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Erratum: Random Attractors of Stochastic Lattice Dynamical

Systems Driven by Fractional Brownian Motions. [Int. J.

Bifurcation Chaos 23, 1350041 (2013)]

Anhui Gu

In the recent paper [1] we have obtained the

existence of a random attractor which turns out

to be a singleton sets random attractor. The

result relies on the theory in [2], that is the

existence of a compact pullback absorbing set,

which just deals with random dynamical sys-

tems in finite dimensional cases.

However, in the first-order lattice dynami-

cal systems driven by fractional Brownian mo-

tions, we considered it in the framework of in-

finite dimensional square-summable sequences

space ℓ2. The main result need few changes

because we cannot obtain it based on Theorem

1 in [1] but on the assumptions of the nonlin-

ear function f . The random dynamical system

generated by the system has a unique random

equilibrium, all solutions converge pathwise to

each other, so the random attractor, which con-

sists of a unique random equilibrium, is proven

to be a singleton sets random attractor. With

the misused theory several important parts of

the paper should be corrected as:

• The last sentence in the Abstract sec-

tion should be “In our case, the random

dynamical system has a unique random

equilibrium, which constitutes a single-

ton sets random attractor.”

• In page 7, from line 15 to 29, the main

statement should be adjusted to “Assume

that the conditions on f are satisfied.

Then the random dynamical system ϕ

has a unique random equilibrium, which

constitutes a singleton sets random at-

tractor.”
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This paper is devoted to considering the stochastic lattice dynamical systems (SLDS) driven by
fractional Brownian motions with Hurst parameter bigger than 1/2. Under usual dissipativity
conditions these SLDS are shown to generate a random dynamical system for which the existence
and unique of a random attractor is established. Furthermore, the random attractor is in fact a
singleton sets random attractor.
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1. Introduction

The purpose of this paper is to investigate the long-
term behavior for the following SLDS

dui(t)

dt
= κ(ui−1 − 2ui + ui+1)− λui + fi(ui)

+gi + σi
dβH

i (t)

dt
, i ∈ Z, (1)

where Z denotes the integer set, u = (ui)i∈Z ∈ ℓ2, κ
and λ are positive constants, fi are smooth func-
tions satisfying some dissipative conditions, g =
(gi)i∈Z ∈ ℓ2, σ = (σi)i∈Z ∈ ℓ2, and {βH

i : i ∈ Z}
are independent two-sided fractional Brownian mo-
tions (fBms) with Hurst parameter H ∈ (1/2, 1).

Recently, the dynamics of infinite lattice
dynamical systems have drawn much atten-
tion of mathematicians and physicists, see e.g.
[Bates et al., 2001, 2006; Zhou , 2002, 2003, 2004;
Zhou &Shi , 2006; Wang , 2006; Lv & Sun, 2006a,b;
Huang, 2007; Wang et al., 2008; Caraballo & Lu ,

2008; Zhao & Zhou, 2009; Wang et al., 2010;
Han et al., 2011; Han , 2011a,b] and the references
therein. Since most of the realistic systems involve
noises which may play an important role as intrin-
sic phenomena rather than just compensation of de-
fects in deterministic models, SLDS then arise natu-
rally while these random influences or uncertainties
are taken into account.

Since Bates et al. [Bates et al., 2006] initiated
the study of SLDS, many works have been done
regarding the existence of global random attrac-
tors for SLDS with white noises on lattices Z (see
e.g. [Lv & Sun, 2006a,b; Huang, 2007; Wang et al.,
2008; Caraballo & Lu , 2008; Zhao & Zhou, 2009;
Wang et al., 2010]). Later, the existence of global
random attractors have been extended to other
SLDS with additive white noises, for example, first-
order SLDS on Z

k [Lv & Sun, 2006a], stochas-
tic Ginzburg-Landau lattice equations [Lv & Sun,
2006b], stochastic FitzHugh-Nagumo lattice equa-
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tions [Huang, 2007; Wang et al., 2008], second-
order stochastic lattice systems [Wang et al., 2010]
and the first (or second)-order SLDS with a multi-
plicative white noise [Caraballo & Lu , 2008; Han ,
2011a]. Zhao and Zhou [Zhao & Zhou, 2009] gave
some sufficient conditions for the existence of a
global random attractor for general SLDS in the
non-weighted space R of infinite sequences and pro-
vided an application to damped sine-Gordon lattice
system with additive noises. Very recently, Han, et
al. [Han et al., 2011] provided some sufficient con-
ditions for the existence of global compact random
attractors for general random dynamical systems in
weighted space ℓpρ (p > 1) of infinite sequences, and
their results are applied to second-order SLDS in
[Han , 2011b].

However, as can be seen that all the works
above are considered in the frameworks of the classi-
cal Itö theory of Brownian motion. There are no re-
sults on these systems when they are perturbed by a
fractional Brownian motion (fBm) to the best of our
knowledge. FBm appears naturally in the modeling
of many complex phenomena in applications when
the systems are subject to “rough” external forcing.
An fBm is a stochastic process which differs sig-
nificantly from the standard Brownian motion and
semi-martingales, and other classically used in the
theory of stochastic process. As a centered Gaus-
sian process, it is characterized by the stationarity
of its increments and a medium- or long-memory
property. It also exhibits power scaling with expo-
nentH. Its paths are Hölder continuous of any order
H ′ ∈ (0,H). An fBm is not a semi-martingale nor a
Markov process. So an fBm is the good candidate to
model random long term influences in climate sys-
tems, hydrology, medicine and physical phenomena.
For more details on fBm, we can refer to the books
[Biagini et al. , 2008; Mishura , 2008] for its further
development.

The goal of this article is to establish the
existence of a random attractor for SLDS with
the nonlinearity f under some dissipative condi-
tions and driven by fBms with Hurst parame-
ter H ∈ (1/2, 1). By borrowing the main ideas
of the proofs in [Garrido-Atienza et al., 2009], we
firstly define a random dynamical system by us-
ing the possibility of a pathwise interpretation of
the stochastic integral with respect to the fBms.
This method is based on the fact that a stochas-
tic integral with respect to an fBm with Hurst pa-
rameter H ∈ (1/2, 1) can be defined by a gen-
eralized pathwise Riemann-Stieltjes integral (see

e.g. [Zahle , 1998; Decreusefond & Ustunel , 1999;
Nualart & Rascanu, 2002; Tindel et al. , 2003]).
And then we show the existence of a pullback
absorbing set for the random dynamical system
which achieved by means of a fractional Ornstein-
Uhlenbeck transformation and Gronwall lemma.
Since every trajectory of the solutions of sys-
tem (1) cannot be differentiated, we have to con-
sider the difference between any two solutions
among them, which is pathwise differentiable (see
[Garrido-Atienza et al., 2009]). Due to the station-
arity of the fractional Ornstein-Uhlenbeck solution,
we get the random attractor finally. All solutions
converge pathwise to each other, so the random at-
tractor is proven to be a singleton sets random at-
tractor.

The paper is organized as follows. In Sec. 2,
we recall some basic concepts on random dynami-
cal systems. In Sec.3, we give a unique solution to
system (1) and make sure that the solution gener-
ates a random dynamical system. We establish the
main result, that is, the random attractor generated
by equation (1) turns out to be a singleton sets ran-
dom attractor in Sec.4.

2. Random dynamical systems and
Random attractor

In this section, we introduce some basic concepts
related to random dynamical systems and random
attractor, which are taken from [Crauel et al., 1997;
Arnold, 1998].

Let (E, ‖ · ‖E) be a separable Hilbert space and
(Ω,F ,P) be a probability space.

Definition 2.1. A metric dynamical system
(Ω,F ,P, θ) with two-sided R consists of a mea-
surable flow

θ : (R × Ω,B(R)⊗F) → (Ω,F),

where the flow property for the mapping θ holds for
the partial mappings θt = θ(t, ·):

θt ◦ θs = θtθs = θt+s, θ0 = idΩ

for all s, t ∈ R, and θP = P for all t ∈ R.

Definition 2.2. A continuous random dynamical
system (RDS) ϕ on E over (Ω,F ,P, (θt)t∈R) is a
(B(R+)×F×B(E),B(E))-measurable mapping and
satisfies

(i) ϕ(0, ω) is the identity on E;
(ii) ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all s,

t ∈ R
+, ω ∈ Ω;
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(iii) ϕ(t, ω) is continuous on E for all (t, ω) ∈
R
+ × Ω.

A universe D = {D(ω), ω ∈ Ω} is a collection of
nonempty subsets D(ω) of E satisfying the follow-
ing inclusion property: if D ∈ D and D′(ω) ⊂ D(ω)
for all ω ∈ Ω, then D′ ∈ D.

Definition 2.3. A family of A = {A(ω), ω ∈ Ω} of
nonempty measurable compact subsets A(ω) of E is
called ϕ- invariant if ϕ(t, ω,A(ω)) = A(θtω) for all
t ∈ R

+ and is called a random attractor if in addi-
tion it is pathwise pullback attracting in the sense
that

H∗
d(ϕ(t, θ−tω,D(θ−tω)),A(ω)) → 0 as t → ∞

for all D ∈ D. Here H∗
d is the Hausdorff semi-

distance on E.

Definition 2.4. A random variable r : Ω → R is
called tempered if

lim
t→±∞

log |r(θtω)|

|t|
= 0 P− a.s.

and a random set {D(ω), ω ∈ Ω} with D(ω) ∈ E

is called tempered if it is contained in the ball
{x ∈ R : |x| ≤ r(ω)}, where r is a tempered random
variable.

Here we will always work with the attracting
universe given by the tempered random sets.

Definition 2.5. A family B̂ = {B(ω), ω ∈ Ω} is
said to be pullback absorbing if for every D(ω) ∈ D,
there exists TD(ω) ≥ 0 such that

ϕ(t, θ−tω,D(θ−tω)) ⊂ B(ω) ∀t ≥ TD(ω). (2)

Theorem 1. (See [Schmalfuß, 1992; Crauel et al.,
1997; Arnold, 1998].) Let (θ, ϕ) be a continuous
RDS on Ω × E. If there exists a pullback absorb-
ing family B̂ = {B(ω), ω ∈ Ω} such that, for every
ω ∈ Ω, B(ω) is compact and B(ω) ∈ D, then the
RDS (θ, ϕ) has a random attractor

A(ω) =
⋂
τ>0

⋃
t>τ

ϕ(t, θ−tω)B(θ−tω).

Note that if the random attractor consists of sin-
gleton sets, i.e. A(ω) = {u∗(ω)} for some random
variable u∗, then u∗(t)(ω) = u∗(t)(θtω) is a station-
ary stochastic process.

3. SLDS with FBms

We now firstly introduce as an example of metric
dynamical system a special noise that is called frac-
tional Brownian motion. Given H ∈ (0, 1), a contin-
uous centered Gaussian process βH(t), t ∈ R, with
the covariance function

EβH(t)βH(s) =
1

2
(|t|2H+|s|2H−|t−s|2H), t, s ∈ R

is called a two-sided one-dimensional fractional
Brownian motion, and H is the Hurst parameter.
For H = 1/2, β is a standard Brownian motion,
while for H 6= 1/2, it is neither a semimartingale
nor a Markov process. Moreover,

E|βH(t)− βH(s)|2 = |t− s|2H , for all s, t ∈ R.

Here, we assume that H ∈ (1/2, 1) through-
out the paper. When H ∈ (0, 1/2) we cannot define
the stochastic integral by a generalized Stieljes inte-
gral and, therefore, dealing with such values of the
Hurst parameter seems to be much more compli-
cated. It is worth mentioning that when H = 1/2
the fBm becomes the standard Wiener process, the
random dynamical system generated by SLDS has
been studied in [Bates et al., 2006].

Using the definition of βH(t), Kolmogorov’s
theorem ensures that βH has a continuous version,
and almost all the paths are Hölder continuous of
any order H ′ ∈ (0,H) (see [Kunita, 1990]). Thus,
we can consider the canonical interpretation of an
fBm: denote Ω = C0(R, ℓ

2), the space of continuous
functions on R with values in ℓ2 such that ω(0) = 0,
equipped with the compact open topology. Let F
be the associated Borel-σ-algebra and P the distri-
bution of the fBm βH , and {θt}t∈R be the flow of
Wiener shifts such that

θtω(·) = ω(·+ t)− ω(t), t ∈ R.

Due to [Maslowski & Schmalfuß, 2004; Garrido-Atienza et al.,
2010], we know that the quadruple (Ω,F ,P, θ) is a
metric dynamical system which is ergodic. Further-
more, it holds that

βH(·, ω) = ω(·),

βH(·, θsω) = βH(·+ s, ω)− βH(s, ω)

= ω(·+ s)− ω(s). (3)

We consider the SLDS

dui(t)

dt
= κ(ui−1 − 2ui + ui+1)− λui + fi(ui) + gi

+σi
dωi(t)

dt
, i ∈ Z, (4)
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where Z denotes the integer set, u = (ui)i∈Z ∈ ℓ2, κ
and λ are positive constants, fi are smooth func-
tions satisfying some dissipative conditions, g =
(gi)i∈Z ∈ ℓ2, σ = (σi)i∈Z ∈ ℓ2, and {ωi = βH

i : i ∈
Z} are independent two-sided fractional Brownian
motions with Hurst parameter H ∈ (1/2, 1). Then,
(4) can be understood as the pathwise Riemann-
Stieltjes integral equations

ui(t) = ui(0) +

∫ t

0
(κ(ui−1(s)− 2ui(s) + ui+1(s))

−λui(s) + fi(ui(s)) + gi)ds+ σiωi(t), i ∈ Z.

(5)

Let ei ∈ ℓ2 denote the element having 1 at position
i and 0 at other components. Then

W (t) ≡ W (t, ω) =
∑
i∈Z

σiωi(t)e
i with (σi)i∈Z ∈ ℓ2,

(6)
is the special noise with values in ℓ2 defined on the
probability space (Ω,F ,P).

Assumptions on the nonlinearity fi. As-
sume fi : R → R to be continuously differentiable.
Let f be the Nemytski operator associated with fi,
i.e. for all x = (xi)i∈Z ∈ ℓ2, let f(x) = (fi(xi))i∈Z.
Then we have f(x) ∈ ℓ2 (see [Bates et al., 2006]).
Assume f satisfies a one-sided dissipative Lipschitz
condition

〈x−y, f(x)−f(y)〉 ≤ −L|x−y|2, for all x, y ∈ ℓ2,
(7)

where L > 0, and a polynomial growth condition
along with its derivative, i.e.,

|f(x)|+ |Df(x)| ≤ K(1+ |x|p), for all x ∈ ℓ2, (8)

p ≥ 1 and a positive constant K. Here, we remark
that we could consider more general dissipativity
conditions, which would lead to nontrivial setvalued
random attractors. However, to avoid rather techni-
cal details, we will restrict here to the dissipativity
conditions (7) and (8).

For x = (xi)i∈Z ∈ ℓ2, define A,B,B∗ to be lin-
ear operators from ℓ2 to ℓ2 as follows:

(Ax)i = −xi−1 + 2xi − xi+1,

(Bx)i = xi+1 − xi, (B∗x)i = xi−1 − xi, i ∈ Z.

It is easy to show that A = BB∗ = B∗B,
〈B∗x, x′〉 = 〈x,Bx′〉 for all x, x′ ∈ ℓ2, which implies
that 〈Ax, x〉 ≥ 0.

The system (4) with initial values u0 =

(u0,i)i∈Z ∈ ℓ2 may be written as an equation in ℓ2

u(t) = u0 +

∫ t

0
(−κAu(s)− λu(s) + f(u(s)) + g)ds

+W (t)

:= u0 +

∫ t

0
G(u(s))ds +W (t),

t ≥ 0, ω ∈ Ω, (9)

where G(u(t)) := −κAu(t)− λu(t) + f(u(t)) + g.

Proposition 1. Let the above assumptions on f be
satisfied and T > 0. Then system (9) has a unique
pathwise solution u = (u(t))t≥0. In addition that the
solution satisfies

sup
t∈[0,T ]

|u(t)| ≤ M(1 + |u0|+
∑
i∈Z

sup
τ∈[0,T ]

|βH
i (τ)|

+
∑
i∈Z

sup
τ∈[0,T ]

|βH
i (τ)|p + |g|), (10)

for all T > 0, where M is a positive constant and
is independent of T .

Proof. Let v(t) = u(t) −W (t), t ≥ 0, then system
(9) has a solution u = (u(t))t≥0 for all ω ∈ Ω if and
only if the following equation

v(t) = u0 +

∫ t

0
(−κAv(s)− λv(s) + f(v(s) +W (s))

+g − κAW (s)− λW (s))ds. (11)

has a unique pathwise solution for t ∈ [0, T ]. How-
ever, since the integrand is pathwise continuous, the
fundamental theorem of calculus says that the left
hand side of (11) is pahtwise differentiable. Thus,
for fixed ω ∈ Ω, equation (10) is the pathwise ran-
dom ordinary differential equation (RODE)

dv(t)

dt
(ω) = −κAv(t) − λv(t) + f(v(t) +W (t))

+g − κAW (t)− λW (t)

:= G̃(t, v(t))(ω) := G̃(v(t) +W (t)),

for t ≥ 0, v0(ω) = u0(ω). (12)

Since G̃ : [0,∞)×ℓ2 → ℓ2 is continuous in t and con-
tinuous differentiable in v, this RODE has a unique
local solution in a small interval [0, τ(ω)], which
means that (9) has a unique local solution in the
same small interval [0, τ(ω)], see e.g. Theorem 2.1.4
in [Stuart & Humphries , 1996].

To see that (9) has a unique solution for ev-
ery t ≥ 0, we prove at first the a priori estimate
(10). Suppose that u = (u(t))t≥0 solves (9) on
the interval [0, T ]. This implies that the process
v(t) = u(t)−W (t) solves (11) on the interval [0, T ].
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By the one-sided dissipative Lipschitz condition and
Hölder inequality, we obtain

2|v(t)|
d|v(t)|

dt
=

d

dt
|v(t)|2

= 2〈v(t), G̃(v(t) +W (t))〉

= 2〈v(t),−κAv(t) − λv(t) + f(v(t) +W (t))

+g − κAW (t)− λW (t)〉

≤ −2(λ+ L)|v(t)|2 + 2|f(W (t))||v(t)|

+2(|g| − |κAW (t)| − |λW (t)|)|v(t)|,

that is

d|v(t)|

dt
≤ −(λ+ L)|v(t)|+ c0(|g| + sup

τ∈[0,T ]
|W (τ)|

+ sup
τ∈[0,T ]

|W (τ)|p), t ∈ [0, T ],

where c0 is a positive constant depends on
κ, λ,K,maxj∈Z |σj | and maxj∈Z |gj |. By Gronwall
lemma it yields that

|v(t)| ≤ |u0|e
−λt +

c0
λ
(1− e−λt)(|g| + sup

τ∈[0,T ]
|W (τ)|

+ sup
τ∈[0,T ]

|W (τ)|p), t ∈ [0, T ].

Since λ > 0, we have

|v(t)| ≤ |u0|+
c0
λ
(|g| + sup

τ∈[0,T ]
|W (τ)|

+ sup
τ∈[0,T ]

|W (τ)|p),

that is

sup
t∈[0,T ]

|v(t)| ≤ M(|g|+ sup
τ∈[0,T ]

|W (τ)|

+ sup
τ∈[0,T ]

|W (τ)|p), t ∈ [0, T ],

where the constantM depends on κ, λ,K,maxj∈Z |σj|
and maxj∈Z |gj |. The result of (10) follows then
by using the relation v(t) = u(t) + W (t) for
t ∈ [0, T ]. As a consequence of estimate (10) the
local unique solution to (9) can be extended to a
global unique solution (see e.g. Theorem 2.1.4 in
[Stuart & Humphries , 1996]). �

We consider (1) with the linear drift term
G(u(t)) = −λu(t), that is

du(t) = −λu(t)dt+ dW (t), λ > 0, (13)

which is called the fractional Ornstein-Uhlenbeck
process, where W (t) denotes a one-dimensional

fractional Brownian motion defined in (6). It has
the explicit solution

u(t) = u0e
−λt + e−λt

∫ t

0
eλsdW (s). (14)

Taking the pathwise pullback limit, we get the
stochastic stationary solution

ū(t) = e−λt

∫ t

−∞

eλsdW (s), t ∈ R, (15)

which is called the fractional Ornstein-
Uhlenbeck solution. Based on Lemma 2.6 in
[Maslowski & Schmalfuß, 2004] and Lemma 1 in
[Garrido-Atienza et al., 2009], we have the prop-
erty

Lemma 1. For all ω ∈ Ω the Riemann-Stieltjes in-
tegrals

e−λt

∫ t

−∞

eλsdW (s), t ∈ R,

are well defined in ℓ2. Moreover, for all ω ∈ Ω, we
have

|e−λt

∫ t

−∞

eλsdW (s)| ≤ 4ρ(ω)(1 + |t|)2, t ∈ R,

where the random constant ρ(ω) > 0 and satisfying

|W (t)| ≤ ρ(ω)(1 + |t|2), for t ∈ R, ω ∈ Ω̄. (16)

Here, Ω̄ ∈ F is a (θt)t∈R-invariant set of full mea-
sure.

Proof. We know that λ > 0, (σi)i∈Z ∈ ℓ2. The proof
is similar to Lemma 2.6 in [Maslowski & Schmalfuß,
2004] and Lemma 1 in [Garrido-Atienza et al.,
2009], thus we omit it here.

�

Since the mapping of θ on Ω̄ has the same prop-
erties as the original one if we choose the trace σ-
algebra with respect to Ω̄ to be denoted also by
F , we can change our metric dynamical system
with respect to Ω̄, and still denoted by the symbols
(Ω,F ,P, (θt)t∈R).

Now, we will verify that the solution of system
(1) generates a continuous RDS.

Proposition 2. The solution of (1) determinants a
continuous random dynamical system ϕ : R+ ×Ω×
ℓ2 → ℓ2, which is given by

ϕ(t, ω, u0) = u0 +

∫ t

0
(−κAu(s)− λu(s)

+f(u(s)) + g)ds +W (t, ω). (17)



August 1, 2018 20:7 fBm˙RA12

6 ANHUI GU

Proof. Note that (3) is satisfied for ω ∈ Ω and from
the definition of (θt)t∈R, we have the property

W (τ + t, ω) = W (τ, θtω)+W (t, ω) for all t, τ ∈ R.
(18)

From Proposition 1 we know that ϕ solves (1), thus
ϕ is measurable and satisfies ϕ(0, ω, ·) = idℓ2 . It re-
mains to verify the cocycle property in Definition
2.2. Let t, τ ∈ R

+, ω ∈ Ω and u0 ∈ ℓ2, denote
G(u(t))(ω) := −κAu(t) − λu(t) + f(u(t)) + g, it
yields from (3) that

ϕ(t+ τ, ω, u0)

= u0 +

∫ t+τ

0
G(u(s))(ω)ds +W (t+ τ, ω)

= u0 +

∫ t

0
G(u(s))(ω)ds +W (t, ω)

+

∫ t+τ

t

G(u(s))(ω)ds +W (τ, θtω)

= u(t) +

∫ τ

0
G(u(s))(θtω)ds +W (τ, θtω)

= ϕ(τ, θtω, ·) ◦ ϕ(t, ω, u0), (19)

which completes the proof. �

4. Existence of a Random attractor

In this section, we will prove the existence of a ran-
dom attractor for the RDS defined in Proposition 2.
The main proof is based on the first part in section
4 in [Garrido-Atienza et al., 2009].

Let u,w be any two solutions of system (1).
Their sample paths are not differentiable, but the
difference satisfies pathwise

u(t)−w(t) = u0 − w0 +

∫ t

0
(−κA(u(s)− w(s))

−λ(u(s)− w(s))

+(f(u(s))− f(w(s))))ds, t ≥ 0,

and again, since the integrand is pathwise continu-
ous, the fundamental theorem of calculus indicates
that the left hand side is pathwise differentiable and
satisfies

d

dt
(u(t) −w(t))

= −κA(u(s)− w(s)) − λ(u(s)− w(s))

+(f(u(s))− f(w(s))), t ≥ 0. (20)

Now we use condition (7) again, we obtain from (20)

that

d

dt
|u(t)− w(t)|2

= 2〈u(t)− w(t),−κA(u(s) − w(s))

−λ(u(s)−w(s)) + (f(u(s))− f(w(s)))〉

≤ −2λ|u(t)− w(t)|2.

Thus pathwise we have

|u(t)− w(t)| ≤ |u0 −w0|e
−λt → 0, as t → ∞.

That is to say that all solutions converge pathwise
forward to each other in time.

Now, we consider the difference u(t)−ū(t). This
is also pathwise differentiable, since the paths are
continuous and satisfy the integral equation

u(t)− ū(t) = u0 − ū0 +

∫ t

0
(−κAu(s)− λ(u(s)

−ū(s)) + f(u(s)))ds,

which is equivalent to the pathwise differential
equation

d

dt
(u(t)− ū(t))

= −κAu(s)− λ(u(s)− ū(s)) + f(u(s)), t ≥ 0.

By using (7), it follows that

d

dt
|u(t)− ū(t)|2 = 2〈u(t)− ū(t),−κAu(s)

−λ(u(s)− ū(s)) + f(u(s))〉

≤ −2λ|u(t)− ū(t)|2

+2|u(t)− ū(t)||f(ū(t))|,

that is

d

dt
|u(t)− ū(t)| ≤ −λ|u(t)− ū(t)|+ |f(ū(t))|,

and hence

|u(ω)− ū(ω)|

≤ |u0(ω)− ū0(ω)|e
−λt

+e−λt

∫ t

0
eλs|f(ū(s))(ω)|ds. (21)

Let us check that the family of balls centered on
ū0(ω) with the random radius

̺(ω) := 1 +

∫ 0

−∞

eλs|f(ū(s))(ω)|ds (22)

is a pullback absorbing family for the random dy-
namical system generated by system (1).
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Due to the assumptions on f and Lemma 1,
the radius defined in (22) is well defined. Now, by
replacing ω by θ−tω in (21), we get

|u(θ−tω)− ū(θ−tω)|

≤ |u0(θ−tω)− ū0(θ−tω)|e
−λt

+

∫ t

0
eλ(s−t)|f(ū(s))(θ−tω)|ds

= |u0(θ−tω)− ū0(θ−tω)|e
−λt

+

∫ 0

−t

eλτ |f(ū(τ))(ω)|dτ, t ≥ 0. (23)

The last term in (23) due to ū(s)(θ−tω) =
ū0(θs−tω) = ū(s − t)(ω) which deduced from that
(ū(t))t∈R is a stationary process. The conclusion
now follows for t → ∞.

Because of the stationarity and Lemma 1, we
have e−λt|ū0(θ−tω)| = e−λt|ū(−t)(ω)| → 0 as t →
∞. Then we have the pullback absorption

|u(θ−tω)| ≤ |ū0(ω)|+ ̺(ω), ∀t ≥ TD(ω). (24)

As a consequence of Theorem 1, system (1) has a
random attractor A = {A(ω), ω ∈ Ω}. We have
know that all solutions converge pathwise to each
other, so the random attractor sets are in fact sin-
gleton sets A = {ũ0(ω)}, i.e. the random attractor
is formed by a stationary random process ũ(t)(ω) :=
ũ0(θtω), which pathwise attracts all other solutions
in both forward and pullback senses.

Finally, we are in the position to state the result
of existence of a random attractor.

Theorem 2. Assume that the conditions on f be
satisfied. Then the random dynamical system ϕ has
a unique random attractor. Furthermore, the ran-
dom attractor is in fact a singleton sets random at-
tractor.

Remark 4.1. Sometimes, for the need of demonstrat-

ing the relations between dv(t)
dt

(·) (or G(u(t))(·),

G̃(t, v(t))(·)) and ω more explicitly, we will write
dv(t)
dt

(ω) (or G(u(t))(ω), G̃(t, v(t))(ω)) instead if
necessary.

Remark 4.2. There are several differences between
these two kinds of noises: white noise and fBm for
the existence of a random attractor of SLDS. On
one hand, in this work, the SLDS perturbed by ad-
ditive fBms are considered, which allow to trans-
form the SLDS into random systems that can be
dealt with in a pathwise way. But for the multi-
plicative noise, with no transformation into a ran-
dom system, the existence of random attractor

for stochastic differential equations was consider
in [Garrido-Atienza et al., 2010] based on consid-
ering a suitable sequence of stopping times for the
fractional Brownian motion. This method is differ-
ent from the traditional conjugacy method, which
transforms a stochastic equation into a differen-
tial equation with random coefficients but with-
out white noise. On the other hand, when SLDS
perturbed by either additive white noises (see e.g.
[Bates et al., 2006]) or a multiplicative white noise
(see e.g. [Caraballo & Lu , 2008])), the existing ran-
dom attractor is a (nontrivial) compact set of tem-
pered random bounded set, but the random attrac-
tor turns out to be a single sets random attractor
when the systems disturbed by additive fBms.
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