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Abstract

We study the stability of a vector field associated to a neartggrable Hamiltonian
dynamical system to which a dissipation is added. Such &m®sy& governed by two
parameters, named the perturbing and dissipative paresneted it depends on a drift
function. Assuming that the frequency of motion satisfiessoesonance assumption, we
investigate the stability of the dynamics, and precisednhriation of the action variables
associated to the conservative model. According to thetstrel of the vector field, one
can find linear and exponential stability times, which atal@gshed under smallness con-
ditions on the parameters. We also provide some applicatmooncrete examples, which
exhibit a linear or exponential stability behavior.
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1 Introduction

We investigate the behavior of nearly—integrable Hamiénrvector fields to which a dissipa-
tive contribution is added. The vector field is ruled by twograeters, namely the perturbing
parameter (measuring the non—integrability of the systamd)the dissipative parameter (pro-
viding the size of the dissipative term). We assume that bas@ space is contracted by time
evolution. A drift function enters the equations of motiaam unknown function; its role is
fundamental, since it must be properly chosen in order ta swae compatibility conditions
ensuring the existence of a normal form (compare with KAMilissas in [4]). We concentrate
on the behavior of the variables which are actions of theemasive system (i.e. setting to zero
the dissipative parameter). We assume that the initial iilond define a resonant frequency
for the integrable conservative system (i.e. setting to bath the perturbing and dissipative
parameters). Under smallness conditions on the parametezrove that the action variables
stay locally bounded over a given time interval (see als¢)[2he length of the time interval
depends on the functions defining the equations of motion@edisely, whether there appear
also dissipative resonant terms in the original as well dsemormalized vector field. Notice
that such a result provides a useful information concerthiegransient time, namely the time
needed to reach the attractor.

The proof of the result is based on the construction of a Blgteoordinate transformation,
which is provided by the composition of a conservative angssipative change of variables.
A similar technique, based on a non—-resonant normal forsipkan already implemented in



[8] in order to investigate a vector field of the type studiethis paper, but in the simplest case
of non—resonant frequency. In this case, under smallneghitans on the parameters, one can
prove that the actions stay always bounded for exponemmalst As in classical perturbation
theory, the first transformation removes the conservatertupbation to higher orders (see,
e.g., [5]); the corresponding normal form is composed bgmast or average terms. The sec-
ond transformation is performed to normalize the dissvearms; the normal form equations
defining the dissipative change of variables can be solverjiged that the drift function
is chosen in such a way that the compatibility condition igs§iad. The final normal form
contains just resonant and average terms up to a given ardee perturbing and dissipative
parameters. As in classical Nekhoroshev’s theorem ([24], [see also [2], [13]) by properly
choosing the order of the normal form, one can determingligyatounds. The stability time
is exponential, whenever conservative resonant terms tlappear in the equation for the
time variation of the normalized action variable or whemdahe dissipative resonant contri-
butions are zero. In the other cases the stability time digpen the inverse of the product
of the perturbing and dissipative parameters. The schertteeqgdroof, which is presented for
a non—autonomous, time—periodic system (see also [18pwisiclosely [22], where a very
clear and enlightening proof of Nekhoroshev’s theoremvsigi The proof is constructive and
it allows us to provide explicit expressions for the conaéixe and dissipative transformations
(see also [3], [10], [18]). In our opinion there are severtaygical problems, which can be
analyzed by our method. For example, there are many resuitseming the stability of the
(resonant) Lagrangian points in a conservative framewsek (6], [7], [14], [15], [19]), but
none of them takes into account dissipative effects (likeiS@adiation, Poynting—Roberston
drag, Yarkowsky effect, etc.), which might significantlyeadt the dynamics. In this respect,
we believe that it would be interesting to analyze these nsadeluding a dissipative effect
by using the results contained in this paper. We provide @kasnof normal forms in some
concrete one—dimensional, time—dependent model probbehish illustrate different cases
corresponding to linear (i.e., proportional to the invesééhe product of the perturbing and
dissipative parameters) or exponential stability times. o provide an application of the
theorem in order to obtain rigorous stability bounds forphevious model problems.

The paper is organized as follows. Notations and assungp#on defined in Section 2. The
resonant normal form Lemma and the stability Theorem aregoran Section 3. Examples of
normal form constructions to concrete model problems igmiv Section 4. An application
of the stability theorem is provided in Section 5.



2 Notations and assumptions
We introduce thé—dimensional, time—dependent vector field, described égtiuations

T = Cd(’y) + 5h10,y(?/7 x, t) + Mfm(f% xz, t)
y = _€h107I<y7 x, t) - M(g(]l(yu x, t) - 77(?% €, t)) ) (1)

wherey € R, (z,t) € T, while the definitions and assumptions on the parameters and
functions are the following

1. Having fixed an initial datung, € R, we denote byd C R’ an open neighborhood of
Yo-

2. The vector field depends on the parameters R, (perturbing parameter); € R,
(dissipative parameter); we remark that we could equaliyitdector parameters, i.e.
e € RY, p € RY, but for simplicity of exposition we present the detailstjter the
scalarcase € R, u € R,.

3. The functionsv andn are real-analytic/—dimensional vector functions with compo-
nents(w®, ..., w®) and (n™M, ..., ). We assume that there exists a regular function
hoo = hoo(y) such thatahg;;(y) = w(y). Letho(y, u) = hoo(y) + u, u € R, be the unper-
turbed Hamiltonian function associated to the consereatactor field i = 0) in the
extended phase space. Lefy) = (w(y), 1) be the frequency vector in the extended
phase space. Following [22] we make the hypothesis Ahas L, M—quasi convex,
namely there exist, M > 0, such that for alk = (y,u) € A x R at least one of the
following inequalities is satisfied:

82}10(2)

52 U > M|v|?, Vv € R (2)

we(y) - v > Lol

where the dot denotes the scalar product an{l denotes the Euclidean norm.

4. In the following we will use the vector field (1) in the extid phase space with= 1
and withu conjugated to time:

T = W(y) +5h10,y(y7x7t) +Mf01(y7x7t)
= _€h107$(y7x7t) _M<901(y7x7t) _n(yvxvt)>
(S _ghloﬂf <y7 x, t) =+ ,ua(y, €, t) ) (3)

where the unknown functios is introduced for later convenience (see next point).

The subscripts;, y, ¢ denote derivatives with respecttoy, t, i.e.h, = 92, h, = g—Z, he = 2.



5. We assume that, go1, n are real—analytic/—dimensional vector functions from x
T to RY, while h,o, o are periodic and real-analytic from x T‘*! to R. We re-
mark thatn, o are unknown functions, which will be properly chosen so tets®me
compatibility requirements in order to obtain a suitablemnal form (see Section 3).

6. We assume that the vector field is dissipative and that blasgspace volume is con-
tracted by the time evolution.

7. For a given initial datung, = y(0) € A, we assume that there exists a latticer Z‘*+1,
such that the vector functian = w(y,) satisfies theesonance condition

w(yo) - k+j] =0 forall (k,j) € A. &)

We also assume that there exisfsc Z,, a > 0 and a subseb C A, such that for any
y € D the following condition is satisfied:

w(y) - k+jl>a  forall (k,j) € ZFN\A, k] +|j| < K, ®)
where fork = (ki, ..., k;) € Z* we define the normk| = |k, | + ... + |ke|.

8. We refer toy = n(y, x, ) as thedrift vector function with componentg™(y, z, 1), ...,
n¥(y, x,t)) that we expand as

y,[L’ t Z anm j+1 yvxvt)gj,um_j ) k= 17 7€
m=0 j=0
In a similar way we expand in (3) as

U(yvxvt) = Z Zgjm —j+1 yvx t)gj:um_j .

m=0 j=0

Remark 1. We remark that foy, = 0 the equations (3) reduce to the conservative vector field,
associated to the nearly—integrable Hamiltonian fundtidhe extended phase space

H(y,x,u,t) = hOO(y) +u—+ €h10(y,l’,t) ) (6)

wherew(y) = dhgo(y)/dy. Notice that the Hamiltonian (6) is integrable as far as teysb-
ing parameter is zero, i.e.= 0. Since the vector field (3) is dissipative (see assumptin 6.
the energy associated to (6) is decreasing with time.

We adopt the following notations and definitions for funos@and norms.



i) Integer subscripts denote the order in the perturbing assifitive parameters, i.€;;
denotes a function of ordefy’.

i1) For a functionf = f(y, x,t) and for any positive integek’, we decompos¢ as

fly.ot) = fly) + fOy, 2 t) + fOS gy, 2, t) + [ (y, 2,1,

being, respectively, the average, the sum over the norra@soomponents with Fourier
modes less or equal thdk, the projection over the resonant space defined by the lat-
tice A excluding the origin with Fourier modes less or equal thkgnthe sum over the
components with Fourier modes greater tiamamely:

- 1
= — t) dadt
f(y) (27T)£+1 e+ f<y733'7 ) €
frrsy, 2.ty = . Jrj(y)e o0
(koJ)EZHINA, [k|+[jI<K
frsy,a) = > Julyettn
(k.)eA{0}, [K|+]j| <K
ey, 2,t) = > Jui(g)e 90,

(k.J)EZAHL, |k|+]5]>K

where: = v/—1 and f;, are the Fourier coefficients.

i11) We say that a function is of ordérin ¢ andu, in symbolsOy (e, p), if its Taylor series
expansion irk, ;1 contains powers of' i/ withi + 5 > k,7 >0, 5 > 0.

iv) We denote by, (A) the complex neighborhood of of radiusr,, namely
Cro(A)={y € C": |ly —ya|| < roforally, € A} .
Moreover, letC,, (T+!) be the complex strip of radiug aroundT*"!, namely

Coo (T = {(z,) € C™ 1 max |S(z;)| < s0, |S()] < 50},
1<j<e

where$ denotes the imaginary part.

v) Denoting the Fourier expansion of a functipr= f(y, z,t) as

y’ z, t Z fk z(k z+jt)

(k,j)ezttt



we introduce the norm

||f”7"o,so = sup Z ‘fkj<y)|€(|k\+|j\)so )

YEO(A) (1 jezers

For a functiong = g(y) we defineg||g||., = sup,cc, (a) [l9(y)[|, where]| - || denotes the
Euclidean norm. For a vector functigh= (f1, .., f,) we define

£ llro.50

l
Z Hfj”%o,sa °
j=1

3 Bounds on the variation of the action variables

In order to bound the variation of the action variables, wplement a change of coordinates
such that the vector field (3) is transformed to a resonanhabform, up to a suitable order
N. To this end we introduce a change of coordinates close taddrgity and leaving time
unaltered, say

Y. X, U,1) =EW(y,z,ut), (Y,U)eR™, (X,1)eT*, (7)

where=") depends parametrically also oy, E™) = =™ (y, 2, u, t; e, p) With 2™ (y, 2, u, £, 0,0) =
Id. Let K be asin (5); in the forthcoming Resonant Normal Form Lemmaiweto determine

the transformation of coordinates (7), so that (3) takesarrant normal form of orde¥, that

we write as

X = QM)+ FOsOY, X ) + Fya (Y, X, 1) + FER(Y, X 1)
Y = QUSRI X, 1)+ Gya(Y, X, 1) + GER(Y, X 1)
U = HOSE(Y, X t)+ Hy (Y, X, t) + HZOY, X, 1), (8)

whereQ") : R — R’ is the normalized frequency, related.46Y’) by

N N N-—j

OV =l (Ve ) =w@) + ) Qo(V)e + 0D Qy(V)eld

i=1 7j=1 =0

whereQ;;(Y) are known vector functiong{"=<K), G(=K)  [f(»<K) have Fourier components
belonging to the resonant lattice, {0} with F=K) depending on both, z, while G<5),
H"=K) depend only ore; Fy,1, Gni1, Hy,1 are vector functions of orde®y (e, 1);
FCEE) qEK) | H(>K) denote functions with Fourier modes greater than



Similarly to [8] we decompose the coordinate transformaf6") as the composition of two
transformation&!" (conservative part) anﬂﬁlN ) (dissipative part):

v, X, U,t) =2 0 =M (y, 2, u,t) . 9)

Setting(y, z,u,t) = EEN)(y,:c,u,t), the conservative transformatia”’ is defined through
a sequence of generating functions close to the ident§yy)sa= v,o(9, x,t), 7 = 1,..., N,
such that

N

r = o+ Z wjo,y(ga Z, t)gj =T+ wg(/N) (:&7 L, t)
j=1
N

y o= G+ bulirt)e =j+ iV (j, 2, t)
j=1

N
u = u + Z ij,t(gv xz, t)Ej =u + 'l/)t(N) (g7 xz, t) . (10)
7j=1

Notice that we can assume that the functigns(as well asy;i, 8k, v;x in (12) below) do not
depend ony, since the functions appearing in (1) (or equivalently i) (® not depend on.
We denote the inversion of (10) as

t = a(y,&t) =7+ TN (g, 2,1)
= y(5,2,t) = g+ TN (g,7,1)

The dissipative transformatio”ﬂfiN is defined by introducing suitable functions with zero

average ovef andt, saya"), "), 4(") defined through series by the coefficients, 5;;,
Vjis J, 1 € Zy, such that

(

u = u(g,it)=u+I"N (g i 1t). (11)
)
)

N i
X = 543 S 058 0 = 5+ a™ (G, 3,1)

i=0 j=0
N )
Y o= G+ Y B a ) =g+ BN (3, 7, 1)
i=0 j=0
N )
U = @+ Y Y %08 0du ™ =a++"N(g,2,1), (12)
i=0 j=0

with co(7, Z,t) = Bio(7, Z,t) = vi0(y, Z,t) = 0 for any: > 0. An iterative explicit construc-
tion of the vector functions;o, o, 8;i, v;; Will be given within the proof of the Resonant
Normal Form Lemma stated below.



Remark 2. The normal form equation defining the generating functigs(y, 7,¢) at ordery
is given by
~ ~ ~ ~ ~ nr,<K)/~ ~
(.U(y) ij,Z’(yv x, t) + ij,t(yv x, t) + LSO )(yv x, t) =0 ’
for a suitable known functioﬂ%’"’gm(g, Z,t) with zero average ovér, t) and not containing
resonant terms, say

nr,<K) ~ ~ A N
Lﬁ-o N(§.2,t) = Z Ljo r; () €70

(k.J)ELFFINA, K| +|j|<K

This equation can be solved provided= w(7) satisfies a non-resonance condition of the
form
W@ k+j#0  forall (kj)eZ\A, k| + || < K,

which is guaranteed by (5), providedatisfies a smallness condition. Analogously, the dissi-
pative normal form provides an explicit construction of thactionsa®), (V) ~(V) thanks

to a suitable choice of the drifts o and to the assumption (5). More precisely, once expressed
in terms of the new variablgd’, X, t), the functionss;; must satisfy a normal form equation

of the form

(Y Byia (Y, X, )4 B33 (V. X, NSV, X O+ N (V)N (Y, X ) (Y. X 1) = 0,
(13)

for some known functioV;; = N;; + N;fT’SK) + N;Z’SK) + N;fK); therefore, equation (13)

can be solved provided the drift componemigY, X, ¢) are chosen as the opposite of the sum

of the average and of the resonant parts:

mi(Y, X, 8) = — (M) + Ny, X 1)

An analogous relation holds foy;; ando;;. This explains why the drift must be properly
defined in order to be able to build the coordinate transftiomg7). This is not unusual, but it
happens also in KAM theory (see e.g.[4]). We proceed nowaie she Resonant Normal Form
Lemma, which extends the Normal Form Lemma of [8] to the rasbiase of a frequency
vector satisfying (4), (5).

Resonant Normal Form Lemma. Consider the vector fiel@l) analytic in the complex ex-
tensionC,,(A) x C,,(T*1) for somery, s, > 0. Consider the extended vector fidl) on
A x R x T, For a given lattice\ C Z‘*, lety, ¢ A, K € Z_, D C A, a > 0 be such
that(4) and(5) are satisfied. There exist suitable drift functions n(y,x,t), o = o(y, z,t),
and there existy, no > 0 depending om, sy, K, a and on the norms ab, h, f, g, such
that for any(e, 11) < (0, 110), ONe can construct a change of variables close to the igesHiy
EMN L AXRx T — R T with (Y, X, U, t) = 2™ (y, 2, u, t), being(Y,U) € R,



(X,t) € T, N € Z,, which transformg3) into a normal form of ordeN as in(8). Let
Ry < 19, So < so, having set\ = max(e, i), the normalized frequency is bounded by

100 — wllg, < CuA, (14)

whereC,, is a positive constant depending qp N and on the norms @b, h, f, g. Denoting
by 11, the projection on thg—coordinate, one gets

I, (EYY 0 ZW)) — 1d|| < G\, (15)

for some positive constaut, depending omn, sy, N and on the norms ab, h, f, g. With
reference to the normal for(8), one has the following estimate

IG5+ Gl o + 1G9 [y 50 < AG+ Oy, (16)

for some constartty and having boundel; "< | r, s, by A G, whereG; andCy depend on
o, S0, N, K and on the norms a#, h, f, g. Choosing N = [K1,/|log \|| for somer, > 0,
one obtains thgtl6) becomes

||G(T’SK)||R0,SO + ||GN+1||RO7SO + ||G(>K)||RO7SO <AG+ C(Y)\‘C/’_KTO . (17)

Before giving the proof of the Lemma, we provide the statenoéthe main result, namely

a bound on the variation of the variables which are actionhefconservative system. The
following Theorem will be obtained through the ResonantiNalr Form Lemma under the
resonance condition (4) and the quasi—convexity assumf®jo Let us write the normal form

equations (8) using the following notation:

X = w)+epFW X 1) + psSOY, X 1) + Fvn (Y, X, 1) + FER (v, X 1)

Y = _‘gpg(SK)(K X7 t) + GN+1(}/7 X7 t) + G(>K)<Y7 X7 t)
U = —ep™ (Y. Xot) + Hyaa(Y. X, 0) + HEO(Y. X 1), (18)

Wherepg(SK), pgng), pﬁSK) (independent of:) are the resonant contributions stemming just

from the conservative transformation, while ) (depending om ande) represents the reso-
nant part coming from the dissipative transformation.

Theorem Consider the vector fielfl) defined onA x T‘*!, satisfying the quasi—convexity
assumption2). Lety, € A, K € Z,, D C A, a > 0 be such that4) and(5) are satisfied.
Assume there exists, 11y, such that fofs, 1) < (eo, 10), the Resonant Normal Form Lemma
holds. Letry, C,, A, 19, 5o as in the Resonant Normal Form Lemma. With referendd.8y
we have that:

2The choice ofN is motivated as follows. The relatioh = e~%7 implies Nlog A\ = — K79, namely
N = [K7y/|log A|], where[-] denotes the integer part.

10



i) if pic™) = 0 or s(<K) = 0, then there exist, > 0, C, > 0, such that|y(t) — y(0)| <
20,\ + py fort < Ty = Coe®™, whereC, depends oM, ry, sy, K, N and on the
norms ofw, h, f, g, while p; depends on the above andan\, A;

i) if p&) £ 0 ands<K) +£ 0, then there exisp, > 0, C}, > 0, C!! > 0, such that if
t < Ty = min(Cjel™, 1), then|ly(t) — y(0)|| < 2C,\ + ps, whereCy, C{) depend on
M, rg, so, K, N and on the norms a#, h, f, g, while p, depends on the above and on

m, A, A.

Remark 3. The above theorem is stated in terms of the funct'yagﬁé() ands(<X) appearing
in the normal form equations (18); in order to decide whichhaf conditions) or ii) of the
Theorem is satisfied, one needs to know the explicit exprasdi the functionsfy1, go1, 1o

appearing in the vector field (1), tracing the resonant temmish could generatgﬁfm and
s(=K) py means of an explicit construction of the normal form or bgams of aree algorithm
(see, e.g., [9], [11], [17] and references therein).

Remark 4. The Theorem states that in the non—-resonant case (comptrgByyj as well as
whenever the dissipative contribution to the resonant abform is zero (at least up to the
normalization order), one finds a variation of the actiongxponential times; otherwise, there
appears a fast drift of the actions on linear4im) times.

Proof of the Resonant Normal Form Lemma.By induction on the normalization order we
prove that we can construct a normal form of type (8) by medrssiibable transformations
as in (10) and (12). First we prove the statement by constigithe first order normal form
using the conservative and then the dissipative transfiimmeanext, we proceed to construct
the conservative and dissipative transformations at tdera¥. For sake of clarity, we split
the proof into four separate steps, referring, respegtitelthe first order conservative and
dissipative normal forms, and to thé-th order conservative and dissipative transformations.
Since the conservative transformation is standard, we sonite details.

Step 1: Conservative transformation for NV = 1.
We start by implementing the first order transformation

= o+ etioy(y, 7, t)
- g + Ewlo,x (ga xZ, t)
u = u =+ 5¢10,t (:&7 z, t) ) (19)

whereyg = ¥10(7, x, t) is an unknown function. Lety < rg, 0y < So, So = so — do; then we
can invert (19) as

< R

v = E+el@(g, 1,1

11



y = §+e0@V(g,1,0)
u = a+el®V(g 1),

for suitable functiond" @), T andI"Y, provided the following smallness condition on
the parameters is satisfied (compare with Appendix A):

70 ||w107yH7’0780 628050_15 <1. (20)

Using (19) and (3), we obtain that the conservative nornrahfis achieved whenever one can
determine)(y, z, t) such that
g)¢10 yr( t) + ¢10 yt( ) + hlgry<K <y7 j7 t) =0

@]Wlo :c:c( ) + 77b10 :ct( ) + hlgr::K (y’ j» t) =0
(1040 (G, 3, 1) + Y1005, 3. 8) + 15, = (3.2,1) = 0. (21)

W

wQ(:&)wlo,m (g7 j? t) + w(
(

Let us define )
QP (g) = U (Fi€) = w(@) + hioy (9) ;
Equations (21) are equivalent to take the derivatives vegipect tq;, x andt of

nr,<K)

( )¢10 $<y7 T t) + ¢10 t<y7 T t) + th <y7 z t) 0.

Expanding/i andh(’”" <K) into Fourier series, one obtains that is given by the expression
(independent ofi):

R (3)
¢10(§,i‘,t) =1 Z ~7 J

_10ky AT uk-+jt) (22)
- € )
(k,g)EZEFI\A, k| +]5] <K w(y) - k+3j

This function is well defined, since the zero and small dirssire controlled as follows. The
second of (19) can be inverted as= y + cR¥Y(y, z,t) for a suitable functionR®!) =
RWY(y, z,t), provided that for, < r, one has (see Appendix A)

1

0¢ ||?/)1o,x||fo,som <1, (23)
beinge | R¥V |5 o, < [[t10.2]l70,5- Then, the divisors appearing in (22) are bounded by
~ . a
W @) -k + il = a = B[ROV o lwyllrg > 5 (24)
provided
- (25)

< .
2K || RO |5 54 llwy I,

12



Step 2: Dissipative transformation for N = 1.
We define the first—order dissipative transformation as

X = T4+any,z,t)p

Y = g+ bu(y,7,t)u

U = a+y0(y,2,t)n, (26)
for unknown functionsyy, 551 and~y;. Let us start by inverting (26) as

i X —an (Y, X, )+ Oy(p) = X + A@Y(Y, X t)u
J = Y =BV, X, )+ Os(p) =Y + AW (Y, X t)u

for suitable functiong\®", A®D and A1) provided the following smallness conditions on
the parameters are satisfied (see Appendix A):

70 [|ovon [l 70,50 €20 1 < 1

1
70 (1 Bo1 170,50 + Nl Bor.zll7.5 [1cvorll70,50) FN < 1

Ry

70 (101 ll70,50 + 1701, |70,50 1|01 [170,50) = po< 1, (28)

— Ry
whered, = 50/2, Ry < o and being|A®V||. - 5 < [lao |75 Through (26) and (27) we
can express(, Y as a function ofX, Y'; the normal form is obtained assuming that, 5o
andn,, satisfy the following equations:

wV)aoro(Y, X, 1) + oY, X, ) — wy (V) Bor (Y, X, £) + fm<(y, X, 1) = 0
w(Y)Bo1.(Y, X, t) + Bo(Y, X, 1)

— g =W X ) = G (V) — g5 = (VX ) o (Y, X 1) = 0
WY )01V, X, t) + (Y, X, t) +on (Y, X,t) =0. (29)

Sincew;, Bi;, vij have zero average and they do not contain resonant termsyshkem of
equations (29) can be solved, provided that we chggsé&’, X, ¢) as

o1 (Y, X, 1) = g (V) + g5 =" (v, X, 1)

and that we set,; = 0 as well asyy; = 0. Settlnngl1 = w(Y) + ehioy (V) + pfor(Y), the
first order normal form can be written as

X = o +enli =y, X ) + pf= (v, X )

+ ehGIOY, X ) 4 pufsT Y, X ) + Ba(Y, X, 1)

= —eh{iZ (VX 1) — ehlo ) (V, X ) = pgly (Y, X 1) + Ga(Y, X 1)
U = —eh538 W X, t) —ehl5i (v, X, t) + Ha(Y, X, 1)
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whereF;, G, are functions of ordefs (e, 1) and Hs is a function of ordeD,(e). We remark
that the solution of (29) involves small divisors of the four(l) - k + j with (k, j) € Z‘*!
and|k| + |j| < K. Using the same argument as in (24), the small divisors avadex bya /4
provided that the following smallness condition holds (pame with Appendix A):

a
< .
4K||601 Hfo,go HwaTo

7 (30)

Step 3: Conservative transformation for the order V.
Assume that the Lemma holds to the order1. We introduce the conservative transformation
to the orderN as

N-1

r = T+ ij,y(lgv [L"t)gj + ,lvbNO,y(lgv x7t)5N =x+ Q/)Z(/N)(g,l‘, t)
j=1
N-1

Yy = ?J"‘Z¢30,m@7$7t)5]+¢N0,m@axat)5]vEg"‘%@“@axat)
=1

T

u o= i+ Y o x e + oz )N = a+ N (g, x,t) (31)

7j=1

where forl < j < N — 1 the functionsy);y(y, x,t) are assumed to be known. We can invert
(31) as

r = z(9,,t)
N
= :i' + Z 1—‘Eg(c)) (ga :i'a t)gj - ,lvbNO,y(lga :i'a t)EN + ON—i-l(g) = ‘fi’ + F(x7N) (g7 i'a t)
j=1
y = y(y,7,1)

ng(/]) (ga :Z'a t)gj + ¢N0,x(ga :i'a t)EN + ON—i-l(g) = ?] + P(y’N) (?], fi', t)

I

Il Il

I <
+

Il
3!
+

<
Mzg M=

FE? (g? ‘%7 t)gj + ¢N0,t(ga ‘%7 t)EN + ON—i-l(g) =u+ F(%N) (ga :Z'a t) ) (32)

<
Il
i

provided that (see Appendix A), choosifig< rg, dy < So:

7OH¢§N)||50,80 628050_1 <1, (33)
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being "'y, T, T's), 1 < j < N, known functions. We proceed to compuiteg, @ as a
function of z, 3, t and after expanding in Taylor series, we obtain

o= w(y)+ Wy( )@bNO (7,7, t)f + pLsK <N)(yal' t) + ON+1

g = GUERG ) + p (v (0, 7,0 4+ o (0,7, 06V ) + O,

1= HYSN@G 30 4+ p (on-1a (5, 2,0 + o+ oon (3,7, 0N + OFE, (34)
WhereONJrl is a compact notation to denote terms of ordeyf. (e, ) and/or containing
Fourier components greater than the functiong” 1 <K<N) GLKN) - [ (L<KN) are known,
contain Fourier components up to the ordércontain orders im andy up to the orderV and

they are at most linear ipn. Using (31), (34) and the inductive hypothesis, the corstesm
normal form at the ordel is obtained once the functiany, satisfies the equations

Wy (§)0n02 (T, 7, 1) + WD) ON0 e (F: Ty 1) + Unoye(§, F, 1) + Fa ™ ="=N(g,2,¢) = 0
W(?j)?/)No,m(?% i'a t) + Q/)NO,xt(ya x, t) - GS\%ONT SHEN) (ga i'a t) = 0
W(§)n042 (T, 7 1) + Vnoa(§, &, 1) — Hoy == (g, 5,0) = 0,
(35)

<K,< <K,< <K,<
where F =S qRanSISN) |y (2n SK.SN) gre the non-resonant parts of known func-

tlonsF(2 K <N, G(Q’SK’SM H®?=K<N) that we decompose as

N
F(2.<K.<N) @’ i, t) = Z gg + Z F (2,nr, <K, <N ?j, 7, t)&tj

J=1

N
DI e O €]+uZF(2<K<N 7,%,0) (36)

Jj=1

(and similar for the remaining functions). From the Hammltm structure it can be easily
recoghized that(;" =" =N Grr == - g Can<iSh) gre | respectively, the derivatives
with respect taqy, x, t of the same function, so that equations (35) uniquely defiaesolution
Yno(7, Z,t). We are finally led to the following conservative normal form

i Q(N (¢ +Z:F(21~<K<N $t5]+MZF(2<K<N 5, 7 )l ON+1
N
i o= ZG2T<K<N - €J+MZG2<K<N ~ )€J+0N+1
N
i = ZH2T<K<N . 5]+MZH(2<K<N . )€]+0N+17 37)
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where

N
AN (gre) =w@) + > FeM (@)el
j=1

which implies that| Q") — w|| < C.e for a suitable constartt,. The normal form equations
can be solved, provided that the small divisors taking thpessions(y) - k + j, for k € Z,
J € Z with |k| + |j| < K, are controlled by a non-resonance condition, which isanuteed
whenever (see Appendix A)

a

e < , (38)
2K || R&N) |51 sollwy Il

whereR®-Y) is the function inverting the transformation, namgly: y +<R®N)(y, x, t), and
7o < To. The inversion can be performed provided (see Appendix A)

1
70 [0 rg00 —— < 1 (39)
o — Ty
: N
with [R&N| o < (08 [[7g,s0-

Step 4: Dissipative transformation for the order V.
We consider the transformation (12) at the ordemwhich can be inverted as

P o= X
N-2N-1—i N1
= X+ Z Z a; (Y, X, t)e'n’ — Z ain_i(Y, X, )™ T 4+ Ona(e, )
=0 j=1 i=0
g = g, X.1)
N—2 N—1—i N1 |
= Y+ Z Z bi (Y, X, t)e' 1’ — Z Bin_i(Y, X, )e'uN " + Onya (e, 1)
=0 j=1 i=0
)
N—2N—1—i N_1
= U+ Z Z cii (Y, X, t)e' ! — Z Yin—i(Y, X, )N T 4+ On (e, 1) , (40)
=0 j=1 i=0

for suitable known functions,; (Y, X, t), b;;(Y, X, t), ¢;;(Y, X, t), provided that the parame-
ters satisfy (see Appendix A):

70||06(N)||;0’§0 625050_1 < 1

1
70 (Hﬁ(N)Hfoﬁo + ||53(5N)||fo,§oHO‘(N)||fo,§o) ~ R
To — Iy
1

To — Ry

70 (H’Y(N)Hfoﬁo + ||79(EN)||fo,§oHa(N)||fo,§o) < 1 ) (41)
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whered, = S0/2, Ry < 7. In order to determine the unknown functiongy, ..., an—_11,
ﬁo,N, ---.ﬂz\(—l,h YO,N» s YN=1,13 TIN=1,01 =1 TJ0,N~1s ON—1,05 +++1T0,N—1, using (37) and (40) we
expresst, y in terms of X, Y and we computeX, Y using (12), (37), (40) as

N-1 N-1
X = w(Y)—w,(Y) (Z Binoi(Y, X, t)aw—i> +w(¥)> inoia(Y, X )V

=0 1=0
N-1
+ Y -V X ) pN T PNy X 1) FOEN(Y)
=0
+ FOrSRENY, X 1) + OFf,

N-1

Y = M(nN—l,l(K X7 t)gN_l + .t UO,N(Y7 X7 t)lU’N_1> + W(Y> Z Bi,N—i,:B(K X7 t)gilu’N_i
=0

N-1
+ D Binoad (VX )N 4 GOSN (v X ) + GON(Y)
=0
N
+ Y GHTEEEN Y X et + GEnEEN (Y X ) + O,
=1
. N-1
U = M(UN_I,I(Y, X, 0N+ L+ oon(Y, X, 1) uN—l) +w(V)D Yin—iaV, X )N
=0
N-1
+ Z rYi,N—i,t<Y7 ){*7 t)EiMN_i + H(3,TL7‘,SK,N)(}/‘7 X, t) + H(3,N) (Y)
=0
N
+ Y HgTEEVYX e HOSENY, X 1) + OFY,
=1

where F3nn<K.N)  G@nr<K.N) - p@.nn<K.N) denote known non—resonant functions that we
can expand as

N-1
FEmENY X 1) = N X et

=0
and similarly forG@»r<K.N) ' g @nr<K.N). p@n<K.<N) q@n<KN)  [Er<KN) denote known
resonant functiongs’ 3= GG:N) [13.N) denote the average terms. Recall that due to the in-
duqtive hypothesis, the functions;, 3;;, vi;, 1ij, 0, determine a normal form up to the order
' with 0 < 7+ 5 < N — 1. The normal form at the orde¥ is obtained by imposing that
aij, Bijy Vijs Mij» 045 Satisfy the normal form equations

—wy (Y)Bin—i(Y, X, t) + w(Y)au nei (Y, X, 8) + s n—in (Y, X 2)
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+F;(§’\}HTZTSK’N)(Y, X, t) -0
WY )Bin-sa(Y, X, 1)+ Bin-ia(Y, X, 1) + GIREEV( X ) + GOV, X 1)
+G2N )i( Y)+nmn-i(Y, X, t) =0
WO VvV X ) 9iveaVs X 0) o HEREE VXG0 + HSHS0 0, X0)
+Hi,fv_)i(Y) tona(V, X, ) =0 (42)

for 0 < i < N — 1. Equations (42) can be solved providefly’) satisfies a non-resonance
condition, which is guaranteed by (see Appendix A)

4K |wyllroll B lr050 < @ (43)

where we intend that” = j + W) (g, &, t; &, u). From the second and third of (42), we get

mv-(V, X1 =GRV + GRSV (Y, X e
oin-i(Y, X, t) = ASVY) + HYSSN(Y, X )N
Setting
N N N—j
AN (Vie m) =w(¥) + > Qo el+ZZQU )il (44)
i=1 Jj=1 i=

with Qo = Fig=" (V) and; v—; = F%=(Y), the normal form is finally given by

N N-
X = Q(N (Y:e, ) +ZF;(03T<K<N Y, X, t)e ZZF(3T<K<N (Y, X, t)e' 7

i=1 j=1 i=0

+ FN+1<Y X, t)+ FER(Y, X, 1)

Yy = ZG3’”<K<N (Y, X, )" + G (Y, X, t) + GEIO(Y, X 1)

U = Z HESN (Y, X 1)e! + Hy (Y, X, t) + HES(Y, X, 1) (45)

i=1

whereFy 1, Gnii areOn(e, i), Hy,y is orderOy,,(¢) and FCK), GCK) | K con-

tain only terms with Fourier index greater thah The normal form (8) is recovered with an
obvious identification of the functiong8=<K) G=K) [<K) The smallness requirements
one, u, saye < eg, u < o, are needed to guarantee the non-resonance conditior2&ee (
(30), (38), (43)) and the inversion of the transformatimsee((20), (23), (28), (33), (39), (41)).
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The estimate (14) holds true, due to the definitiorﬂb]}’) in (44). The estimate (15) follows
from the fact that (9) is close to the identity up to first order

Due to the exponential decay of the Fourier coefficients (wam@ with Lemma B.1 of Ap-
pendix B), we can bound@>%) for somer, > 0 as

IGZ |y, 50 < Care 5™ (46)
for a suitable constartt;. On the other hand we can bou6g,; in (45) as
1G N1l Rosse < CaAN T, (47)

for a suitable constartt;. Finally, from the second of (45) we obtain:

N
7T7_K7_N 1
1Y G ==Y, X, )6 | reso + 1G4l Roso + G | rous
=1

< NG+ M\VCq + A\Cge Km0

having defined\G; as an upper bound efip..., | SN, G5 ==Y (Y, X, t)¢’|| s, 5,- ChoOS-
ing N = [K1y/|log \|], we obtain (16) and (17) witlly = C¢ + Cg. This concludes the
proof of the LemmaU

Proof of the theorem. The distance betweey(t) and the initial conditiory(0) for t > 0 can
be bounded by the sum of the following terms:

ly(t) = y(O)] < lly(t) =Y @O + [[Y(£) = Y(O)[| + [[Y(0) = »(0)[] (48)
By the estimate (15) of the Resonant Normal Form Lemma, otedrah
ly@) =Y @I <A, ly(0) =Y (0)[ <CpA.

By the second of (8) and by (16), one gets

IY'(#) = Y(0)]

IA

t
| (16 s, + [Govaallnsy + 16, s
< )\Gt+0y)\N+lt,

which indicates that the action variation takes place oedintime scales due to the term
A G t, while exponential times are associated to the tégm V! ¢. We remark that? = 0
corresponds to the absence of resonant terms in the normafdo Y. Notice that the case of
non-resonant stability estimates given in [8] is recovevadnever also the resonant terms in
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the X variable are zero. Let us start with the cdse- 0; for a suitablep; > 0 that we write
asp; = C,A for someC, > 0, let
t < S ekm
Y
Finally, settingp, = (2C, + C,) A, we obtain the following variation of the original action
variables on exponential times:

ly(t) = y(O)[| < po fort < Coe"™,

having defined”;, = p/Cy. This result is in agreement with statementonceG"=%) is
identified with— st (compare with (18)).
Next, we study the cas@ # 0; to this end, we compute the variation of tarergy(i.e. the
Lyapunov function, see e.g. [1]), which we intend to be defias the energy function which
is preserved whenever= 0. Let us write the normal form equations (45) using the foltoyv
compact notation as in (18):

X = o) +epFOY X o) + us Y, X e, p)

+ F(>K)(Y X t € lu) + FN+1(Y7 Xv ta 57:“)

Yy = 5pX (YX t;e)+ GEENY, X tie, 1) + Gy (Y, X, e, 1)

U = _gpgi )(K X,t;E) + H(>K)(Y7 X,t;g,,u) + HN+1(Y7 th;gnu) ) (49)
where we have indicated also the dependence on the pararaet#we have identified the
functions as follows:

N
Qio(y)éi + Z E%g’T’SK’SN)(K X, t)gi

[l
M =

5py (Y X, t;¢)
=1 i=1
N
S X te) = =) GRTEEEN(Y X b
=1
N
ep =Y X te) = =Y HGEEEN(Y X b
=1
N N—j N N—j
O Xotg) = 35 EEE, X0k + 303 0 (1)
j:l 1= j:1 =0
For . = 0 equations (49) reduce to
X = (Y) + gp;SK)(Y X, te) + FCR(Y, X, t;e,0) + Fy1 (Y, X, t;£,0)
Y = —epSv, X, tie) + GER(Y, X, t;2,0) + Gy (Y, X, t: €,0)
U = _€p§, )(Y7 Xa l; 5) + H(>K)(Y7 Xa e, 0) + HN+1(Y7 Xa e, 0) : (50)
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Due to the Hamiltonian character of the equations of motmmuf = 0, there exist vector
functionsAGX),| By .4, such that

AT = RO, X 1e,0), AGY = —GER(Y, X, te,0), AT = —HEP(Y, X t;¢,0)
Byiiy = Fna(Y, X, t,6,0), Byjix = =Gy (Y, X, 1;6,0), Bypip=—Hy (Y, X, t;¢,0),

so that we can recognize (50) as Hamilton’s equations aassaldio the following Hamiltonian
function in the extended phase space with 1:

H(Y, X, U, t) = hoo(Y) + U +ep= (Y, X, 1) + APV, X, t) + By (Y, X, 1)

where hgg IS such thatahOO Y) - w(Y). Let us fix the energy levek = E for some real
constantt; taking into account the complete equations (49), we olitehthe variation ofy

for 1 # 0 is given by (for simplicity we omit the arguments):

dE
% _ Eupg(SK)S(SK) + COngr + DEE) ’ (51)
with
Cnir = w(V)Gyyr + €Py GN+1 + Epg( )FN+1
+ (A§/>K + Bni1y)Gn41 + Byyiy(— é?pX ) L gCEK) )
+ (AG™ + Byyix)Frsr + Byix(w +eps™ + psS8 4 FCRY 4 Hy ) 4 By
pDEK) = w(Y)G( K) 4 6p(<K)G(>K) + 6p(SK)F(>K) + HGK)

— epTRATT) L ATFIGER) L AR 4 eplsF 4&F)
+ st ALY ¢ AT FCR A7

where now the function8y_, Gyi1, Hyi1, FCK), GEX) HEK) depend oY, X, t; ¢, ).
Denoting byAE = E(t) — E(0), we obtain

|AE| > |Ahg + AU| — (EHAP(SK)HRO,SO + JAACT) || 5y 50 + ||ABN+1||RO,SO) ;

where Ahg + AU = hoo(Y(t)) — hoo(Y'(0)) + U(t) — U(0) and similarly for the other
qguantities. Recalling (51) and settihg = hq + U, we get

|Aho| < JAB| + € Ap'= || gy s, + |AAZS o,y + [ ABsallro,si »

where

dF <K
BB < 10t < (=l rosoll s oy + 1Ol oso + 1D s ) T
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We denote byn an upper bound on the Hessiangf(y) and let/n be an upper bound of the
Hessian in the normalized variables, which we can defing asm + || a;;‘go o IDY M) |0 50

having expressed the link between new and old variablés-asy + D@ (y, z, t). Then, we
have:

2hoo (Y
up | ool

<m.
veey oy I <

Assume that the frequeney.(y) = (w(y), 1) is close to exach—resonances (compare with
[22]) by a quantityd > 0, namely if Ry = {Q € Rt : Q.n = 0 foralln € A}, then
minger, ||we(y) — Q| < 4. SettingZ = (Y,U), assume thatZ (t) — Z(0)| < r for some

r > 0 with § + mr < Ry. LetII, be the orthogonal projection ah; by the mean value
theorem we obtain

|we . HAAZ|
lwe - (Id. — TI,)AZ|

sl [PAZ]] < (6 + ) [|AZ]

<
< tlwellre (IGZ™ N Res0 + IGN+1llRos50 + H T Ro 50 + 1 H N1 1| RovS0) -

Moreover:
Pho(Z(s))

072
so that, in the region where tlig—convexity (2) holds, one has

1
Ahozwe-AZ+/(1—s) AZ-AZ ds,
0

it
SIAZI? < e AZ] + |Aho],

where (similarly tor) we can sefl/ = M — Ha;;‘go llro (1D (y, 2, 1) [170,5, SO that one has

8ho(Z)

o7 VU M|v||?,  YoeR".

Finally, we have

M -
SlazIP < (5+W)HAZ||+t||we||Ro(HG(>K)IIRO,SO+HGN+1HRo,so

K)| K)|

+ [[HSS) | gy, + HHN+1HR0,SO> + el D5 o0 11555 Rosso £+ |Cns1 | Rovso t

+ ||D(>K)||Ro,50 t+ EHAP(SK)HROSO + ||AA(>K)||R0,SO + ||ABN+1||R0,SO )

which gives a bound on the norm &fZ. Notice that|GCX)|, |HE®)| and|AAGK) || are
of order ofe=%™, namely of orden”y once we sefV such thatV = [K /| log A|]. We finally
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define the constants;, C,, Cs, C, such that

el (IGZ  Nroso + 1GN1lr0s0 + IHC Dl o + 11l s )
+Cn11llRosso + 1D o5y < CLAY
K
1D 1 Ro.s0[18EF | Ross < Co
HAP(SK)HRmSO S C’3
IAACE) || oo+ |ABNsallrysy < CadY . (52)

With this setting we obtain:

M
—AZ|* < (6 +mr)|AZ|| + CLAN t 4+ Coept + Cye + Cy AN .
2

Based on the above formula and jpAY || < ||AZ||, we can draw the following conclusions:

1. for somep; > 0, ||AY|| < p; for t of the order ofA= if
Cy = 0, namely if [p5" || ro.so 15 o5 = 0, i.e. either||ps"™ || r,5, = 0 or
HS(SK)HRO,SO =0

2. for somep, > 0, ||AY|| < p for t of the order of the minimum betweexr™¥ and
(ep) ™ i G # 0, e [0 y 5017 ., # 0.

The two cases correspond to iteMsi:) of the statement of the Theorem. More precisely, let

us start with the cas€, = 0, i.e.pg(SK) = 0 or s(<K) = 0. Assuming that + mr < aMr,
Cae +C NN < BMr?,t < CllwyMr2 with C; > 0, for some positive constants 3, v, under

the assumption thatAZ|| < r for somer > 0, we obtain

IAZ|* < (o + B +~)Mr?,

vo| =

namely
[AY| < JAZ]| < V2(a+B+7)r =p (53)

with p; < Ry. Taking into account (48) and (15), one obtains iteraf the Theorem, namely
ly(t) —y(0)]| <20, \+p;  fort < Ty = Cyel™ (54)

with C(] = (’}/MT2)/01 ~ ~
Concerning itemi), sinceC, # 0leto > 0 be such thatfot < min (5w yM1?, g oM1?),
one has

M -
SIAZI? < (a+ B+ + o)
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namely

IAY | < [AZ]| < V2(a+ B+ +0)r=pa, (55)
with p, < Ry. According to (48) and (15), we obtain that
- Cy Cf
ly(t) — y(0)|| < 2C, A+ py  fort < T, = mln()\—]?[, 573) (56)

with Cy = (vMr?)/Cy, C) = (e M7r?)/Cs.
When theM—convexity condition is violated (i.e. the second condiitio (2)), by the assump-
tion of quasi—convexity the first inequality in (2) must hadlet 7" be eitherl; or T; as in (54),
(56) with ||w.|| r, replaced by

Co= sup |we(Y)||

IY =Yol[<p
with p beingp; or p; as in (53), (55). Repeating the same argument as in [22], sugmas that
there exists an escape timigsuch that| AZ|| = p and we show that this implies the inequality
we(Y(s)-AZ| < L|AZ|  VO<s<L1.

Then, using the same argument as for the convex case, weudenttiat|AZ| < p, thus
providing a contradiction. As before we have:
|we(Y(s)) - PAZ|

lwe(Y(5)) - (Id. — P)AZ|

(0 +mr) |AZ]|

<
< CNVT.

Then, we have
we(Y(8)) - AZ| < (6 +mr) |AZ|| + CLAN T .

If T =T, p= p1, we obtain

lwe(Y(s))-AZ| < (6 +mr) ||AZ|| +C AT
< aMrp, +yMr?
« i ~r 9
+ M
20+ +7) 2(a+ﬁ+7)) o«
LI|AZ]]

IA

L

IN

P1

o ~ o
(\/2(a+ﬁ+v) * sorrr M
If T =Ty, p = pa, assume thal = (o Mr?)/(Coep) (otherwise we recover the cae= T7).
Then,

r..2
wo(Y(5)) - AZ| < (6 + i) [AZ] + Coay ZUT
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Being

Cl)\N < z
026,u e

we obtain:
w(Y(5))- AZ] < (6+mr) [|AZ] + L oNtr?

< aMr|AZ|| 4+ yMr?

= ) + E )Mp3
V20@+B+~y+0) 20a+B+y+0) "

< LljAaZ|,

which is satisfied if the following condition holds:
L

IN

P2 ( > 5 )
\/2(a+ﬁ+'y+a) T 2(a+p+v+0)

O

Remark 5. Since we do not claim the result for amgy € A, but only locally under the
conditions (4) and (5), we do not need to cover the whole pbpaee and therefore we do not
need the analysis of the geography of the resonances, assiiadly done (see, e.g., [22]).

4  Applications of the normal forms

As we have seen in the Theorem, the stability time dependl@expressions of the terms
pS?K) and s(=%) appearing in the normal form equations, which represespeagetively, the
conservative resonant part of the action variables anditsgpdtive resonant part pertaining
to the angles, including the contribution of the modifiedjfrency. In this Section we analyze
several different examples, which well represent all gessituations which can be obtained
with different choices ofvg?K) ands(=%), We illustrate these models with a twofold goal: to
provide examples of casésandii) of the Theorem and to illustrate an explicit evaluation of
the resonant normal form. Since we do not aim to obtain stglestimates, we limit ourselves
to the computation of the normal form in the non—extendedelspace, i.e. in the variables
x andy only. The experiments performed in this Section will be dated by the theoretical
results of Section 5, where the estimates of the Theorembwikpplied, showing linear as
well as exponential stability times.

All examples considered in the forthcoming Sections 4 4-will have the following simple
form:

T = y+pfolz,t)
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y = —chg(z,t) —puly—mn),

wherefy; andh,, are periodic functions. In this case it is easy to decide Wwhfthe conditions

i) orii) of the Theorem are satisfied. Since we shall not need to cemBalrier modes less or
equal, or greater thali', we drop the superscript by writing,, py, s in place ofpg(SK),p@SK),
s(=K) Then, we can state thak = 0 whenever the resonant part o, . is zero, otherwise
px is different from zero. Concerning the functienwe can state that if the resonant part of
fo1 is not zero as well as if products of the fotfy; )" (h10.)" With 0 < m +n < N generate
resonant terms or zero average terms of oydethen the functiors is different from zero.

If the products( fo1)™ (hio.)" With 0 < m +n < N do not generate resonant terms or zero

average terms of order, thens = 0 up to the orderV.

4.1 Linear stability: casepx #0,s # 0
We consider the one—dimensional, time—dependent vecldmgiden by
T = y— p(sin(x —t) + sin(z))
= —e(sin(x —t) +sin(z)) — puly —n) . (57)

Following the calculations of the proof of the Resonant Nalrform Lemma, the conservative
transformation up to second order is defined by

Yi0(9,2,1) = sing(i)
o _ osin(2 —t)  sin(t)  sin(27)
o0 = opei—1) T 2 sp

while the dissipative contribution is given by

B (Y, X,t) = 0

cos(X
an (Y, X, t) = — 1(/ )
_ sin(2X) | sin(?)
BuY,Xt) = — wr Ty
cos(2X —t)  (2Y +1)cos(t) cos(2X)
Y, X,t) = — -
an(Y. X, 1) 2Y2(2Y — 1) e S

Bo2(Y, X, t) = 0

sin(t sin(2X
O‘02(}/7X7t) = Y€ ) + 4(1/2 ) :
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By choosing

€
nY)=Y+ 5y + Os(e, 1)

the normal form equations become

X o= v- I dnx 0
LT _ﬁ_ﬁ_’usm( —t) + Os(e, 1)
Y = —esin(X —t)+ Os(e, p),

where we recognize thaty (Y, X, ¢) = sin(X — t), py (Y, X, t) = —¢/(2Y3), s(Y, X,t) =
—sin(X —t) — #. The Hamiltonian function in the extended phase spaceiitbnjugated
to time, associated to the normalized equationg:fer 0, is given by

2 2

Y
H(Y, X, U, t) = 7+U+&—5COS(X—IS)+03(5,M).

Replacing the normalized equations into the total derreadif 74, one gets

% = —%,ue(l — cos(2X — 2t)> + Os(e, 1) . (58)
A typical orbit is shown in Figure 1, where we integrate themal form equations for =
1073 and g = 10~* with initial conditions X (0) = 0 andY (0) = 1 + 64/z. The left panel
of Figure 1 shows the lift of X, Y") to the universal coverage, while the middle panel shows
the orbit back—transformed to the old variablesy). The dynamics starts on a rotational
regime and drifts downwards; then it spirals along libnagéilinvariant curves until reaching the
attractor. The right panel of Figure 1 provides the variabbthe derivative of the normal form
Hamiltonian, which tends to zero as the orbit reaches tihachttr. The behavior is justified by
(58) as the resonance is approached.

0 1000 2000C 3000C 4000C 5000C 6000C 0 1 2 3 4 5 6 0 2000 4000 6000 8000 1000¢

X X t

Figure 1: Casey # 0, s # 0 associated to (57) far = 1073, . = 1072 and for the initial
conditionsX (0) = 0, Y (0) = 1+6+/¢. Left: the lift of the normal form variablegX, Y') to the
universal coverage. Middle: the trajectory in the origimafiables(x, ). Right: the variation
of the derivative of the normalized Hamiltonian.
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4.2 Linear stability at higher orders: casepx # 0,s # 0
We consider the vector field
&t = y— psin(z)
y = —e(sin(z —1) +sin(z)) — ply —n) . (59)

The conservative normal form is defined by

b, 5,8) = #
o _ sin(2T —t)  sin(t)  sin(27)
e T

The dissipative transformation becomes:
501 (Y7 X7 t) =0

X
oo (Y. X.1) = _cos}g )
sin(2X —t)  sin(t)  sin(2X)
Y X, t) = —
ull; X.1) 2Y(2Y —1) = 2Y 1y2
(1 -=3Y)cos(2X —t) (1 —=Y)cos(t) cos(2X)
Y X,t) =
an (¥, X, 1) 2227 — 112 R
502()/7 X7 t) =0
sin(2.X)
O{()Q(Y, X, t) = W .

Higher normal form terms associated to (59) can be obtamedsimilar way. For this model
resonant terms occur at higher orders; for this reason weigadhe following third order
normal form equations:

. 2 2 3 o - 2 2 . . B
X = y_g__ﬂ_+5(2 5Y)cos(X —t) e*u(6Y?+2Y — 1)sin(X — )

2Y3 2y 2(1—2Y)2Yy5 2(1 — 2Y)2Y’3
1 L,/ 1 2Y
- — - X —t
+ Sem <Y2 = 2Y)2) cos( )+ Ou(e, )
- , e3sin(X — 1)
Y = —ESIII(X - t) + W + 04(5,,u) .

Then is the same as in the previous Section, the Hamiltonian adsddo the normal form in
the extended phase space is given by

Y? g2 g3 cos(X —t)

H(Y;X,U,t):—+U—|———€COS(X—t)+m+O4(€,M),

2 4Y2
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while the derivative of the Hamiltonian becomes
dH(Y, X, U 1) ep’sin(X —1t)

dt 2Y

The normal form produces a resonant term at third order. Asmaequence, we observe a drift
of the action variables, but on longer time scales.

+ 04(6, u) .

11000 4.x10°1°
1.18¢f
1188 2.x10°%°
1.18€F 1.186¢[

>

dH/dt
=)

1.184F 1.1841

-2.x107%0
1.18(1

1.18CH

10
Al A ! ! 1176, . . n . . . ~4x107 n n n . =,
0 500 100C 1500 200¢ 0 1 2 3 4 5 6 0 2000 400C 6000 800C 1000¢
X x t

Figure 2: Casey # 0, s # 0 associated to (59) for = 1073, . = 1072 and for the initial
conditionsX (0) = 0, Y (0) = 1+6+/¢. Left: the lift of the normal form variablegX, Y') to the
universal coverage. Middle: the trajectory in the origimafiables(x, ). Right: the variation
of the derivative of the normalized Hamiltonian.

4.3 Exponential stability: casepx =0, s # 0

We consider an example for which the normal form equationsigepx = 0, buts # 0. To
this end, we modify the conservative part, so that the asttlmnot contain a resonant term at
first order:

T = y— p(sin(x —t) + sin(x))
= —e(sin(x — 6t) +sin(z)) — pu(y —n) . (60)

The conservative transformation to second order is given by

o sin(z — 6t sin(x
'le()(y,llf,t) = g ) + ~( )
y—06 Yy
_ sin(27) sin(22 — 6t)  sin(22 — 121) sin(6t)

87 AP — 3672 + 727 8(j — 6)3 720 — 1242

7~p20 (:&7 i‘7 t)
The dissipative transformation to second order takes thme fo

501 (Y7 X7 t) =0
cos(X)

aOl(Y7X7t) = - Y
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sin(2X — 7t) sin(2X — 6t) sin(2.X)

C4Y2-38Y +84 4Y2-36Y +72  4Y?
sin(2X —t)  sin(t) sin(5¢) sin(6t)

2Y —4Y2 | 2y | 10(Y —6) ' 12(Y —6)
cos(2X) cos(2X — Tt) cos(2X — 6t)

8Y3 | 2(7T—2Y)2(Y —6) ' 8(Y —6)(Y —3)?
N cos(2X —t) (Y +2)cos(t) (Y —16)cos(5t) (Y — 18)cos(61)
2(1— 2V )2Y 2y2 50(Y — 6)2 72(Y — 6)2

502()/7 X, t) =0
sin(2X)  sin(t)

b1 (Y, X, t)

Oéll(Y, X, t) =

Y, X =
Oé02( ) 7t) 472 Y
The resulting normal form up to second order becomes
. 2 g2 M2
X = Y- - —— —pusin(X —t)+ 0O
2V 67 a3 2y pusin( ) + Os(e, 1)
Y = O3<57M) )

whereas the drift function is given by
S
Y)=Y+-—=+0 :
n(Y) =Y + 50+ Os(e,m)
The Hamiltonian function in normalized variables corresgiog tox = 0 in the extended
phase space turns out to be

y? (Y2 —6Y +18) &2
Y X Ut)=—+T @) X
H( 9 y Uy ) 9 + + 2<Y— 6)2Y2 + 3(6,,&),
the time derivative of the Hamiltonian under the dissipaflow becomes
dH(Y, X, U,t
HOEXUD gy

which shows the preservation of the energy up to the thirdroFdgure 3 displays the behavior
of the lift of (X, Y') to the universal covering, the plot in the original variabdad the graph of
the derivative of the Hamiltonian versus time. The resutivehthat the dynamics takes place
on an adiabatic quasi—periodic solution, which is consisigth the theoretical expectation.

4.4 Exponential stability: casepx # 0,s =0

As an example which generates a normal form with# 0, s = 0, we consider the differential
equations

& = y— psin(6t)
= —e(sin(x —t) +sin(z)) — puly —n) . (61)
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Figure 3: Casey = 0, s # 0 associated to (60) far = 1073, x = 1073 and for the initial
conditionsX (0) = 0, Y (0) = 1+6+/¢. Left: the lift of the normal form variablegX, Y') to the
universal coverage. Middle: the trajectory in the origimafiables(x, ). Right: the variation
of the derivative of the normalized Hamiltonian.

The conservative transformation is given by

,lvblO(g) ‘%7 t) = Slng(j)
(. 5.8) = sin(2z)  sin(2Z —t)  sin(t)
20 ) bl - - - - )

8 2P 2
while the dissipative transformation takes the form
501 (Y7 X7 t) =0
1
an (Y, X, t) = 5 cos(6t)
Csin(X —6t)  sin(X —7¢)  sin(X +5t)  sin(X +6t)

Y, Xt
ul; X,1) 12V —2Y?2  84—12Y ' 12Y +60  2Y(Y +6)
(3—=Y)cos(X —6t) (Y +3)cos(X +6t) cos(X —T7t) cos(X + 5t)
OZH(Y, X, t) + - -
Y —6)2y? Y2(Y +6)2 12(Y — 72 12(Y +5)2
BOZ(Ya X7 t)

OZOQ(Y,X, t) = 0.

The normal form equations are given by

=
' 2Y3
Y = —esin(X —t)+ Os(e, p),

X = Y- + Os(e, 1)

with the drift function provided by)(Y, X, t) = Y — e sin(X —t) +Os(e, 1). Note that we

1w
produce linear conservative resonant terms in the actimrig)o resonant dissipative terms in
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the angles. The Hamiltonian function associated to the abfonm equations in the extended
phase space becomes

Y2 g2
H(KX,U,t) = 7 +T+m —€COS(X—t) +03(€,M) y
while the time derivative of the Hamiltonian flow becomes;
dH(Y, X, U,t
# = 03(57 M) )

yielding the preservation of the Hamiltonian up to the ndinaéion order. Figure 4 shows the
behavior of the lift of(X, Y) to the universal covering, the graph in the original vaeatdnd
the plot of the derivative of the Hamiltonian versus times@in this case, the result shows
that the dynamics takes place on an adiabatic quasi—pesotiition, which is consistent with
the theoretical expectation.

1.19¢ ; T T T T T T 0.01¢
1.19(] 1

1.18¢F
1.18¢ 1 0.00Er

1.18¢€r 1 1.18€

dHydt
°
=
8

> 1184 1 > 1184

1182+

1.18C
1.18(F

. h . A 1178, . . : . . .1 -0.01C
0 500 100¢ 150C 0 1 2 3 4 5 6 0 200 400 600 800 100C

X X t

Figure 4: Casey # 0, s = 0 associated to (61) far = 1073, . = 1072 and for the initial
conditionsX (0) = 0, Y(0) = 1+46+/¢. Left: the lift of the normal form variablesX, V) to the
universal coverage. Middle: the trajectory in the origimafiables(x, ). Right: the variation
of the derivative of the normalized Hamiltonian.

5 Application of the stability estimates

In this Section we implement the Theorem to obtain estimateke variation of the actions as
given in Section 3. Let us fix the initial data as well-gss, (and related domain’s parameters),
K, 6. We assume that the frequency satisfies (4), (5) witletermined by (5). The smallness
conditions on the parametersy, saye < ey, 1 < g, cOme from (20), (23), (25), (28), (30),
(33), (38), (39), (41), (43).

We define the constan€; andCy; as in (46), (47) and we sét, = C + Cc. We recall that
7o, IV, K are related by the expression

N
To = E |10g)\| .
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- Sec. 4.1 Sec. 4.2 Sec. 4.3 Sec. 4.4
€0 6.-107° 6.-107° 6.-107° 6.-107°
Lo 6.-107° 6.-107° 6.-107° 1.9-1074

To 1.458 1.458 1.458 1.285

Cy 3.16 - 10* 3.428 101  1.714-10%  1.087

C, 1.052 1.052 1.265 3.323-107*
Cy 2.117-107% 2.233-10"% 1.359-10"% 2.158-107*
C, 5.056 - 1073 3.059-10"° 0 0

C, 2.01 2.01 3.208-107° 2.01

Cy 3292107 3.292-107° 1.006-10°. 3.283 .10
JAY| 2.408-1072 2.408-1072 9.369-1073 2.408- 1072
Ayl 2.421-1072 2.421-1072 9.521-107% 2.421-1072
T 2.692-10° 4.43-107  1.699-10" 3.309- 10°

Table 1: The main quantities of the Theorem for the examd&gotion 4 from the remainder
of a third order normal form. The parameters and initial ¢bods for all columns aret, = 0,
yo = 1.01, 79 = 0.05, 7y = 4.9-1072, Ty = 2.45-1072, Ry = 2.4-1072, 590 = 0.1, 50 = 5-1073,
So=2.5-1073, K =20, = 0.01.

From (15) we determin€’,, while the constant§’;, Cs, Cs, Cy are computed as in (52).
Table 1 provides the main quantities involved in the Theattenmugh the application of a third
order normal form in the extended phase space. In partjdtfaovides the variatioff AY ||
of the normalized variables, the variatiphy|| = ||y(t) — y(0)|| of the original variables and
the stability timeT’, which perfectly agrees with the theoretical result (Imeaexponential
stability time) of the Theorem.

The results have been validated by a numerical integrafitimeoequations of motion. Due to
computer limitations, for the cases described in SectioBadd 4.4 we had to stop to a time
at most equal ta0®. Up to such integration times the numerical results are lirefyreement
with the analytical results.

33



6 Appendix A

We briefly review the conditions which must be satisfied bygheameters, u, so that the
transformation from original to intermediate variables,veell as that from intermediate to
final variables can be inverted; moreover, we provide camston the parameters so that the
non—resonance conditions in the intermediate and finahlkas are satisfied. Compare also
with [8] and [12].

6.1 Inversion of the conservative transformation

With reference to (31), we invert the first transformation as
x =i+ T@N (5 7,1 (62)
provided that
70 [[05™)7,50€%065F < 1,
with
1T 5050 < NS 17,00 -

for 7o < T, 0g < Sg, Sg = Sg — 0p.

6.2 Non-resonance condition after the conservative transfmation

Taking into account (5), we want that the non—-resonanceitionds satisfied in the interme-
diate variables, say far > 0:

a
w(@) - k+ml >,k +|m| < K. (63)
The second of (31) can be inverted as
j=y+eRM(y,z,1), (64)
for a suitable functiolR™") provided
1
70 Hw:(vN)HFo,som <1 )
for 7, < 7o with
el R Ml 50 < 15 17,50 -
Then we have

w(@) - km| >3

a
e < .
2K || R[5 s llwy I
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6.3 Inversion of the dissipative transformation
With reference to (12), the first equation can be invertedigexl
70 | o™ 7050 €005 < 1,
whered, < 3. Inverting the equation as
=X+ A=N(G X 1),

we have
TA®M| 2 o —s < ™|

Thus we invert the second of (12) as

70,50

=Y +AUN(Y, X 1),

provided
1

70 |AW M| |7 50— < 1
|| H 075077_0 _ RO Y
with So < §p — 50, Ry < 7o, being
||A(y7N)||R0,So < ||A(y7N)||fo,So .
Notice thatA®) can be bounded as

A% 5,5 < 1B g + 185 oo 1Al -

Similar for the third equation in (12).

6.4 Non-resonance condition after the dissipative transfmation

We now turn to the fulfilment of the non—resonant conditinrihe new set of variables
lw(Y)-k+m| >0, k| +|m| < K.
Through the transformation
Y =g+ BMN(g, &, tie, )
and using (63) one finds
lw(Y) - k+m|>

Y

RS

provided that
a

K HwaToHB(N)HfOSO < 4
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7 Appendix B

From properties of analytic functions one can prove theofailhg result (see also [8]) on the
decay of the tail of the Fourier series.

Lemma B.1.Let f = f(y,z,t) be an analytic function on the domaih,(A) x Cj, (T ).
Let fR(y,x,t) = 3 mezeer jimisx Jim(y) €970 and let0 < oy < so. Then, there
exists a constartt, = C,(oy, K), such that

||f>K||7”0,So S Ca||f||T0,S()+006_(K+1)UO ) (65)
with
l+e 2 o
Ca = €(K+1)70 (m) . (66)
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