then we
can invert (19) as

x = x̃+ εΓ(x,1)(ỹ, x̃, t)

11



y = ỹ + εΓ(y,1)(ỹ, x̃, t)

u = ũ+ εΓ(u,1)(ỹ, x̃, t) ,

for suitable functionsΓ(x,1), Γ(y,1) andΓ(u,1), provided the following smallness condition on
the parameters is satisfied (compare with Appendix A):

70 ‖ψ10,y‖r̃0,s0 e2s0δ−1
0 ε < 1 . (20)

Using (19) and (3), we obtain that the conservative normal form is achieved whenever one can
determineψ10(ỹ, x̃, t) such that

ωy(ỹ)ψ10,x(ỹ, x̃, t) + ω(ỹ)ψ10,yx(ỹ, x̃, t) + ψ10,yt(ỹ, x̃, t) + h
(nr,≤K)
10,y (ỹ, x̃, t) = 0

ω(ỹ)ψ10,xx(ỹ, x̃, t) + ψ10,xt(ỹ, x̃, t) + h
(nr,≤K)
10,x (ỹ, x̃, t) = 0

ω(ỹ)ψ10,tx(ỹ, x̃, t) + ψ10,tt(ỹ, x̃, t) + h
(nr,≤K)
10,t (ỹ, x̃, t) = 0 . (21)

Let us define
Ω(1)

c (ỹ) = Ω(1)
c (ỹ; ε) ≡ ω(ỹ) + εh̄10,y(ỹ) ;

Equations (21) are equivalent to take the derivatives with respect toy, x andt of

ω(ỹ)ψ10,x(ỹ, x̃, t) + ψ10,t(ỹ, x̃, t) + h
(nr,≤K)
10 (ỹ, x̃, t) = 0 .

Expandingψ10 andh(nr,≤K)
10 into Fourier series, one obtains thatψ10 is given by the expression

(independent of̃u):

ψ10(ỹ, x̃, t) = ı
∑

(k,j)∈Zℓ+1\Λ, |k|+|j|≤K

ĥ
(nr,≤K)
10,kj (ỹ)

ω(ỹ) · k + j
eı(k·x̃+jt) . (22)

This function is well defined, since the zero and small divisors are controlled as follows. The
second of (19) can be inverted asỹ = y + εR(y,1)(y, x, t) for a suitable functionR(y,1) =
R(y,1)(y, x, t), provided that for̃r′0 < r0 one has (see Appendix A)

70 ε ‖ψ10,x‖r̃0,s0
1

r̃0 − r̃′0
< 1 , (23)

beingε‖R(y,1)‖r̃′0,s0 ≤ ‖ψ10,x‖r̃0,s0. Then, the divisors appearing in (22) are bounded by

|ω(ỹ) · k + j| ≥ a− εK‖R(y,1)‖r̃′0,s0‖ωy‖r0 >
a

2
, (24)

provided

ε <
a

2K‖R(y,1)‖r̃′0,s0‖ωy‖r0
. (25)
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Step 2: Dissipative transformation forN = 1.
We define the first–order dissipative transformation as

X = x̃+ α01(ỹ, x̃, t)µ

Y = ỹ + β01(ỹ, x̃, t)µ

U = ũ+ γ01(ỹ, x̃, t)µ , (26)

for unknown functionsα01, β01 andγ01. Let us start by inverting (26) as

x̃ = X − α01(Y,X, t)µ+O2(µ) = X +∆(x,1)(Y,X, t)µ

ỹ = Y − β01(Y,X, t)µ+O2(µ) = Y +∆(y,1)(Y,X, t)µ

ũ = U − γ01(Y,X, t)µ+O2(µ) = U +∆(u,1)(Y,X, t)µ (27)

for suitable functions∆(x,1), ∆(y,1) and∆(u,1) provided the following smallness conditions on
the parameters are satisfied (see Appendix A):

70 ‖α01‖r̃0,s̃0 e2s̃0 δ̃−1
0 µ < 1

70 (‖β01‖r̃0,s̃0 + ‖β01,x‖r̃0,s̃0 ‖α01‖r̃0,s̃0)
1

r̃0 −R0
µ < 1

70 (‖γ01‖r̃0,s̃0 + ‖γ01,x‖r̃0,s̃0 ‖α01‖r̃0,s̃0)
1

r̃0 −R0
µ < 1 , (28)

whereδ̃0 ≡ s̃0/2, R0 < r̃0 and being‖∆(x,1)‖r̃0,s̃0−δ̃0
≤ ‖α01‖r̃0,s̃0. Through (26) and (27) we

can expressẊ, Ẏ as a function ofX, Y ; the normal form is obtained assuming thatα01, β01
andη01 satisfy the following equations:

ω(Y )α01,x(Y,X, t) + α01,t(Y,X, t)− ωy(Y )β01(Y,X, t) + f
(nr,≤K)
01 (Y,X, t) = 0

ω(Y )β01,x(Y,X, t) + β01,t(Y,X, t)

− g
(nr,≤K)
01 (Y,X, t)− ḡ01(Y )− g

(r,≤K)
01 (Y,X, t) + η01(Y,X, t) = 0

ω(Y )γ01,x(Y,X, t) + γ01,t(Y,X, t) + σ01(Y,X, t) = 0 . (29)

Sinceαij , βij , γij have zero average and they do not contain resonant terms, thesystem of
equations (29) can be solved, provided that we chooseη01(Y,X, t) as

η01(Y,X, t) ≡ ḡ01(Y ) + g
(r,≤K)
01 (Y,X, t)

and that we setσ01 = 0 as well asγ01 = 0. SettingΩ(1)
d = ω(Y ) + εh̄10,y(Y ) + µf̄01(Y ), the

first order normal form can be written as

Ẋ = Ω
(1)
d + εh

(r,≤K)
10,y (Y,X, t) + µf

(r,≤K)
01 (Y,X, t)

+ εh
(>K)
10,y (Y,X, t) + µf

(>K)
01 (Y,X, t) + F2(Y,X, t)

Ẏ = −εh(r,≤K)
10,x (Y,X, t)− εh

(>K)
10,x (Y,X, t)− µg

(>K)
01 (Y,X, t) +G2(Y,X, t)

U̇ = −εh(r,≤K)
10,t (Y,X, t)− εh

(>K)
10,t (Y,X, t) +H2(Y,X, t) ,

13



whereF2, G2 are functions of orderO2(ε, µ) andH2 is a function of orderO2(ε). We remark
that the solution of (29) involves small divisors of the formω(Y ) · k + j with (k, j) ∈ Zℓ+1

and|k|+ |j| ≤ K. Using the same argument as in (24), the small divisors are bounded bya/4
provided that the following smallness condition holds (compare with Appendix A):

µ <
a

4K‖β01‖r̃0,s̃0‖ωy‖r0
. (30)

Step 3: Conservative transformation for the orderN .
Assume that the Lemma holds to the orderN−1. We introduce the conservative transformation
to the orderN as

x̃ = x+
N−1
∑

j=1

ψj0,y(ỹ, x, t)ε
j + ψN0,y(ỹ, x, t)ε

N ≡ x+ ψ(N)
y (ỹ, x, t)

y = ỹ +
N−1
∑

j=1

ψj0,x(ỹ, x, t)ε
j + ψN0,x(ỹ, x, t)ε

N ≡ ỹ + ψ(N)
x (ỹ, x, t)

u = ũ+

N−1
∑

j=1

ψj0,t(ỹ, x, t)ε
j + ψN0,t(ỹ, x, t)ε

N ≡ ũ+ ψ
(N)
t (ỹ, x, t) , (31)

where for1 ≤ j ≤ N − 1 the functionsψj0(ỹ, x, t) are assumed to be known. We can invert
(31) as

x = x(ỹ, x̃, t)

= x̃+

N
∑

j=1

Γ
(x)
j0 (ỹ, x̃, t)ε

j − ψN0,y(ỹ, x̃, t)ε
N +ON+1(ε) ≡ x̃+ Γ(x,N)(ỹ, x̃, t)

y = y(ỹ, x̃, t)

= ỹ +
N
∑

j=1

Γ
(y)
j0 (ỹ, x̃, t)ε

j + ψN0,x(ỹ, x̃, t)ε
N +ON+1(ε) ≡ ỹ + Γ(y,N)(ỹ, x̃, t)

u = u(ỹ, x̃, t)

= ũ+
N
∑

j=1

Γ
(u)
j0 (ỹ, x̃, t)ε

j + ψN0,t(ỹ, x̃, t)ε
N +ON+1(ε) ≡ ũ+ Γ(u,N)(ỹ, x̃, t) , (32)

provided that (see Appendix A), choosingr̃0 < r0, δ0 < s0:

70‖ψ(N)
y ‖r̃0,s0 e2s0δ−1

0 < 1 , (33)
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beingΓ(x)
j0 , Γ(y)

j0 , Γ(u)
j0 , 1 ≤ j ≤ N , known functions. We proceed to computeẋ, ẏ, u̇ as a

function ofx̃, ỹ, t and after expanding in Taylor series, we obtain

ẋ = ω(ỹ) + ωy(ỹ)ψN0,x(ỹ, x̃, t)ε
N + F (1,≤K,≤N)(ỹ, x̃, t) +O>K

N+1

ẏ = G(1,≤K,N)(ỹ, x̃, t) + µ
(

ηN−1,1(ỹ, x̃, t)ε
N−1 + ...+ η0,N (ỹ, x̃, t)µ

N−1
)

+O>K
N+1

u̇ = H(1,≤K,N)(ỹ, x̃, t) + µ
(

σN−1,1(ỹ, x̃, t)ε
N−1 + ...+ σ0,N (ỹ, x̃, t)µ

N−1
)

+O>K
N+1 ,(34)

whereO>K
N+1 is a compact notation to denote terms of orderON+1(ε, µ) and/or containing

Fourier components greater thanK; the functionsF (1,≤K,≤N),G(1,≤K,N),H(1,≤K,N) are known,
contain Fourier components up to the orderK, contain orders inε andµ up to the orderN and
they are at most linear inµ. Using (31), (34) and the inductive hypothesis, the conservative
normal form at the orderN is obtained once the functionψN0 satisfies the equations

ωy(ỹ)ψN0,x(ỹ, x̃, t) + ω(ỹ)ψN0,yx(ỹ, x̃, t) + ψN0,yt(ỹ, x̃, t) + F
(2,nr,≤K,≤N)
N0 (ỹ, x̃, t) = 0

ω(ỹ)ψN0,xx(ỹ, x̃, t) + ψN0,xt(ỹ, x̃, t)−G
(2,nr,≤K,≤N)
N0 (ỹ, x̃, t) = 0

ω(ỹ)ψN0,tx(ỹ, x̃, t) + ψN0,tt(ỹ, x̃, t)−H
(2,nr,≤K,≤N)
N0 (ỹ, x̃, t) = 0 ,

(35)

whereF (2,nr,≤K,≤N)
N0 , G(2,nr,≤K,≤N)

N0 , H(2,nr,≤K,≤N)
N0 are the non–resonant parts of known func-

tionsF (2,≤K,≤N),G(2,≤K,≤N) H(2,≤K,≤N) that we decompose as

F (2,≤K,≤N)(ỹ, x̃, t) ≡
N
∑

j=1

F̄
(2,≤N)
j0 (ỹ)εj +

N
∑

j=1

F
(2,nr,≤K,≤N)
j0 (ỹ, x̃, t)εj

+
N
∑

j=1

F
(2,r,≤K,≤N)
j0 (ỹ, x̃, t)εj + µ

N−1
∑

j=0

F
(2,≤K,≤N)
j1 (ỹ, x̃, t)εj (36)

(and similar for the remaining functions). From the Hamiltonian structure it can be easily
recognized thatF (2,nr,≤K,≤N)

N0 , G(2,nr,≤K,≤N)
N0 , H(2,nr,≤K,≤N)

N0 are, respectively, the derivatives
with respect toy, x, t of the same function, so that equations (35) uniquely define the solution
ψN0(ỹ, x̃, t). We are finally led to the following conservative normal form:

˙̃x = Ω(N)
c (ỹ; ε) +

N
∑

j=1

F
(2,r,≤K,≤N)
j0 (ỹ, x̃, t)εj + µ

N−1
∑

j=0

F
(2,≤K,≤N)
j1 (ỹ, x̃, t)εj +O>K

N+1

˙̃y =
N
∑

j=1

G
(2,r,≤K,≤N)
j0 (ỹ, x̃, t)εj + µ

N−1
∑

j=0

G
(2,≤K,≤N)
j1 (ỹ, x̃, t)εj +O>K

N+1

˙̃u =

N
∑

j=1

H
(2,r,≤K,≤N)
j0 (ỹ, x̃, t)εj + µ

N−1
∑

j=0

H
(2,≤K,≤N)
j1 (ỹ, x̃, t)εj +O>K

N+1 , (37)
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where

Ω(N)
c (ỹ; ε) ≡ ω(ỹ) +

N
∑

j=1

F̄
(2,N)
j0 (ỹ)εj ,

which implies that‖Ω(N)
c − ω‖ ≤ Ccε for a suitable constantCc. The normal form equations

can be solved, provided that the small divisors taking the expressionω(ỹ) · k + j, for k ∈ Zℓ,
j ∈ Z with |k| + |j| ≤ K, are controlled by a non–resonance condition, which is guaranteed
whenever (see Appendix A)

ε ≤ a

2K‖R(y,N)‖r̃′0,s0‖ωy‖r0
, (38)

whereR(y,N) is the function inverting the transformation, namelyỹ = y+εR(y,N)(y, x, t), and
r̃′0 < r̃0. The inversion can be performed provided (see Appendix A)

70 ‖ψ(N)
x ‖r̃0,s0

1

r0 − r̃′0
< 1 (39)

with ‖R(y,N)‖r̃′0,s0 ≤ ‖ψ(N)
x ‖r̃0,s0.

Step 4: Dissipative transformation for the orderN .
We consider the transformation (12) at the orderN , which can be inverted as

x̃ = x̃(Y,X, t)

= X +

N−2
∑

i=0

N−1−i
∑

j=1

aij(Y,X, t)ε
iµj −

N−1
∑

i=0

αi,N−i(Y,X, t)ε
iµN−i +ON+1(ε, µ)

ỹ = ỹ(Y,X, t)

= Y +

N−2
∑

i=0

N−1−i
∑

j=1

bij(Y,X, t)ε
iµj −

N−1
∑

i=0

βi,N−i(Y,X, t)ε
iµN−i +ON+1(ε, µ)

ũ = ũ(Y,X, t)

= U +

N−2
∑

i=0

N−1−i
∑

j=1

cij(Y,X, t)ε
iµj −

N−1
∑

i=0

γi,N−i(Y,X, t)ε
iµN−i +ON+1(ε, µ) , (40)

for suitable known functionsaij(Y,X, t), bij(Y,X, t), cij(Y,X, t), provided that the parame-
ters satisfy (see Appendix A):

70‖α(N)‖r̃0,s̃0 e2s̃0 δ̃−1
0 < 1

70
(

‖β(N)‖r̃0,s̃0 + ‖β(N)
x ‖r̃0,s̃0‖α(N)‖r̃0,s̃0

) 1

r̃0 − R0

< 1

70
(

‖γ(N)‖r̃0,s̃0 + ‖γ(N)
x ‖r̃0,s̃0‖α(N)‖r̃0,s̃0

) 1

r̃0 − R0

< 1 , (41)
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whereδ̃0 ≡ s̃0/2, R0 < r̃0. In order to determine the unknown functionsα0,N , ..., αN−1,1,
β0,N , ...,βN−1,1, γ0,N , ...,γN−1,1, ηN−1,0, ...,η0,N−1, σN−1,0, ...,σ0,N−1, using (37) and (40) we
expresṡ̃x, ˙̃y in terms ofX, Y and we computėX, Ẏ using (12), (37), (40) as

Ẋ = ω(Y )− ωy(Y )

(

N−1
∑

i=0

βi,N−i(Y,X, t)ε
iµN−i

)

+ ω(Y )
N−1
∑

i=0

αi,N−i,x(Y,X, t)ε
iµN−i

+
N−1
∑

i=0

αi,N−i,t(Y,X, t)ε
iµN−i + F (3,nr,≤K,N)(Y,X, t) + F̄ (3,≤N)(Y )

+ F (3,r,≤K,≤N)(Y,X, t) +O>K
N+1

Ẏ = µ
(

ηN−1,1(Y,X, t)ε
N−1 + ... + η0,N(Y,X, t)µ

N−1
)

+ ω(Y )
N−1
∑

i=0

βi,N−i,x(Y,X, t)ε
iµN−i

+

N−1
∑

i=0

βi,N−i,t(Y,X, t)ε
iµN−i +G(3,nr,≤K,N)(Y,X, t) + Ḡ(3,N)(Y )

+
N
∑

i=1

G
(3,r,≤K,≤N)
i0 (Y,X, t)εi +G(3,r,≤K,N)(Y,X, t) +O>K

N+1

U̇ = µ
(

σN−1,1(Y,X, t)ε
N−1 + ... + σ0,N(Y,X, t)µ

N−1
)

+ ω(Y )

N−1
∑

i=0

γi,N−i,x(Y,X, t)ε
iµN−i

+

N−1
∑

i=0

γi,N−i,t(Y,X, t)ε
iµN−i +H(3,nr,≤K,N)(Y,X, t) + H̄(3,N)(Y )

+
N
∑

i=1

H
(3,r,≤K,≤N)
i0 (Y,X, t)εi +H(3,r,≤K,N)(Y,X, t) +O>K

N+1 ,

whereF (3,nr,≤K,N), G(3,nr,≤K,N), H(3,nr,≤K,N) denote known non–resonant functions that we
can expand as

F (3,nr,≤K,N)(Y,X, t) =

N−1
∑

i=0

F
(3,nr,≤K,N)
i,N−1 (Y,X, t)εiµN−i

and similarly forG(3,nr,≤K,N),H(3,nr,≤K,N); F (3,r,≤K,≤N),G(3,r,≤K,N),H(3,r,≤K,N) denote known
resonant functions;̄F (3,≤N), Ḡ(3,N), H̄(3,N) denote the average terms. Recall that due to the in-
ductive hypothesis, the functionsαij, βij , γij, ηij, σij , determine a normal form up to the order
εiµj with 0 ≤ i + j ≤ N − 1. The normal form at the orderN is obtained by imposing that
αij, βij , γij, ηij, σij satisfy the normal form equations

−ωy(Y )βi,N−i(Y,X, t) + ω(Y )αi,N−i,x(Y,X, t) + αi,N−i,t(Y,X, t)
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+F
(3,nr,≤K,N)
i,N−i (Y,X, t) = 0

ω(Y )βi,N−i,x(Y,X, t) + βi,N−i,t(Y,X, t) +G
(3,nr,≤K,N)
i,N−i (Y,X, t) +G

(3,r,≤K,≤N)
i,N−i (Y,X, t)

+Ḡ
(3,N)
i,N−i(Y ) + ηi,N−i(Y,X, t) = 0

ω(Y )γi,N−i,x(Y,X, t) + γi,N−i,t(Y,X, t) +H
(3,nr,≤K,N)
i,N−i (Y,X, t) +H

(3,r,≤K,≤N)
i,N−i (Y,X, t)

+H̄
(3,N)
i,N−i(Y ) + σi,N−i(Y,X, t) = 0 (42)

for 0 ≤ i ≤ N − 1. Equations (42) can be solved providedω(Y ) satisfies a non–resonance
condition, which is guaranteed by (see Appendix A)

4K‖ωy‖r0‖ β(N)‖r̃0,s̃0 < a , (43)

where we intend thatY ≡ ỹ + β(N)(ỹ, x̃, t; ε, µ). From the second and third of (42), we get

ηi,N−i(Y,X, t) ≡ Ḡ
(3,N)
i,N−i(Y ) +G

(3,r,≤K,N)
i,N−i (Y,X, t)εiµN−i

σi,N−i(Y,X, t) ≡ H̄
(3,N)
i,N−i(Y ) +H

(3,r,≤K,N)
i,N−i (Y,X, t)εiµN−i .

Setting

Ω
(N)
d (Y ; ε, µ) ≡ ω(Y ) +

N
∑

i=1

Ωi0(Y )ε
i +

N
∑

j=1

N−j
∑

i=0

Ωij(Y )ε
iµj , (44)

with Ωi0 ≡ F̄
(3,≤N)
i0 (Y ) andΩi,N−i ≡ F̄

(3,≤N)
i,N−i (Y ), the normal form is finally given by

Ẋ = Ω
(N)
d (Y ; ε, µ) +

N
∑

i=1

F
(3,r,≤K,≤N)
i0 (Y,X, t)εi +

N
∑

j=1

N−j
∑

i=0

F
(3,r,≤K,≤N)
ij (Y,X, t)εiµj

+ FN+1(Y,X, t) + F (>K)(Y,X, t)

Ẏ =
N
∑

i=1

G
(3,r,≤K,≤N)
i0 (Y,X, t)εi +GN+1(Y,X, t) +G(>K)(Y,X, t)

U̇ =

N
∑

i=1

H
(3,r,≤K,≤N)
i0 (Y,X, t)εi +HN+1(Y,X, t) +H(>K)(Y,X, t) , (45)

whereFN+1, GN+1 areON+1(ε, µ), HN+1 is orderON+1(ε) andF (>K), G(>K), H(>K) con-
tain only terms with Fourier index greater thanK. The normal form (8) is recovered with an
obvious identification of the functionsF (r,≤K),G(r,≤K),H(r,≤K). The smallness requirements
on ε, µ, sayε ≤ ε0, µ ≤ µ0, are needed to guarantee the non–resonance condition (see (25),
(30), (38), (43)) and the inversion of the transformations (see (20), (23), (28), (33), (39), (41)).
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The estimate (14) holds true, due to the definition ofΩ
(N)
d in (44). The estimate (15) follows

from the fact that (9) is close to the identity up to first order.

Due to the exponential decay of the Fourier coefficients (compare with Lemma B.1 of Ap-
pendix B), we can boundG(>K) for someτ0 > 0 as

‖G(>K)‖R0,S0
≤ C̃Gλe

−Kτ0 (46)

for a suitable constant̃CG. On the other hand we can boundGN+1 in (45) as

‖GN+1‖R0,S0
≤ CGλ

N+1 , (47)

for a suitable constantCG. Finally, from the second of (45) we obtain:

‖
N
∑

i=1

G
(3,r,≤K,≤N)
i0 (Y,X, t)εj‖R0,S0

+ ‖GN+1‖R0,S0
+ ‖G(>K)‖R0,S0

≤ λ G+ λN+1CG + λC̃Ge
−Kτ0 ,

having definedλG as an upper bound ofsupε≤ε0
‖
∑N

i=1G
(3,r,≤K,≤N)
i0 (Y,X, t)εi‖R0,S0

. Choos-
ing N = [Kτ0/| log λ|], we obtain (16) and (17) withCY ≡ CG + C̃G. This concludes the
proof of the Lemma.✷

Proof of the theorem.The distance betweeny(t) and the initial conditiony(0) for t ≥ 0 can
be bounded by the sum of the following terms:

‖y(t)− y(0)‖ ≤ ‖y(t)− Y (t)‖+ ‖Y (t)− Y (0)‖+ ‖Y (0)− y(0)‖ . (48)

By the estimate (15) of the Resonant Normal Form Lemma, one obtains

‖y(t)− Y (t)‖ ≤ Cp λ , ‖y(0)− Y (0)‖ ≤ Cp λ .

By the second of (8) and by (16), one gets

‖Y (t)− Y (0)‖ ≤
∫ t

0

(

‖G(r,≤K)‖R0,S0
+ ‖GN+1‖R0,S0

+ ‖G(>K)‖R0,S0

)

ds

≤ λG t+ CY λ
N+1t ,

which indicates that the action variation takes place on linear time scales due to the term
λG t, while exponential times are associated to the termCY λ

N+1 t. We remark thatG = 0
corresponds to the absence of resonant terms in the normal form for Y . Notice that the case of
non–resonant stability estimates given in [8] is recoveredwhenever also the resonant terms in
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theX variable are zero. Let us start with the caseG = 0; for a suitableρ1 > 0 that we write
asρ1 = Cρλ for someCρ > 0, let

t ≤ Cρ

CY

eKτ0 .

Finally, settingρ0 ≡ (2Cp + Cρ) λ, we obtain the following variation of the original action
variables on exponential times:

‖y(t)− y(0)‖ ≤ ρ0 for t ≤ C0e
Kτ0 ,

having definedC0 ≡ Cρ/CY . This result is in agreement with statementi), onceG(r,≤K) is
identified with−εp(≤K)

X (compare with (18)).
Next, we study the caseG 6= 0; to this end, we compute the variation of theenergy(i.e. the
Lyapunov function, see e.g. [1]), which we intend to be defined as the energy function which
is preserved wheneverµ = 0. Let us write the normal form equations (45) using the following
compact notation as in (18):

Ẋ = ω(Y ) + εp
(≤K)
Y (Y,X, t; ε) + µs(≤K)(Y,X, t; ε, µ)

+ F (>K)(Y,X, t; ε, µ) + FN+1(Y,X, t; ε, µ)

Ẏ = −εp(≤K)
X (Y,X, t; ε) +G(>K)(Y,X, t; ε, µ) +GN+1(Y,X, t; ε, µ)

U̇ = −εp(≤K)
t (Y,X, t; ε) +H(>K)(Y,X, t; ε, µ) +HN+1(Y,X, t; ε, µ) , (49)

where we have indicated also the dependence on the parameters and we have identified the
functions as follows:

εp
(≤K)
Y (Y,X, t; ε) ≡

N
∑

i=1

Ωi0(Y )ε
i +

N
∑

i=1

F
(3,r,≤K,≤N)
i0 (Y,X, t)εi

εp
(≤K)
X (Y,X, t; ε) ≡ −

N
∑

i=1

G
(3,r,≤K,≤N)
i0 (Y,X, t)εi

εp
(≤K)
t (Y,X, t; ε) ≡ −

N
∑

i=1

H
(3,r,≤K,≤N)
i0 (Y,X, t)εi

µs(≤K)(Y,X, t; ε, µ) ≡
N
∑

j=1

N−j
∑

i=0

F
(3,r,≤K,≤N)
ij (Y,X, t)εiµj +

N
∑

j=1

N−j
∑

i=0

Ωij(Y )ε
iµj .

Forµ = 0 equations (49) reduce to

Ẋ = ω(Y ) + εp
(≤K)
Y (Y,X, t; ε) + F (>K)(Y,X, t; ε, 0) + FN+1(Y,X, t; ε, 0)

Ẏ = −εp(≤K)
X (Y,X, t; ε) +G(>K)(Y,X, t; ε, 0) +GN+1(Y,X, t; ε, 0)

U̇ = −εp(≤K)
t (Y,X, t; ε) +H(>K)(Y,X, t; ε, 0) +HN+1(Y,X, t; ε, 0) . (50)
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Due to the Hamiltonian character of the equations of motion for µ = 0, there exist vector
functionsA(>K), BN+1, such that

A
(>K)
Y = F (>K)(Y,X, t; ε, 0) , A

(>K)
X = −G(>K)(Y,X, t; ε, 0) , A

(>K)
t = −H(>K)(Y,X, t; ε, 0)

BN+1,Y = FN+1(Y,X, t; ε, 0) , BN+1,X = −GN+1(Y,X, t; ε, 0) , BN+1,t = −HN+1(Y,X, t; ε, 0) ,

so that we can recognize (50) as Hamilton’s equations associated to the following Hamiltonian
function in the extended phase space withṫ = 1:

H(Y,X, U, t) = h00(Y ) + U + εp(≤K)(Y,X, t) + A(>K)(Y,X, t) +BN+1(Y,X, t) ,

whereh00 is such that∂h00(Y )
∂Y

= ω(Y ). Let us fix the energy levelH = E for some real
constantE; taking into account the complete equations (49), we obtainthat the variation ofE
for µ 6= 0 is given by (for simplicity we omit the arguments):

dE

dt
= εµ p

(≤K)
X s(≤K) + CN+1 +D(>K) , (51)

with

CN+1 ≡ ω(Y )GN+1 + εp
(≤K)
Y GN+1 + εp

(≤K)
X FN+1

+ (A
(>K)
Y +BN+1,Y )GN+1 +BN+1,Y (−εp(≤K)

X +G(>K))

+ (A
(>K)
X +BN+1,X)FN+1 +BN+1,X(ω + εp

(≤K)
Y + µs(≤K) + F (>K)) +HN+1 +BN+1,t

D(>K) ≡ ω(Y )G(>K) + εp
(≤K)
Y G(>K) + εp

(≤K)
X F (>K) +H(>K)

− εp
(≤K)
X A

(>K)
Y + A

(>K)
Y G(>K) + ωA

(>K)
X + εp

(≤K)
Y A

(>K)
X

+ µs(≤K)A
(>K)
X + A

(>K)
X F (>K) + A

(>K)
t ,

where now the functionsFN+1,GN+1,HN+1, F (>K),G(>K),H(>K) depend on(Y,X, t; ε, µ).
Denoting by∆E ≡ E(t)− E(0), we obtain

|∆E| ≥ |∆h00 +∆U | −
(

ε‖∆p(≤K)‖R0,S0
+ ‖∆A(>K)‖R0,S0

+ ‖∆BN+1‖R0,S0

)

,

where∆h00 + ∆U ≡ h00(Y (t)) − h00(Y (0)) + U(t) − U(0) and similarly for the other
quantities. Recalling (51) and settingh0 ≡ h00 + U , we get

|∆h0| ≤ |∆E|+ ε‖∆p(≤K)‖R0,S0
+ ‖∆A(>K)‖R0,S0

+ ‖∆BN+1‖R0,S0
,

where

|∆E| ≤ |dE
dt

| t ≤
(

εµ‖p(≤K)
X ‖R0,S0

‖s(≤K)‖R0,S0
+ ‖CN+1‖R0,S0

+ ‖D(>K)‖R0,S0

)

t .
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We denote bym an upper bound on the Hessian ofh00(y) and letm̃ be an upper bound of the
Hessian in the normalized variables, which we can define asm̃ ≡ m+‖∂3h00

∂y3
‖r0 ‖D(y,N)‖r0,s0,

having expressed the link between new and old variables asY = y+D(y,N)(y, x, t). Then, we
have:

sup
Y ∈Cr0

(A)

‖∂
2h00(Y )

∂Y 2
‖ ≤ m̃ .

Assume that the frequencyωe(y) ≡ (ω(y), 1) is close to exactΛ–resonances (compare with
[22]) by a quantityδ > 0, namely ifRΛ ≡ {Ω ∈ Rℓ+1 : Ω · n = 0 for all n ∈ Λ}, then
minΩ∈RΛ

‖ωe(y) − Ω‖ ≤ δ. SettingZ ≡ (Y, U), assume that|Z(t) − Z(0)| ≤ r for some
r > 0 with δ + m̃r ≤ R0. Let ΠΛ be the orthogonal projection onΛ; by the mean value
theorem we obtain

|ωe · ΠΛ∆Z| ≤ ‖ΠΛωe‖R0
‖P∆Z‖ ≤ (δ + m̃r) ‖∆Z‖

|ωe · (Id.−ΠΛ)∆Z| ≤ t ‖ωe‖R0

(

‖G(>K)‖R0,S0
+ ‖GN+1‖R0,S0

+ ‖H(>K)‖R0,S0
+ ‖HN+1‖R0,S0

)

.

Moreover:

∆h0 = ωe ·∆Z +

∫ 1

0

(1− s)
∂2h0(Z(s))

∂Z2
∆Z ·∆Z ds ,

so that, in the region where theM–convexity (2) holds, one has

M̃

2
‖∆Z‖2 ≤ |ωe ·∆Z|+ |∆h0| ,

where (similarly tom̃) we can setM̃ ≡ M − ‖∂3h00

∂y3
‖r0 ‖D(y,N)(y, x, t)‖r0,s0, so that one has

∂2h0(Z)

∂Z2
v · v ≥ M̃‖v‖2 , ∀v ∈ R

ℓ+1 .

Finally, we have

M̃

2
‖∆Z‖2 ≤ (δ + m̃r)‖∆Z‖+ t‖ωe‖R0

(

‖G(>K)‖R0,S0
+ ‖GN+1‖R0,S0

+ ‖H(>K)‖R0,S0
+ ‖HN+1‖R0,S0

)

+ εµ‖p(≤K)
X ‖R0,S0

‖s(≤K)‖R0,S0
t + ‖CN+1‖R0,S0

t

+ ‖D(>K)‖R0,S0
t + ε‖∆p(≤K)‖R0,S0

+ ‖∆A(>K)‖R0,S0
+ ‖∆BN+1‖R0,S0

,

which gives a bound on the norm of∆Z. Notice that‖G(>K)‖, ‖H(>K)‖ and‖∆A(>K)‖ are
of order ofe−Kτ0 , namely of orderλN once we setN such thatN = [Kτ0/| log λ|]. We finally
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define the constantsC1, C2, C3, C4 such that

‖ωe‖R0

(

‖G(>K)‖R0,S0
+ ‖GN+1‖R0,S0

+ ‖H(>K)‖R0,S0
+ ‖HN+1‖R0,S0

)

+‖CN+1‖R0,S0
+ ‖D(>K)‖R0,S0

≤ C1λ
N

‖p(≤K)
X ‖R0,S0

‖s(≤K)‖R0,S0
≤ C2

‖∆p(≤K)‖R0,S0
≤ C3

‖∆A(>K)‖R0,S0
+ ‖∆BN+1‖R0,S0

≤ C4λ
N . (52)

With this setting we obtain:

M̃

2
‖∆Z‖2 ≤ (δ + m̃r)‖∆Z‖+ C1 λ

N t + C2 εµ t+ C3 ε+ C4 λ
N .

Based on the above formula and on‖∆Y ‖ ≤ ‖∆Z‖, we can draw the following conclusions:

1. for someρ1 > 0, ‖∆Y ‖ ≤ ρ1 for t of the order ofλ−N if
C2 = 0, namely if ‖p(≤K)

X ‖R0,S0
‖s(≤K)‖R0,S0

= 0, i.e. either‖p(≤K)
X ‖R0,S0

= 0 or
‖s(≤K)‖R0,S0

= 0;

2. for someρ2 > 0, ‖∆Y ‖ ≤ ρ2 for t of the order of the minimum betweenλ−N and
(εµ)−1 if C2 6= 0, i.e.‖p(≤K)

x ‖R0,S0
‖s(≤K)‖R0,S0

6= 0.

The two cases correspond to itemsi), ii) of the statement of the Theorem. More precisely, let
us start with the caseC2 = 0, i.e. p(≤K)

X = 0 or s(≤K) = 0. Assuming thatδ + m̃r < αM̃r,
C3ε+C4λ

N < βM̃r2, t < 1
C1λN γM̃r2 with C1 > 0, for some positive constantsα, β, γ, under

the assumption that‖∆Z‖ ≤ r for somer > 0, we obtain

M̃

2
‖∆Z‖2 < (α + β + γ)M̃r2 ,

namely
‖∆Y ‖ ≤ ‖∆Z‖ <

√

2(α+ β + γ) r ≡ ρ1 (53)

with ρ1 ≤ R0. Taking into account (48) and (15), one obtains itemi) of the Theorem, namely

‖y(t)− y(0)‖ ≤ 2Cp λ+ ρ1 for t ≤ T1 ≡ C0 e
Kτ0 (54)

with C0 ≡ (γM̃r2)/C1.
Concerning itemii), sinceC2 6= 0 letσ > 0 be such that fort < min( 1

C1λN γM̃r2, 1
C2εµ

σM̃r2),
one has

M̃

2
‖∆Z‖2 < (α + β + γ + σ)M̃r2 ,
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namely
‖∆Y ‖ ≤ ‖∆Z‖ <

√

2(α + β + γ + σ) r ≡ ρ2 , (55)

with ρ2 ≤ R0. According to (48) and (15), we obtain that

‖y(t)− y(0)‖ ≤ 2Cp λ+ ρ2 for t ≤ T2 ≡ min(
C0

λN
,
C ′

0

εµ
) (56)

with C0 ≡ (γM̃r2)/C1, C ′
0 ≡ (σM̃r2)/C2.

When theM–convexity condition is violated (i.e. the second condition in (2)), by the assump-
tion of quasi–convexity the first inequality in (2) must hold. LetT be eitherT1 or T2 as in (54),
(56) with‖ωe‖R0

replaced by
Cω ≡ sup

‖Y−Y0‖≤ρ

‖ωe(Y )‖

with ρ beingρ1 or ρ2 as in (53), (55). Repeating the same argument as in [22], we assume that
there exists an escape timeTe such that‖∆Z‖ = ρ and we show that this implies the inequality

|ωe(Y (s)) ·∆Z| ≤ L ‖∆Z‖ ∀ 0 ≤ s ≤ 1 .

Then, using the same argument as for the convex case, we conclude that‖∆Z‖ < ρ, thus
providing a contradiction. As before we have:

|ωe(Y (s)) · P∆Z| ≤ (δ + m̃r) ‖∆Z‖
|ωe(Y (s)) · (Id.− P )∆Z| ≤ C1λ

N T .

Then, we have
|ωe(Y (s)) ·∆Z| ≤ (δ + m̃r) ‖∆Z‖+ C1λ

N T .

If T = T1, ρ = ρ1, we obtain

|ωe(Y (s)) ·∆Z| ≤ (δ + m̃r) ‖∆Z‖+ C1λ
N T1

< αM̃rρ1 + γM̃r2

= (
α

√

2(α+ β + γ)
+

γ

2(α + β + γ)
)M̃ρ21

≤ L‖∆Z‖ ,

if

ρ1 ≤
L

( α√
2(α+β+γ)

+ γ

2(α+β+γ)
)M̃

.

If T = T2, ρ = ρ2, assume thatT = (σM̃r2)/(C2εµ) (otherwise we recover the caseT = T1).
Then,

|ωe(Y (s)) ·∆Z| ≤ (δ + m̃r) ‖∆Z‖+ C1λ
N σM̃r2

C2εµ
.
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Being
C1λ

N

C2εµ
≤ γ

σ
,

we obtain:

|ωe(Y (s)) ·∆Z| < (δ + m̃r) ‖∆Z‖+ γ

σ
σM̃r2

< αM̃r‖∆Z‖+ γM̃r2

= (
α

√

2(α+ β + γ + σ)
+

γ

2(α + β + γ + σ)
)M̃ρ22

≤ L‖∆Z‖ ,
which is satisfied if the following condition holds:

ρ2 ≤
L

( α√
2(α+β+γ+σ)

+ γ

2(α+β+γ+σ)
)M̃

.

✷

Remark 5. Since we do not claim the result for anyy0 ∈ A, but only locally under the
conditions (4) and (5), we do not need to cover the whole phasespace and therefore we do not
need the analysis of the geography of the resonances, as it isusually done (see, e.g., [22]).

4 Applications of the normal forms

As we have seen in the Theorem, the stability time depends on the expressions of the terms
p
(≤K)
X ands(≤K) appearing in the normal form equations, which represent, respectively, the

conservative resonant part of the action variables and the dissipative resonant part pertaining
to the angles, including the contribution of the modified frequency. In this Section we analyze
several different examples, which well represent all possible situations which can be obtained
with different choices ofp(≤K)

X ands(≤K). We illustrate these models with a twofold goal: to
provide examples of casesi) andii) of the Theorem and to illustrate an explicit evaluation of
the resonant normal form. Since we do not aim to obtain stability estimates, we limit ourselves
to the computation of the normal form in the non–extended phase space, i.e. in the variables
x andy only. The experiments performed in this Section will be validated by the theoretical
results of Section 5, where the estimates of the Theorem willbe applied, showing linear as
well as exponential stability times.

All examples considered in the forthcoming Sections 4.1–4.4 will have the following simple
form:

ẋ = y + µ f01(x, t)
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ẏ = −εh10,x(x, t)− µ(y − η) ,

wheref01 andh10 are periodic functions. In this case it is easy to decide which of the conditions
i) or ii) of the Theorem are satisfied. Since we shall not need to consider Fourier modes less or
equal, or greater thanK, we drop the superscript by writingpX , pY , s in place ofp(≤K)

X , p(≤K)
Y ,

s(≤K). Then, we can state thatpX = 0 whenever the resonant part ofh10,x is zero, otherwise
pX is different from zero. Concerning the functions, we can state that if the resonant part of
f01 is not zero as well as if products of the form(f01)m(h10,x)n with 0 < m+n ≤ N generate
resonant terms or zero average terms of orderµ, then the functions is different from zero.
If the products(f01)m(h10,x)n with 0 < m + n ≤ N do not generate resonant terms or zero
average terms of orderµ, thens = 0 up to the orderN .

4.1 Linear stability: casepX 6= 0, s 6= 0

We consider the one–dimensional, time–dependent vector field given by

ẋ = y − µ(sin(x− t) + sin(x))

ẏ = −ε(sin(x− t) + sin(x))− µ(y − η) . (57)

Following the calculations of the proof of the Resonant Normal Form Lemma, the conservative
transformation up to second order is defined by

ψ10(ỹ, x̃, t) =
sin(x̃)

ỹ

ψ20(ỹ, x̃, t) =
sin(2x̃− t)

2ỹ2(2ỹ − 1)
− sin(t)

2ỹ2
− sin(2x̃)

8ỹ3
,

while the dissipative contribution is given by

β01(Y,X, t) = 0

α01(Y,X, t) = −cos(X)

Y

β11(Y,X, t) = −sin(2X)

4Y 2
+

sin(t)

Y

α11(Y,X, t) = − cos(2X − t)

2Y 2(2Y − 1)
− (2Y + 1) cos(t)

2Y 2
+

cos(2X)

8Y 3

β02(Y,X, t) = 0

α02(Y,X, t) =
sin(t)

Y
+

sin(2X)

4Y 2
.
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By choosing

η(Y ) = Y +
ε

2Y
+O3(ε, µ) ,

the normal form equations become

Ẋ = Y − ε2

2Y 3
− µ2

2Y
− µ sin(X − t) +O3(ε, µ)

Ẏ = −ε sin(X − t) +O3(ε, µ) ,

where we recognize thatpX(Y,X, t) = sin(X − t), pY (Y,X, t) = −ε/(2Y 3), s(Y,X, t) =
− sin(X − t)− µ

2Y
. The Hamiltonian function in the extended phase space withU conjugated

to time, associated to the normalized equations forµ = 0, is given by

H(Y,X, U, t) =
Y 2

2
+ U +

ε2

4Y 2
− ε cos(X − t) +O3(ε, µ) .

Replacing the normalized equations into the total derivative ofH, one gets

dH(Y,X, U, t)

dt
= −1

2
µε
(

1− cos(2X − 2t)
)

+O3(ε, µ) . (58)

A typical orbit is shown in Figure 1, where we integrate the normal form equations forε =
10−3 andµ = 10−3 with initial conditionsX(0) = 0 andY (0) = 1 + 6

√
ε. The left panel

of Figure 1 shows the lift of(X, Y ) to the universal coverage, while the middle panel shows
the orbit back–transformed to the old variables(x, y). The dynamics starts on a rotational
regime and drifts downwards; then it spirals along librational invariant curves until reaching the
attractor. The right panel of Figure 1 provides the variation of the derivative of the normal form
Hamiltonian, which tends to zero as the orbit reaches the attractor. The behavior is justified by
(58) as the resonance is approached.
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Figure 1: CasepX 6= 0, s 6= 0 associated to (57) forε = 10−3, µ = 10−3 and for the initial
conditionsX(0) = 0, Y (0) = 1+6

√
ε. Left: the lift of the normal form variables(X, Y ) to the

universal coverage. Middle: the trajectory in the originalvariables(x, y). Right: the variation
of the derivative of the normalized Hamiltonian.
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4.2 Linear stability at higher orders: casepX 6= 0, s 6= 0

We consider the vector field

ẋ = y − µ sin(x)

ẏ = −ε(sin(x− t) + sin(x))− µ(y − η) . (59)

The conservative normal form is defined by

ψ10(ỹ, x̃, t) =
sin(x̃)

ỹ

ψ20(ỹ, x̃, t) =
sin(2x̃− t)

2ỹ2(2ỹ − 1)
− sin(t)

2ỹ2
− sin(2x̃)

8ỹ3
.

The dissipative transformation becomes:

β01(Y,X, t) = 0

α01(Y,X, t) = −cos(X)

Y

β11(Y,X, t) =
sin(2X − t)

2Y (2Y − 1)
+

sin(t)

2Y
− sin(2X)

4Y 2

α11(Y,X, t) =
(1− 3Y ) cos(2X − t)

2Y 2(2Y − 1)2
+

(1− Y ) cos(t)

2Y 2
+

cos(2X)

8Y 3

β02(Y,X, t) = 0

α02(Y,X, t) =
sin(2X)

4Y 2
.

Higher normal form terms associated to (59) can be obtained in a similar way. For this model
resonant terms occur at higher orders; for this reason we provide the following third order
normal form equations:

Ẋ = Y − ε2

2Y 3
− µ2

2Y
+
ε3(2− 5Y ) cos(X − t)

2(1− 2Y )2Y 5
− ε2µ (6Y 2 + 2Y − 1) sin(X − t)

2(1− 2Y )2Y 3

+
1

2
εµ2

(

1

Y 2
− 2Y

(1− 2Y )2

)

cos(X − t) +O4(ε, µ)

Ẏ = −ε sin(X − t) +
ε3 sin(X − t)

8Y 5 − 4Y 4
+O4(ε, µ) .

Theη is the same as in the previous Section, the Hamiltonian associated to the normal form in
the extended phase space is given by

H(Y,X, U, t) =
Y 2

2
+ U +

ε2

4Y 2
− ε cos(X − t) +

ε3 cos(X − t)

4Y 4(2Y − 1)
+ O4(ε, µ) ,
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while the derivative of the Hamiltonian becomes

dH(Y,X, U, t)

dt
= −εµ

2 sin(X − t)

2Y
+O4(ε, µ) .

The normal form produces a resonant term at third order. As a consequence, we observe a drift
of the action variables, but on longer time scales.
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Figure 2: CasepX 6= 0, s 6= 0 associated to (59) forε = 10−3, µ = 10−3 and for the initial
conditionsX(0) = 0, Y (0) = 1+6

√
ε. Left: the lift of the normal form variables(X, Y ) to the

universal coverage. Middle: the trajectory in the originalvariables(x, y). Right: the variation
of the derivative of the normalized Hamiltonian.

4.3 Exponential stability: casepX = 0, s 6= 0

We consider an example for which the normal form equations providepX = 0, buts 6= 0. To
this end, we modify the conservative part, so that the actions do not contain a resonant term at
first order:

ẋ = y − µ(sin(x− t) + sin(x))

ẏ = −ε(sin(x− 6t) + sin(x))− µ(y − η) . (60)

The conservative transformation to second order is given by

ψ10(ỹ, x̃, t) =
sin(x̃− 6t)

ỹ − 6
+

sin(x̃)

ỹ

ψ20(ỹ, x̃, t) = −sin(2x̃)

8ỹ3
− sin(2x̃− 6t)

4ỹ3 − 36ỹ2 + 72ỹ
− sin(2x̃− 12t)

8(ỹ − 6)3
+

sin(6t)

72ỹ − 12ỹ2
.

The dissipative transformation to second order takes the form

β01(Y,X, t) = 0

α01(Y,X, t) = −cos(X)

Y
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β11(Y,X, t) = − sin(2X − 7t)

4Y 2 − 38Y + 84
− sin(2X − 6t)

4Y 2 − 36Y + 72
− sin(2X)

4Y 2

+
sin(2X − t)

2Y − 4Y 2
+

sin(t)

2Y
+

sin(5t)

10(Y − 6)
+

sin(6t)

12(Y − 6)

α11(Y,X, t) =
cos(2X)

8Y 3
+

cos(2X − 7t)

2(7− 2Y )2(Y − 6)
+

cos(2X − 6t)

8(Y − 6)(Y − 3)2

+
cos(2X − t)

2(1− 2Y )2Y
− (Y + 2) cos(t)

2Y 2
− (Y − 16) cos(5t)

50(Y − 6)2
− (Y − 18) cos(6t)

72(Y − 6)2

β02(Y,X, t) = 0

α02(Y,X, t) =
sin(2X)

4Y 2
+

sin(t)

Y
.

The resulting normal form up to second order becomes

Ẋ = Y − ε2

2(Y − 6)3
− ε2

2Y 3
− µ2

2Y
− µ sin(X − t) +O3(ε, µ)

Ẏ = O3(ε, µ) ,

whereas the drift function is given by

η(Y ) = Y +
ε

2Y
+O3(ε, µ) .

The Hamiltonian function in normalized variables corresponding toµ = 0 in the extended
phase space turns out to be

H(Y,X, U, t) =
Y 2

2
+ T +

(Y 2 − 6Y + 18) ε2

2(Y − 6)2Y 2
+O3(ε, µ) ;

the time derivative of the Hamiltonian under the dissipative flow becomes

dH(Y,X, U, t)

dt
= O3(ε, µ) ,

which shows the preservation of the energy up to the third order. Figure 3 displays the behavior
of the lift of (X, Y ) to the universal covering, the plot in the original variables and the graph of
the derivative of the Hamiltonian versus time. The result shows that the dynamics takes place
on an adiabatic quasi–periodic solution, which is consistent with the theoretical expectation.

4.4 Exponential stability: casepX 6= 0, s = 0

As an example which generates a normal form withpX 6= 0, s = 0, we consider the differential
equations

ẋ = y − µ sin(6t)

ẏ = −ε(sin(x− t) + sin(x))− µ(y − η) . (61)
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Figure 3: CasepX = 0, s 6= 0 associated to (60) forε = 10−3, µ = 10−3 and for the initial
conditionsX(0) = 0, Y (0) = 1+6

√
ε. Left: the lift of the normal form variables(X, Y ) to the

universal coverage. Middle: the trajectory in the originalvariables(x, y). Right: the variation
of the derivative of the normalized Hamiltonian.

The conservative transformation is given by

ψ10(ỹ, x̃, t) =
sin(x̃)

ỹ

ψ20(ỹ, x̃, t) = −sin(2x̃)

8ỹ3
− sin(2x̃− t)

2ỹ2 − 4ỹ3
− sin(t)

2ỹ2
,

while the dissipative transformation takes the form

β01(Y,X, t) = 0

α01(Y,X, t) = −1

6
cos(6t)

β11(Y,X, t) = −sin(X − 6t)

12Y − 2Y 2
− sin(X − 7t)

84− 12Y
+

sin(X + 5t)

12Y + 60
− sin(X + 6t)

2Y (Y + 6)

α11(Y,X, t) =
(3− Y ) cos(X − 6t)

(Y − 6)2Y 2
+

(Y + 3) cos(X + 6t)

Y 2(Y + 6)2
− cos(X − 7t)

12(Y − 7)2
− cos(X + 5t)

12(Y + 5)2

β02(Y,X, t) = 0

α02(Y,X, t) = 0 .

The normal form equations are given by

Ẋ = Y − ε2

2Y 3
+O3(ε, µ)

Ẏ = −ε sin(X − t) +O3(ε, µ) ,

with the drift function provided byη(Y,X, t) = Y − 1
144
εµ sin(X−t)+O3(ε, µ). Note that we

produce linear conservative resonant terms in the actions,but no resonant dissipative terms in
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the angles. The Hamiltonian function associated to the normal form equations in the extended
phase space becomes

H(Y,X, U, t) =
Y 2

2
+ T +

ε2

4Y 2
− ε cos(X − t) +O3(ε, µ) ,

while the time derivative of the Hamiltonian flow becomes;

dH(Y,X, U, t)

dt
= O3(ε, µ) ,

yielding the preservation of the Hamiltonian up to the normalization order. Figure 4 shows the
behavior of the lift of(X, Y ) to the universal covering, the graph in the original variables and
the plot of the derivative of the Hamiltonian versus time. Also in this case, the result shows
that the dynamics takes place on an adiabatic quasi–periodic solution, which is consistent with
the theoretical expectation.
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Figure 4: CasepX 6= 0, s = 0 associated to (61) forε = 10−3, µ = 10−3 and for the initial
conditionsX(0) = 0, Y (0) = 1+6

√
ε. Left: the lift of the normal form variables(X, Y ) to the

universal coverage. Middle: the trajectory in the originalvariables(x, y). Right: the variation
of the derivative of the normalized Hamiltonian.

5 Application of the stability estimates

In this Section we implement the Theorem to obtain estimateson the variation of the actions as
given in Section 3. Let us fix the initial data as well asr0, s0 (and related domain’s parameters),
K, δ. We assume that the frequency satisfies (4), (5) witha determined by (5). The smallness
conditions on the parametersε, µ, sayε ≤ ε0, µ ≤ µ0, come from (20), (23), (25), (28), (30),
(33), (38), (39), (41), (43).
We define the constants̃CG andCG as in (46), (47) and we setCY ≡ CG + C̃G. We recall that
τ0,N , K are related by the expression

τ0 ≡
N

K
| log λ| .
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− Sec. 4.1 Sec. 4.2 Sec. 4.3 Sec. 4.4
ε0 6. · 10−5 6. · 10−5 6. · 10−5 6. · 10−5

µ0 6. · 10−5 6. · 10−5 6. · 10−5 1.9 · 10−4

τ0 1.458 1.458 1.458 1.285
CY 3.16 · 101 3.428 · 101 1.714 · 101 1.087
Cp 1.052 1.052 1.265 3.323 · 10−1

C1 2.117 · 10−3 2.233 · 10−3 1.359 · 10−3 2.158 · 10−4

C2 5.056 · 10−3 3.059 · 10−5 0 0
C3 2.01 2.01 3.208 · 10−5 2.01
C4 3.292 · 10−5 3.292 · 10−5 1.006 · 10−5. 3.283 · 10−6

‖∆Y ‖ 2.408 · 10−2 2.408 · 10−2 9.369 · 10−3 2.408 · 10−2

‖∆y‖ 2.421 · 10−2 2.421 · 10−2 9.521 · 10−3 2.421 · 10−2

T 2.692 · 105 4.43 · 107 1.699 · 1010 3.309 · 109

Table 1: The main quantities of the Theorem for the examples of Section 4 from the remainder
of a third order normal form. The parameters and initial conditions for all columns are:x0 = 0,
y0 = 1.01, r0 = 0.05, r̃0 = 4.9 ·10−2, r̃′0 = 2.45 ·10−2,R0 = 2.4 ·10−2, s0 = 0.1, s̃0 = 5 ·10−3,
S0 = 2.5 · 10−3,K = 20, δ = 0.01.

From (15) we determineCp, while the constantsC1, C2, C3, C4 are computed as in (52).
Table 1 provides the main quantities involved in the Theoremthrough the application of a third
order normal form in the extended phase space. In particular, it provides the variation‖∆Y ‖
of the normalized variables, the variation‖∆y‖ ≡ ‖y(t)− y(0)‖ of the original variables and
the stability timeT , which perfectly agrees with the theoretical result (linear or exponential
stability time) of the Theorem.

The results have been validated by a numerical integration of the equations of motion. Due to
computer limitations, for the cases described in Sections 4.3 and 4.4 we had to stop to a time
at most equal to108. Up to such integration times the numerical results are in full agreement
with the analytical results.
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6 Appendix A

We briefly review the conditions which must be satisfied by theparametersε, µ, so that the
transformation from original to intermediate variables, as well as that from intermediate to
final variables can be inverted; moreover, we provide conditions on the parameters so that the
non–resonance conditions in the intermediate and final variables are satisfied. Compare also
with [8] and [12].

6.1 Inversion of the conservative transformation

With reference to (31), we invert the first transformation as

x = x̃+ Γ(x,N)(ỹ, x̃, t) (62)

provided that
70 ‖ψ(N)

y ‖r̃0,s0e2s0δ−1
0 < 1 ,

with
‖Γ(x,N)‖r̃0,s̃0 ≤ ‖ψ(N)

y ‖r̃0,s0 .
for r̃0 < r0, δ0 < s0, s̃0 ≡ s0 − δ0.

6.2 Non–resonance condition after the conservative transformation

Taking into account (5), we want that the non–resonance condition is satisfied in the interme-
diate variables, say fora > 0:

|ω(ỹ) · k +m| > a

2
, |k|+ |m| ≤ K. (63)

The second of (31) can be inverted as

ỹ = y + εR(N)(y, x, t) , (64)

for a suitable functionR(N) provided

70 ‖ψ(N)
x ‖r̃0,s0

1

r̃0 − r̃′0
< 1 ,

for r̃′0 < r̃0 with
ε‖R(N)‖r̃′0,s0 ≤ ‖ψ(N)

x ‖r̃0,s0 .
Then we have

|ω(ỹ) · k +m| ≥ a

2
,

if
ε ≤ a

2K‖R(N)‖r̃′
0
,s0‖ωy‖r0

.
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6.3 Inversion of the dissipative transformation

With reference to (12), the first equation can be inverted provided

70 ‖α(N)‖r̃0,s̃0 e2s̃0 δ̃−1
0 < 1 ,

whereδ̃0 < s̃0. Inverting the equation as

x̃ = X + A(x,N)(ỹ, X, t) ,

we have
‖A(x,N)‖r̃0,s̃0−δ̃0

≤ ‖α(N)‖r̃0,s̃0 .
Thus we invert the second of (12) as

ỹ = Y +∆(y,N)(Y,X, t) ,

provided

70 ‖A(y,N)‖r̃0,S0

1

r̃0 −R0
< 1 ,

with S0 < s̃0 − δ̃0, R0 < r̃0, being

‖∆(y,N)‖R0,S0
≤ ‖A(y,N)‖r̃0,S0

.

Notice thatA(y,N) can be bounded as

‖A(y,N)‖r̃0,S0
≤ ‖β(N)‖r̃0,s̃0 + ‖β(N)

x ‖r̃0,s̃0‖A(x,N)‖r̃0,S0
.

Similar for the third equation in (12).

6.4 Non–resonance condition after the dissipative transformation

We now turn to the fulfillment of the non–resonant condition in the new set of variables

|ω(Y ) · k +m| > 0 , |k|+ |m| ≤ K .

Through the transformation
Y = ỹ + β(N)(ỹ, x̃, t; ε, µ)

and using (63) one finds

|ω(Y ) · k +m| ≥ a

4
,

provided that

K ‖ωy‖r0‖β(N)‖r̃0,s̃0 <
a

4
.

35



7 Appendix B

From properties of analytic functions one can prove the following result (see also [8]) on the
decay of the tail of the Fourier series.
Lemma B.1.Let f = f(y, x, t) be an analytic function on the domainCr0(A) × Cs0(T

ℓ+1).
Let f>K(y, x, t) ≡ ∑

(j,m)∈Zℓ+1,|j|+|m|>K f̂jm(y) e
i(j·x+mt) and let0 < σ0 < s0. Then, there

exists a constantCa ≡ Ca(σ0, K), such that

‖f>K‖r0,s0 ≤ Ca‖f‖r0,s0+σ0
e−(K+1)σ0 , (65)

with

Ca ≡ e(K+1)
σ0
2

(

1 + e−
σ0
2

1− e−
σ0
2

)ℓ+1

. (66)
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