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Abstract. In this paper, we consider some cubic near-Hamiltonian systems obtained from per-

turbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic

polynomials. First, following Han [2012] we develop a method to study the analytical property

of the Melnikov function near the origin for near-Hamiltonian system having the origin as its

elementary center or nilpotent center. Based on the method, a computationally efficient algo-

rithm is established to systematically compute the coefficients of Melnikov function. Then, we

consider the symmetric singular points and present the conditions for one of them to be elemen-

tary center or nilpotent center. Under the condition for the singular point to be a center, we

obtain the normal form of the Hamiltonian systems near the center. Moreover, perturbing the

symmetric cubic Hamiltonian systems by cubic polynomials, we consider limit cycles bifurcating

from the center using the algorithm to compute the coefficients of Melnikov function. Finally,

perturbing the symmetric hamiltonian system by symmetric cubic polynomials, we consider the

number of limit cycles near one of the symmetric centers of the symmetric near-Hamiltonian

system, which is same to that of another center.
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1 Introduction

There have been many studies on bifurcations of limit cycles from elementary singular

points, see Bautin [1952]-Yu & Han [2004]. In general, there are two types of such bi-

furcations leading to limit cycles: either by perturbing a focus or by perturbing a center.

∗The project was supported by Key Disciplines of Shanghai Municipality (S30104), Slovenian Research

Agency, and Slovene Human Resources Development and Scholarship Fund.
†Author for correspondence: zhaopinghu@shu.edu.cn.
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Especially, many authors study C∞ systems of the form

ẋ = Hy + εp(x, y, δ), ẏ = −Hx + εq(x, y, δ), (1)

where H(x, y), p(x, y, δ), q(x, y, δ) are C∞ functions, ε ≥ 0 is small and δ ∈ D ⊂ Rm is a

vector parameter with D compact.

When ε = 0, system (1) becomes

ẋ = Hy, ẏ = −Hx, (2)

which is Hamiltonian system, and thus (1) is called a near-Hamiltonian system. We

impose the following hypothesis

(H) Hx(x0, y0) = Hy(x0, y0) = 0

and denote A(x0, y0) =
∂(Hy,−Hx)

∂(x, y)
(x0, y0) and A = A(0, 0).

If the hypothesis (H) is satisfied, then system (2) has a critical point at the point

(x0, y0). Suppose that the hypothesis (H) is satisfied at the origin. Then it is said that

the origin is (i) a saddle if det(A) < 0; (ii) an elementary center if det(A) > 0; (iii) a

nilpotent critical point if det(A) = 0 and A 6= 0.

From now on, we always suppose that system (2) has a critical point at the origin.

Without loss of generality, for det(A) > 0 we may assume that the expansion of H at the

origin is of the form

H(x, y) =
ω

2
(x2 + y2) +

∑

i+j≥3

hijx
iyj, ω > 0, (3)

for det(A) = 0 and A 6= 0 we may assume

H(x, y) =
ω

2
y2 +

∑

i+j≥3

hijx
iyj, ω > 0. (4)

We call (3) or (4) the normal form of Hamiltonian function of system (2) having the

origin as its elementary center or nilpotent critical point respectively. Similarly, we call

the corresponding Hamiltonian system or near-Hamiltonian system the normal form of

system (2) or (1) near the center.

For the function H(x, y) of the normal form (3) or (4), the implicit function theorem

implies that there exists a unique analytic function ϕ(x) = O(x2) such that Hy(x, ϕ(x)) =

0 for |x| small. Let

H∗
0 (x) = H(x, ϕ(x)) =

∑

j≥k

hjx
j , hk 6= 0, k ≥ 2. (5)

Recently, Han, et al. [2010] gave a complete classification of nilpotent critical points for

Hamiltonian systems (2) as follows.

Theorem 1. The origin is (i) a cusp if k is odd; (ii) a saddle if k is even with hk < 0;

and (iii) a center if k is even with hk > 0.
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Definition 1. Let the Hamiltonian function H(x, y) be of the form (3) or (4). Then

for system (2) the origin is called a cusp of order m if k = 2m+1. It is called a nilpotent

center of order m (a nilpotent saddle of order m, respectively) if k = 2m+ 2 and hk > 0

(if k = 2m+ 2 and hk < 0).

Now suppose that the Hamiltonian system (2) has an elementary center or a nilpotent

center of order p− 1 (p ≥ 2) at the origin, namely the Hamiltonian function H(x, y) has

the form (3) or (4) and satisfies

H∗
0 (x) =

∑

j≥2p

hjx
j , h2p > 0, p ≥ 1. (6)

Then, the Hamiltonian system (2) has a family of periodic orbits, given by

Lh : H(x, y) = h, h ∈ (0, β)

such that Lh approaches the origin as h→ 0.

Take h = h0 ∈ (0, β) and A(h0) ∈ Lh0 . Let l be a cross section of system (2) passing

through A(h0). Then, for h near h0 the periodic orbit Lh has a unique intersection point

with l, denoted by A(h), i.e., A(h) = Lh ∩ l. Consider the positive orbit γ(h, ε, A) of

system (1) starting from A(h). Let B(h, ε, A) denote the first intersection point of the

orbit with l. Then we have

H(B)−H(A) =

∫

AB

dH = ε[M(h, δ) +O(ε)] = ε F (h, ε, δ), (7)

where

M(h, δ) =

∮

Lh

(Hyq +Hxp)dt

=

∮

Lh

(qdx− pdy) =

∫∫

H≤h

(px + qy)dxdy.
(8)

The functions F (h, ε, δ) and M(h, δ) in (7) are called bifurcation function and Melnikov

function of system (1) near the origin respectively. The resulting map from A(h) to

B(h, ε, δ) is called a Poincare map of system (1). Obviously, for small ε system (1) has

a limit cycle near the origin if and only if the function F (h, ε, δ) has an isolated positive

zero in h near h = 0.

Based on the analytical property of the Melnikove function M(h, δ) and the number

of limit cycles near the origin by the function, we have the following theorems (see Han,

Jiang & Zhu [2008]).

Theorem 2. Let system (2), where H(x, y) has the form (3) or (4), satisfy (6). Then,

we have

M(h, δ) = h
p+1

2p

∑

j≥0

bj(δ)h
j

p . (9)

In particular, when p=1 ( that is when system (2) has an elementary center at the origin),

we have

M(h, δ) = h
∑

j≥0

bj(δ)h
j .
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Theorem 3. Under the condition of Theorem 2, if there exist k ≥ 1, δ0 ∈ D such that

bk(δ0) 6= 0 and

bj(δ0) = 0, j = 0, 1, · · · , k − 1, det
∂(b0, · · · , bk−1)

∂(δ1, · · · , δk)
(δ0) 6= 0,

where δ = (δ1, · · · , δm), m ≥ k, then there exist a constant ε0 > 0 and a neighborhood V

of the origin such that for some 0 < |ε| < ε0 and |δ − δ0| < ε0 (1) has k limit cycles in

V1.

Theorem 4. Consider the near-Hamiltonian system (1), where H(x, y, a) with a ∈ Rn

satisfies (6) and the functions p and q are linear in δ ∈ Rm. Suppose there exist integer

k > 0 and δ0 = (δ10, · · · , δm0) ∈ Rm, a0 ∈ Rn such that

bj(δ0, a0) = 0, j = 0, · · · , k − 1, det
∂(b0, · · · , bk−1)

∂(δ1, · · · , δk)
(a0) 6= 0, (10)

and

bk+j|(δ1,··· ,δk)=ξ(δk+1,··· ,δm, a) = Lj(δk+1, · · · , δm)∆j(a), j = 0, · · · , n, (11)

where

(δ1, · · · , δk) = ξ(δk+1, · · · , δm, a)
is the unique solution to bj = 0, j = 0, · · · , k − 1 for a point a near a0,

Lj(δk+1,0, · · · , δm0) 6= 0, j = 0, · · · , n,

∆j(a0) = 0, j = 0, · · · , n− 1, ∆n(a0) 6= 0,
(12)

and

det
∂(∆0, · · · ,∆n−1)

∂(a1, · · · , an)
(a0) 6= 0. (13)

Then, for some (ε, δ, a) near (0, δ0, a0), system (1) has k+ n limit cycles near the origin.

In light of the above theorems, a key step in studying the small-amplitude limit cycle

bifurcations of system (1) is to find an efficient method to compute the coefficients bl. For

p=1, the formulas for the first three coefficients bj(δ), j = 0, 1, 2 were obtained by Hou

& Han [2006] by using the double integral in (8). Recently, Han, Yang & Yu [2009] and

Han[2012] have developed a new approach to prove Theorem 2 and have established a

computationally efficient algorithm to systematically compute bj(δ), j = 0, 1, 2, 3, · · · for
p = 1 and p > 1 respectively. Following Han, Yang & Yu [2009] and Han[2012], we prove

Theorem 2 and then also establish a computationally efficient algorithm to systematically

compute bj(δ), j = 0, 1, 2, 3, · · · for arbitrary positive integer p.

In this paper, to illustrate the efficiency of the approach, we consider the following

symmetric cubic Hamiltonian system

(S): Hamiltonian system (2), with Hamiltonian function of the form

H(x, y) =
∑

i+j=2,4

hijx
iyj,
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taking (0,±1) as its critical points,

We will consider the conditions for the symmetric points to be elementary centers or

nilpotent centers. Under the condition for one of the symmetric points to be a center,

perturbing system (S) by cubic polynomials one can obtain a cubic near-Hamiltonian

system. Then, by suitable change of the variables (x, y) and t, we gave out the normal

form of the above near-Hamiltonian system near the center (0, 1) (or (0,−1)). Obviously,

the number of limit cycles of the near-Hamiltonian system near the center (0, 1) (or

(0,−1)) is the same as that of the corresponding system of the normal form near the

origin. As the result, we can study the number of limit cycles near the center (0, 1)

(or (0,−1)) by studying the Melnikov of the normal form near the origin. Moreover,

perturbing the symmetric hamiltonian system (S) by symmetric polynomials, one can

obtain a symmetric near-Hamiltonian system. Then, if one found some limit cycles near

one of the symmetric centers, then the system has the same number of limit cycles near

the other center. Hence, it is easier to find some limit cycles of the system near both

centers than to find the same number of limit cycles near one center.

This paper is organized as follows. In the next section, we give a proof of Theorem

2, and list an efficient algorithm for any positive integer p based on this proof as the

appendix. In section 3, we study the critical points (0,±1) of system (S) and list all

conditions for one of the singular points to be an elementary center or a nilpotent center.

Moreover, near the center we present the corresponding normal form of the Hamiltonian

system (S). Then, in section 4, perturbing system (S) by cubic polynomials, we obtain

the corresponding near-Hamiltonian system. Applying the theorems and the program to

the normal form of the above near-Hamiltonian system, we estimate the number of limit

cycles bifurcating from the center (0, 1) or (0,−1). In section 5, we discuss the number

of limit cycles near both the symmetric centers of the symmetric cubic near-Hamiltonian

systems obtained from perturbing system (S) by symmetric cubic polynomials.

2 Proof of Theorem 2

Recently, Han, Yang & Yu [2009] developed a new approach to prove Theorem 2 for p = 1

and then established an algorithm based on its proof. The algorithm was implemented in

the computer algebra system Maple. Earlier, Han, Jiang & Zhu [2008] proved Theorem

2 for p > 1. Then following Han, Yang & Yu [2009], Han [2012] gave a new proof. In

this paper, for convenience and as a preliminary, we repeat the proof of Theorem 2 for all

positive integer p ≥ 1 following Han [2012], and then establish an algorithm based on the

proof and provide an implementation in computer algebra system Mathematica.

To prove Theorem 2, we first introduce a change of variables to make the form of the

Hamiltonian function simpler. By (3) and (4) using the implicit function theorem, one

can show that there exists a unique C∞ function ϕ(x) such that Hy(x, ϕ(x)) = 0 for |x|
small. Thus, we can write

ϕ(x) =
∑

j≥2

ejx
j . (14)
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By introducing a new variable v = y − ϕ(x), system (1) can be rewritten as

ẋ = H∗
v (x, v) + εp∗(x, v, δ),

v̇ = −H∗
x(x, v) + εq∗(x, v, δ),

(15)

where
H∗(x, v) = H(x, v + ϕ(x)),

p∗(x, v, δ) = p(x, v + ϕ(x), δ),

q∗(x, v, δ) = q(x, v + ϕ(x), δ)− ϕ
′

(x)p∗(x, v, δ).

(16)

Noting that Hy(x, ϕ(x)) = 0, we have

H∗(x, v) = H∗
0 (x) +

∑

j≥1

H∗
j (x)v

j+1 = H∗
0(x) + v2H̃(x, v), (17)

where H̃(0, 0) =
ω

2
> 0 and

H∗
0 (x) = H(x, ϕ(x)) =

∑

j≥2

hjx
j ,

H∗
j (x) =

1

(j + 1)!

∂j+1H

∂yj+1
(x, ϕ(x)).

(18)

Let (6) be satisfied. Then it follows from (17) that there exist a family of periodic orbits

surrounding the origin defined by the equation H(x, y) = h or H∗(x, v) = h for h > 0

small. Let w =
√
h−H∗

0 (x) and suppose that the region surrounding by the closed curve

H∗(x, v) = h can be expressed as the form {(x, v)|x2(h) ≤ x ≤ x1(h), v2(x, w) ≤ v ≤
v1(x, w)}. Then, from Han, Yang & Yu [2009] or Han [2012], we have

Lemma 1. (i) The equation H∗(x, v) = h has exactly two C∞ solutions v1(x, w) > 0 and

v2(x, w) < 0 in v satisfying

v1(x, w) =
√
2w(1 +O(|x, w|)), v2(x, w) = v1(x,−w).

(ii) x1(h) > 0 and x2(h) < 0 are the two solutions to equation H∗
0 (x) = h.

Then, it is obvious that

M(h, δ) =

∮

H∗(x,v)=h

q∗dx− p∗dv

=

∫∫

H∗≤h

(p∗x + q∗v)dxdv

=

∫ x1(h)

x2(h)

∫ v1(x,w)

v2(x,w)

(p∗x + q∗v)dvdx.

(19)

Let

q̄(x, v, δ) =

∫ v

0

(p∗x + q∗v)dv = q∗(x, v, δ)− q∗(x, 0, δ) +

∫ v

0

p∗x(x, u, δ)du. (20)
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Then, we have

q̄(x, v, δ) = v
∑

i+j≥0

b̄ijx
ivj =

∑

j≥1

qj(x)v
j, (21)

where

qj+1(x) =
1

(j + 1)!

∂j

∂vj
(p∗x + q∗v)|ε=v=0

=
1

(j + 1)!

∂j

∂yj
(px + qy)(x, ϕ(x), 0, δ)

=
∑

i≥0

b̄ijx
i, j ≥ 0.

(22)

Further, we write

v1(x, w) =
∑

j≥1

aj(x)w
j. (23)

By Lemma 1 we have

w2 = h−H∗
0 (x) = H∗(x, v)−H∗

0 (x) = (v1(x, w))
2
∑

j≥1

H∗
j (x)[v1(x, w)]

j−1

= a21(x)H
∗
1 (x)w

2 + (2a1(x)a2(x)H
∗
1 (x) + a31(x)H

∗
2 (x))w

3+

[(a22(x) + 2a1(x)a3(x))H
∗
1 (x) + 3a21(x)a2(x)H

∗
2 (x) + a41(x)H

∗
3 (x)]w

4 + · · · .

Equaling the coefficients of wj in the above identity, we have

a1(x) =
1√
H∗

1 (x)
, a2(x) = − H∗

2 (x)

2(H∗
1 (x))

2
, a3(x) = − 1

8(H∗
1 )

7

2

[4H∗
1H

∗
3 −5(H∗

2 )
2], · · · . (24)

Then, it follows from (19) that

M(h, δ) =

∫ x1(h)

x2(h)

[q̄(x, v1(x, w))− q̄(x, v2(x, w))]dx.

By Lemma 1, the function q̄(x, v1)− q̄(x, v2) is odd in w. Thus, we can write

q̄(x, v1)− q̄(x, v2) =
∑

j≥0

q̄j(x)w
2j+1, (25)

and hence,

M(h, δ) =
∑

j≥0

∫ x1(h)

x2(h)

q̄j(x)w
2j+1dx.

In order to compute the above integral, we change the limits of integration. Let ψ(x) =

sgn(x)[H∗
0 (x)]

1

2p . Then, by (6) the function ψ is C∞ for small |x| with ψ′(0) = h
1

2p

2p > 0.

Therefore, we may introduce the new variable u = ψ(x) to obtain

M(h, δ) =
∑

j≥0

∫ h
1
2p

−h
1
2p

q̃j(u)w
2j+1du

=
∑

j≥0

∫ h
1
2p

0

[q̃j(u) + q̃j(−u)]w2j+1du,

7



where w =
√
h− u2p and

q̃j(u) =
q̄j(x)

ψ′(x)

∣∣∣∣
x=ψ−1(u)

. (26)

It is easy to see that we can assume

q̃j(u) + q̃j(−u) =
∑

i≥0

riju
2i. (27)

Then,

M(h, δ) =
∑

i+j≥0

rijIij(h), (28)

where

Iij(h) =

∫ h
1
2p

0

u2iw2j+1du =

∫ h
1
2p

0

u2i(h− u2p)j
√
h− u2pdu.

Lemma 2. Let

βij =

∫ 1

0

v
2i
p (1− v2)j

√
1− v2dv. (29)

Then

Iij(h) = βijh
p+1

2p
+ i+pj

p , h > 0, 0 < βij < 1.

Proof. Introducing v = up/h
1

2 , we have

Iij(h) = h
p+1

2p
+ i+pj

p

∫ 1

0

v
2i
p (1− v2)j

√
1− v2dv.

This ends the proof.

Now by (28) and Lemma 2, we have

M(h, δ) = h
p+1

2p

∑

i+j≥0

rijβijh
i+pj

p = h
p+1

2p

∑

l≥0

bl(δ)h
l, (30)

where

bl(δ) =
∑

i+pj=l

rijβij . (31)

Finally based on (25), (26) and (27), we see that if system (1) is analytic, then the

series
∑
i,j≥0

riju
2iw2j+1 is convergent for (u, w) near the origin. Then it follows that the

series
∑
i,j≥0

|rij|µi+j is convergent for some constant µ > 0, and hence by (30) M(h, δ) is

analytic in h.

This completes the proof of Theorem 2.
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3 The symmetric critical points of symmetric Hamil-

tonian system (S)

In this section, we study the symmetric critical points (0,±1) of symmetric cubic Hamil-

tonian system (S). Obviously, we have Hy(0,±1) = Hx(0,±1) = 0, i.e.,

±(2h02 + 4h04) = ±(h11 + h13) = 0.

Thus, we can take

h04 = −h02/2, h13 = −h11. (32)

For the symmetry, we need only to consider the critical point (0, 1). By introducing a

new variable v = y − 1 and then taking v as y, we have

ẋ = H̄y(x, y), ẏ = −H̄x(x, y), (33)

where H̄(x, y) = H(x, y + 1). Truncating the constant term of the function H̄, we have

H̄(x, y) = (h20 + h22)x
2 − 2h11xy − 2h02y

2 + h31x
3 + 2h22x

2y − 3h11xy
2

−2h02y
3 + h40x

4 + h31x
3y + h22x

2y2 − h11xy
3 − 1

2
h02y

4.
(34)

As a result, the point (0, 1) of system (S) corresponds to the origin of system (33). If

(32) is satisfied, then system (33) has a critical point at the origin. Moreover, for system

(33) we have

A =


 −2h11 −4h02

−2(h20 + h22) 2h11


 (35)

and

det(A) = −4h211 − 8h02(h20 + h22). (36)

Then, the origin is (i) a saddle if det(A) < 0; (ii) an elementary center if det(A) > 0;

(iii) a nilpotent critical point if det(A) = 0 and A 6= 0.

If ∆ = det(A) > 0, which means that h02(h20 + h22) 6= 0, then system (33) has an

elementary center at the origin. Let ω =
√
∆ > 0. Without loss of generality, we can let

h20 + h22 = 1/2 and ω = 1 (otherwise, we can introduce a suitable rescaling of (x, y) and

time t). Therefore, we obtain

h20 = −h22 +
1

2
, h02 = −h211 −

1

4
.

Then, introducing the change of variables

u = −y, v = x− 2h11y, (37)

and then taking (u, v) as (x, y), system (33) becomes

ẋ =
∂H1

∂y
(x, y), ẏ = −∂H1

∂x
(x, y), (38)
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where

H1(x, y) =
1

2
(x2 + y2) +

∑

3≤i+j≤4

h̄ijx
iyj, (39)

and

h̄03 = h31, h̄12 = −2h22 − 6h11h31, h̄21 = −3h11 + 8h11h22 + 12h211h31,

h̄30 = −1

2
− 4(2h22 + 2h11h31 − 1)h211, h̄04 = h40, h̄13 = −h31 − 8h11h40,

h̄22 = h22 + 6h11h31 + 24h211h40, h̄31 = h11 − 4h11h22 − 12h211h31 − 32h311h40,

h̄40 =
1

8
− 3

2
h211 + 4h211h22 + 8h311h31 + 16h411h40.

Obviously, if the symmetric Hamiltonian system (S) has an elementary center at (0, 1),

then the normal form of system (S) near (0, 1) should be system (38). For the symmetry,

system (S) has an elementary center at (0,−1) and is of the same normal form (38) at

the same time.

Now, suppose that system (33) has a nilpotent critical point at the origin. In other

words, we have

− 4h211 − 8h02(h20 + h22) = 0, h211 + h202 + (h20 + h22)
2 6= 0. (40)

If h02 = 0, then h11 = 0 and h20 + h22 6= 0. Thus, system (33) becomes

ẋ = x2(2h22 − h31x− 2h22y)

ẏ = −x[2(h20 + h22) + 3h31x+ 4h22y + 4h40x
2 + 3h31xy + 2h22y

2],

which means that all the points on the line x = 0 are singular. Then the origin is not an

isolated singular point.

Therefore, we can assume that h02 6= 0. Without loss of generality, suppose h02 =
1

2
(otherwise, we can introduce suitable rescaling of (x, y)). Then, from (40) we can take

h22 = −h211 − h20. (41)

Introducing new variables as

u = −1

2
x, v = h11x+ y, (42)

and then taking (u, v) as (x, y), system (33) becomes

ẋ =
∂H̄2

∂y
(x, y), ẏ = −∂H̄2

∂x
(x, y), (43)

where

H̄2(x, y) =
1

2
y2 +

∑

3≤i+j≤4

h̃ijx
iyj, (44)

10



and
h̃30 = 8h11h20 + 4h31, h̃21 = −2h211 + 4h20, h̃12 = h̃13 = 0,

h̃03 =
1

2
, h̃40 = 2h211(h

2
11 + 4h20) + 8(h11h31 − h40),

h̃31 = 8h11h20 + 4h31, h̃22 = −h211 + 2h20, h̃04 =
1

8
.

(45)

Using the mathematica code we compute

e2 = −4h20 + 2h211 ,

e3 = −4(2h11h20 + h31) ,

e4 = −2(h211 − 2h20)
2 ,

e5 = 16(h211 − 2h20)(2h11h20 + h31) ,

e6 = 4(h611 − 6h411h20 − 12h211h
2
20 − 8h320 − 24h11h20h31 − 6h331) ,

· · · · · ·

(46)

and
h3 = 4(2h11h20 + h31) ,

h4 = 8h11(2h11h20 + h31)− 8(h220 + h40) ,

h5 = 8(h211 − 2h02)(2h11h20 + h31) ,

h6 = −8(2h11h20 + h31)
2 ,

· · · · · ·

(47)

Introduce the following conditions:

(A) h31 6= −2h11h20;

(B) h31 = −2h11h20, h
2
20 + h40 > 0;

(C) h31 = −2h11h20, h
2
20 + h40 < 0;

(D) h31 = −2h11h20, h40 = −h220.

Then, we can prove the following statement.

Theorem 5. For system (43), the origin is an isolated nilpotent singular point if and

only if one of conditions (A), (B), (C) listed above holds. Further, the origin is

(i) a cusp of order 1 if and only if (A) holds,

(ii) a nilpotent saddle of order 1 if and only if (B) holds,

(iii) a nilpotent center of order 1 if and only if (C) holds.

Proof. By Definition 1, the origin is a cusp of order 1 under (A). If (B) or (C) holds,

then h3 = 0, h4 < 0 or h3 = 0, h4 > 0, and the origin is a nilpotent saddle or center of

order 1. If (D) holds, then we have

H̄2(x, y) =
1

8
(y2 + 2y − 4h211x

2 + 8h20x
2)2,

11



which means that all points on the curve

y2 + 2y − 4h211x
2 + 8h20x

2 = 0

are singular. This ends the proof.

Assume that the origin is a nilpotent center of order 1 of system (43), i.e., h31 =

−2h11h20 and h220 + h40 < 0. Then system (43) becomes

ẋ =
∂H2

∂y
(x, y), ẏ = −∂H2

∂x
(x, y), (48)

where

H2(x, y) =
1

2
y2 + 2Ax2y +

1

2
y3 +Bx4 + Ax2y2 +

1

8
y4 (49)

with

A = 2h20 − h211, B = 2h411 − 8h211h20 − 8h40

satisfying B > 2A2.

Similarly, if the symmetric Hamiltonian system (S) has a nilpotent center of order 1

at (0, 1), then the normal form of system (S) near (0, 1) should be system (48). For the

symmetry, system (S) has a nilpotent center of order 1 at (0,−1) and is of the same

normal form (48).

4 Bifurcation from the centers of systems (S)

From section 3, we know that the symmetric Hamiltonian system (S) can take (0,±1) as

elementary centers or nilpotent centers of order 1. Under the conditions for one of the

symmetric critical points to be a center of system (S), we perturb it by cubic polynomials

to obtain a near-Hamiltonian system and then study limit cycles bifurcating from the

center (0, 1) or (0,−1).

Before starting to consider limit cycles bifurcating from a center of the near-Hamiltonian

systems, we present some results on how to calculating the coefficients of the Melnikov

function near the center. Suppose that system (2) has a center at the point (x0, y0) and

H(x0, y0) = h0. Then, there exist a family of periodic orbits given by

Lh : H(x, y) = h, h ∈ (h0, h0 + β), β > 0.

To transform the linear part of the Hamiltonian system at a center into a normal form,

one often introduces suitable linear change of variables or rescaling of the time. This

procedure may cause a change of the Melnikov function. More precisely, making a linear

change of the form

u = a(x− x0) + b(y − y0), v = c(x− x0) + d(y − y0),

and rescaling time τ = k t, where D = ad− bc 6= 0, system (1) becomes

du

dτ
= H̃v + ε p̃,

dv

dτ
= −H̃u + ε q̃, (50)
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where

H̃(u, v) =
D

k
[H(x, y)− h0],

p̃(u, v, δ) =
1

k
[a p(x, y, δ) + b q(x, y, δ)],

q̃(u, v, δ) =
1

k
[c p(x, y, δ) + d q(x, y, δ)],

x = x0 +
1

D
(du− bv), y = y0 +

1

D
(−cu+ av).

Let M̃ denote the Melnikov function of system (50) at the origin, which is given by

M̃(h, δ) =

∮

H̃(u,v)=h

q̃ du− p̃ dv|ε=0, h ∈ (0, β ′).

Then, it is easy to see that

M̃(h, δ) = sgn(k)
∮
H(x,y)=h0+kh/D

[(aq̃ − cp̃)dx+ (bq̃ − dp̃)dy]| ε=0

= sgn(k)
D

k

∮
H(x,y)=h0+kh/D

[qdx− pdy]| ε=0

=
D

|k|M(h0 +
k

D
h, δ), h ∈ (0, β ′),

where M(h, δ) is the Melnikov function of system (1) near the center (x0, y0) of the

corresponding Hamiltonian system (2). Therefore, for h0 < h < h0 + β we have

M(h, δ) =
|k|
D
M̃(

D

k
(h− h0, δ)). (51)

By Theorem 2, we have

Theorem 6. Let system (50), where H̃ has the form (3) or (4), satisfy (6). Then, for

h0 < h < h0 + β we have

M(h, δ) = (h− h0)
p+1

2p

∑

j≥0

b̃j(δ)(h− h0)
j

p , (52)

where

b̃j(δ) = sgn(k)
( k
D

) 1+2j−p

2p

bj(δ).

Especially, for p=1, namely system (2) has an elementary center at the origin, then,

for h0 < h < h0 + β we have

M(h, δ) = (h− h0)
∑

j≥0

b̃j(δ)(h− h0)
j,

where

b̃j(δ) = sgn(k)
( k
D

)j
bj(δ).
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As we known, D 6= 0 and k 6= 0. Then, by Theorem 3 and Theorem 4, to determine

the number of limit cycles bifurcating from the center (x0, y0) of system (1), we need only

to consider the Melnikov function M̃ of near-Hamiltonian system (50).

Theorem 9 told us a method to study limit cycles bifurcating from a center (x0, y0) of

the near-Hamiltonian system (1). First, by introducing suitable linear change of variables

or rescaling the time, we can transform system (1) into a normal form (50) near the center

(x0, y0). Then, using Theorem 2 after executing the Mathematica program, we can obtain

the first several coefficients of the Melnikov function of system (50) at the origin. Finally,

by Theorems 3 and 4 we can find the number of limit cycles of near-Hamiltonian system

(50) at the origin, which is the same to that of the near-Hamiltonian system (1) at the

center (x0, y0).

Suppose that for systems (1) and (50),

px + qy =

2∑

i+j=0

cijx
iyj, p̃u + q̃v =

2∑

i+j=0

c̃iju
ivj .

Then, using the Mathematica program we can compute

c̃00 =
1

k
[c00 + x0 c10 + y0 c01 + x20 c20 + x0y0 c11 + y20 c02],

c̃10 =
1

kD
[−c (c01 + x0 c11 + 2y0 c02) + d (c10 + y0 c11 + 2x0 c20)],

c̃01 =
1

kD
[a (c01 + x0 c11 + 2y0 c02)− b (c10 + y0 c11 + 2x0 c20)],

c̃20 =
1

kD2
[c2 c02 − cd c11 + d2 c20],

c̃11 =
1

kD2
[−2ac c02 + (bc + ad) c11 − 2bd c20],

c̃02 =
1

kD2
[a2 c02 − ab c11 + b2 c20].

(53)

Now, we turn to considering the near-Hamiltonian system obtained by perturbing sys-

tem (S) with cubic polynomials as follows:

ẋ = Hy + εp(x, y), ẏ = −Hx + εq(x, y), (54)

where

H(x, y) =
∑

i+j=2,4

hijx
iyj,

p(x, y) =
3∑

i+j=1

aijx
iyj, q(x, y) =

3∑

i+j=1

bijx
iyj

and

px + qy = c00 + c10x+ c01y + c20x
2 + c11xy + c20y

2.

From section 3, if ∆ = −4h211 − 8h02(h20 + h22) > 0, which means that h02 6= 0 and

h20 + h22 6= 0, then there is an elementary center of Hamiltonian system (S) at the point

14



(0, 1). For convenience, we let h20 + h22 = 1/2 and ∆ = 1. Then, introducing a change of

variables (x, y) as

u = −(y − 1), v = x− 2h11(y − 1),

and then taking (u, v) as (x, y), one can obtain the normal form of system (54) near the

center (0, 1) as

du

dt
=
∂H1

∂v
(u, v) + εp̃1(u, v),

dv

dt
= −∂H1

∂u
(u, v) + εq̃1(u, v), (55)

where H1 is the same as that in section 3 and

∂p̃1
∂u

+
∂q̃1
∂v

=
2∑

i+j=0

c̃1iju
ivj,

where

c̃100 = c00 + c01 + c02, c̃110 = −2h11c10 − c01 − 2c02 − 2h11c11, c̃101 = c10 + c11,

c̃120 = c02 + 2h11c11 + 4h211c20, c̃111 = −c11 − 4h11c20, c̃102 = c20.

Obviously, c̃100, c̃110, c̃101, c̃120, c̃111, c̃102 are all linear functions of c00, c10, c01, c20, c11, c02
and are independent. Therefore, we can denote c̃1ij as cij for 0 ≤ i+ j ≤ 2, i ≥ 0, j ≥ 0.

For system (55), there are too many parameters in the corresponding Hamiltonian

function. Hence, the coefficients of the Melnikov function will be very complicated and

it is very hard to give out the accurate number of limit cycles of system (55) near the

origin. However, suppose that there are altogether m parameters in (δ, a), by Theorem 3

or Theorem 4 we know that one can find at most m− 1 limit cycles near the origin. As

the result, one can find at most 9 limit cycles of system (55) near the origin. Here, we

consider an simple case of system (55) to illustrate that system (55) can have at least 6

limit cycles near the origin. As an especial case, we assume that h11 = h22 = 0, h31 = 1

in system (55). Namely, we consider the following system,

u̇ = Hv + εp(u, v), v̇ = −Hu + εq(u, v), (56)

where p, q are the same as before and

H(u, v) =
1

2
(u2 + v2)− 1

2
u3 + v3 − 1

8
u4 − uv3 + rv4

with r = h40.

Theorem 7. For system (56), introduce

δ = (c00, c10, c01, c02, c11, c20), σ = (r),

and

δ0 = (c∗00, c
∗
10, c

∗
01, c

∗
02, c

∗
11, c

∗
20), σ0 = (r∗),
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where δ0 and σ0 satisfy

f(r∗) = 0, c∗00 = 0, c∗02 = −3

2
c∗10 + 3c∗01 − c∗20, c

∗
01 6= 0,

c∗11 = (12r∗ − 191

4
)c∗10 + (40r∗ + 3)c∗01 + (8r∗ − 47

2
)c∗20,

c∗10 =
2

17680r∗ − 43347

[
(1792(r∗)2 − 17328r∗ − 696)c∗01 + (+11107− 5680r∗)c∗20

]
,

c∗20 =
6544683 + 11682846r∗ + 30378720(r∗)2 − 40278528(r∗)3 − 21471232(r∗)4

2(2770317− 11417834r∗ + 11442688(r∗)2 + 442880(r∗)3)
c∗01,

and

f(r) = 780900831−459924741r−2093583104r2−1597844992r3−108363776r4+1381957632r5.

Then, for some (ε, δ, σ) near (0, δ0, σ0) system (56) has 6 limit cycles near the origin.

Proof. Let M(h, δ) be the Melnikov function of system (nH)1 near the origin. Then, by

Theorem 2, we have

M(h, δ) = h
∑

j≥0

bj(δ)h
j .

Executing the Mathematica program yields

b0 = 2 π c00.

Letting c00 = 0, under which b0 = 0, we obtain the following expressions for bi’s.

b1|b0=0 = π[c20 + c02 − 3c01 +
3

2
c10],

b2|b0=0 =
π

8

[
(25− 12r)c10 + 140(−3 + 2r)c01 + (25− 4r)c20 − 4c11 + 8(18− 5r)c02

]
,

bi|b0=0 = li(δi1c10 + δi2c01 + δi3c20 + δi4c11 + δi5c02), i = 3, 4, 5, 6

(57)

where

l3 = −5π

64
, l4 =

21π

512
, l5 = − 21π

2048
, l6 =

33π

8193
,
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and

δ31 = 939− 210r − 84r2, δ32 = 462(39− 52r + 12r2), δ33 = −2(333− 270r + 28r2),

δ34 = −2(123 + 28r), δ35 = −8(749− 696r + 63r2),

δ41 = 85233− 85896r + 6584r2 + 1056r3, δ42 = 3432(−331 + 646r − 340r2 + 40r3),

δ43 = 21278− 34416r + 13968r2 − 704r3, δ44 = −8(−3009 + 1706r + 132r2),

δ45 = 64(−5828 + 9101r − 3222r2 + 143r3),

δ51 = 13788577− 23251746r + 9251880r2 − 382800r3 − 34320r4,

δ52 = 92378(1821− 4664r + 3864r2 − 1120r3 + 80r4),

δ53 = −2(1156991− 2579166r + 1845528r2 − 391600r3 + 11440r4),

δ54 = −2(2028023− 2589736r + 582120r2 + 22880r3),

δ55 = −32(1717743− 3736392r + 2422830r2 − 462176r3 + 12155r4),

δ61 = −1454668039 + 3393291252r− 2432266980r2 + 541324640r3 − 13999440r4 − 806208r5,

δ62 = 386308(−44055 + 139650r − 157944r2 + 75600r3 − 14000r4 + 672r5),

δ63 = 2(97965305− 271364748r + 269902620r2 − 108076960r3 + 14155440r4 − 268736r5),

δ64 = 4(109528617− 212220190r+ 113651592r2 − 14093040r3 − 335920r4),

δ65 = 128(43337762− 120692295r + 114411600r2 − 42231670r3 + 5071950r4 − 88179r5).

Let

b̃j = bj |b0=0, j = 1, 2, 3, 4, 5, 6. (58)

Noticing (57), we can solve c02, c11 from b̃1 = b̃2 = 0 as follows:

c02 = −3

2
c10 + 3c01 − c20, c11 = (12r − 191

4
)c10 + (40r + 3)c01 + (8r − 47

2
)c20. (59)

Substituting (59) into b̃3, b̃4 b̃5 and b̃6 results in

b̃3 =
5π

128

[
(17680r − 43347)c10 + 16(87 + 2166r − 224r2)c01 + 2(−11107 + 5680r)c20

]
,

b̃i =
li
2
(δ′i1c10 + δ′i2c01 + δ′i3c20), i = 4, 5, 6

(60)
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where li same as before and

δ′41 = −2(1794159− 1900148r + 429248r2), δ′42 = 64(1725 + 43488r− 34292r2 + 2112r3),

δ′43 = −4(458703− 530676r + 138304r2),

δ′51 = 579832875− 997181804r + 486587688r2 − 68706176r3,

δ′52 = 16(−1106391− 27357598r + 41005384r2 − 13225168r3 + 549120r4),

δ′53 = −2(−147970875 + 268572172r− 142634920r2 + 22244992r3),

δ′61 = −4(15347742095− 36178820899r+ 28146658686r2 − 8398426168r3 + 800059520r4),

δ′62 = 32(58577817 + 1411250460r− 3104524228r2 + 1937691360r3 − 357475040r4 + 10749440r5),

δ′63 = −8(3911748231− 9589874467r+ 7894793822r2 − 2537774136r3 + 260074880r4).

For r near r∗ we have 17680r − 43347 6= 0. Thus, b̃3 = 0 if and only if

c10 =
2

17680r − 43347

[
(1792r2 − 17328r − 696)c01 + (+11107− 5680r)c20

]
,

which results in

b̃4 =
21π

32(−43347 + 17680r)

[
(6544683 + 11682846r + 30378720r2 − 40278528r3

−21471232r4)c01 − 2(2770317− 11417834r + 11442688r2 + 442880r3)c20
]
.

For r near r∗ we have 2770317− 11417834r+11442688r2+442880r3 6= 0. Thus, b̃4 = 0

if and only if

c20 =
6544683 + 11682846r + 30378720r2 − 40278528r3 − 21471232r4

2(2770317− 11417834r + 11442688r2 + 442880r3)
c01,

which results in

b̃5+i = ∆iL, i = 0, 1,

where

L =
3π(4r2 + 4r − 7)c01

32(2770317− 11417834r + 11442688r2 + 442880r3)
,

∆0 = −14f(r),

∆1 = 11(−77526899979 + 74770117515r + 170378796326r2 + 50680931328r3

−71020059648r4 − 138129047552r5 + 61673963520r6).

Obviously, there is at least one real solution to equation f(r) = 0 and denote it by r∗.

Then, for r near r∗ and c01 near c∗01 we have L 6= 0. Thus, b̃5 = 0 if and only if ∆0 = 0.

When r = r∗, we have b̃5 = 0 but ∆1 6= 0, which results in b̃6 6= 0. Hence, it is clear that

the conclusion follows from Theorem 4.
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The proof is complete.

Therefore, if system (S) has an elementary center at (0, 1) (or (0,−1)), then one can

find 6 to 9 limit cycles of system (54) near the center (0, 1) (or (0,−1)).

If △ = −4h211 − 8h02(h20 + h22) = 0, h31 = −2h11h20 and h220 + h40 < 0, then there is a

nilpotent center of order 1 of Hamiltonian system (S) at the point (0, 1). For convenience,

let h02 = 1/2. Then, we can take

h22 = −h211 − h20.

Introducing a change of variables (x, y) as

u = −1

2
(y − 1), v = h11x+ y − 1,

one can obtain the normal form of system (54) near the center (0, 1) as

du

dt
=
∂H2

∂v
(u, v) + εp̃2(u, v),

dv

dt
= −∂H2

∂u
(u, v) + εq̃2(u, v), (61)

where H2 is the same as that in section 3, namely,

H2(u, v) =
1

2
v2+2(2h20−h211)u2v+

1

2
v3+(2h411−8h211h20−8h40)u

4+(2h20−h211)u2v2+
1

8
v4,

and
∂p̃2
∂u

+
∂q̃2
∂v

=
2∑

i+j=0

c̃2iju
ivj,

where

c̃200 = c00 + c01 + c02, c̃210 = −2c10 + 2h11c01 − 2c11 + 4h11c02, c̃201 = c01 + 2c02,

c̃220 = 4c20 − 4h11c11 + 4h211c02, c̃211 = −2c11 + 4h11c02, c̃202 = c02.

Obviously, c̃200, c̃210, c̃201, c̃220, c̃211, c̃202 are all linear functions of (c00, c10, c01, c20, c11, c02)

and are independent. Therefore, we can denote c̃2ij as cij for 0 ≤ i+ j ≤ 2, i ≥ 0, j ≥ 0.

Theorem 8. For system (61), we introduce

δ = (c00, c10, c01, c02, c11, c20), σ = (A,B),

and

δ0 = (c∗00, c
∗
10, c

∗
01, c

∗
02, c

∗
11, c

∗
20), σ0 = (A∗, B∗),

where δ0 and σ0 satisfy

A∗ = 0, B∗ > 0, c∗00 = 0, c∗20 = 0, c∗02 =
3

2
c∗01, c

∗
01 6= 0.

Then, for some (ε, δ, σ) near (0, δ0, σ0) the system (61) has 4 limit cycles near the origin.
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Proof. Let M(h, δ) be the Melnikov function of system (61) near the origin. Then, by

Theorem 2, we have

M(h, δ) = h3/4
∑

j≥0

bj(δ)h
j/2.

Executing the Mathematica program yields

b0 =
2Γ(5/4)

√
2π

Γ(7/4)(B − 2A2)1/4
c00.

Letting c00 = 0, under which b0 = 0, we obtain the following expressions for bi’s.

b1|b0=0 =
Γ(3/4)

√
π/2

Γ(9/4)(B − 2A2)3/4
(c20 − 2Ac01),

b2|b0=0 =
Γ(1/4)

√
π/2

2Γ(11/4)(B − 2A2)5/4
[(A2 − B)(3c01 − 2c02) + Ac20],

b3|b0=0 =
Γ(7/4)

√
2π

Γ(13/4)(B − 2A2)7/4
[2A(A2 − B)(5c01 − 4c02) + (A2 +B)c20],

b4|b0=0 = − 5Γ(1/4)
√
2π

16Γ(15/4)(B − 2A2)9/4
[(5A4 − 6A2B + 3B2)(7c01 − 6c02) + 2A(A2 − 3B)c20].

(62)

Let

b̃j = bj |b0=0, j = 1, 2, 3. (63)

Noticing (62), we can obtain c20 = 2Ac01 by solving b̃1 = 0. Substituting c20 = 2Ac01 into

b̃2, b̃3 and b̃4 results in

b̃2 =
Γ(5/4)

√
2π

Γ(11/4)(B − 2A2)5/4
[(5A2 − 3B)c01 − 2(A2 − B)c02],

b̃3 =
3AΓ(3/4)

√
2π

Γ(13/4)(B − 2A2)7/4
[(3A2 − 2B)c01 − 2(A2 − B)c02],

b̃4 = − 15Γ(1/4)
√
2π

16Γ(15/4)(B − 2A2)9/4
[(13A4 − 18A2B + 7B2)c01 − 2(5A4 − 6A2B + 3B2)c02)].

For (A,B) near (A∗, B∗), we have A2 −B < 0. Then b̃2 = 0 if and only if

c02 =
5A2 − 3B

2(A2 − B)
c01,

which yields

b̃3 =
3AΓ(3/4)

√
2π

Γ(13/4)(B − 2A2)3/4
c01,

b̃4 = − 6Γ(9/4)
√
2π

Γ(15/4)(A2 − B)(B − 2A2)5/4
(3A4 − 2A2B +B2)c01.
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Thus, it follows that when b̃3 = 0 we have A = 0 or c01 = 0. However, c01 is a common

factor of b̃3 and b̃4. Taking A = A∗ = 0, we have

b̃4 =
6Γ(9/4)

√
2π

Γ(15/4)B1/4
c01.

Hence, it is clear that the conclusion follows from Theorem 4.

The proof is complete.

Therefore, if system (S) has a nilpotent center of order 1 at (0, 1) (or (0,−1)), then one

can find 4 limit cycles of system (54) near the center (0, 1) (or (0,−1)).

5 Bifurcation in the symmetric near-Hamiltonian sys-

tems

In this section, we will consider limit cycles bifurcating from the symmetric centers of

some symmetric near-Hamiltonian systems. We said a near-hamiltonian system (1) is

symmetric, which means that not only the corresponding Hamiltonian function is sym-

metric, but also the perturbing terms p(x, y) and q(x, y) are also symmetric with respect

to the origin.

Now, we consider the following symmetric near-Hamiltonian system:

ẋ = Hy + εp(x, y), ẏ = −Hx + εq(x, y), (64)

where

H(x, y) =
∑

i+j=2,4

hijx
iyj,

p(x, y) =
∑

i+j=1,3

aijx
iyj, q(x, y) =

∑

i+j=1,3

bijx
iyj

and

px + qy = c00 + c20x
2 + c11xy + c20y

2.

Obviously, system (64) is obtained by perturbing symmetric Hamiltonian system (S)

with symmetric cubic polynomials and is symmetric with respect to the origin. If there

arem limit cycles bifurcating from the center (x0, y0) (not the origin) of the corresponding

Hamiltonian system, then it is same to the symmetric center (−x0,−y0). Namely, there

are 2m limit cycles of the symmetric near-Hamiltonian system.

From section 3, if ∆ = −4h211 − 8h02(h20 + h22) > 0, which means that h02 6= 0 and

h20 + h22 6= 0, then there is an elementary center of Hamiltonian system (S) at the point

(0, 1). For convenience, we let h20 + h22 = 1/2 and ∆ = 1. Then, introducing a change of

variables (x, y) as

u = −(y − 1), v = x− 2h11(y − 1),
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one can obtain the normal form of system (64) near the center (0, 1) as

du

dt
=
∂H1

∂v
(u, v) + εp̂1(u, v),

dv

dt
= −∂H1

∂u
(u, v) + εq̂1(u, v), (65)

where H1 is the same as that in section 3 and

∂p̂1
∂u

+
∂q̂1
∂v

=

2∑

i+j=0

ĉ1iju
ivj,

where
ĉ100 = c00 + c02, ĉ110 = −2c02 − 2h11c11, ĉ101 = c11,

ĉ120 = c02 + 2h11c11 + 4h211c20, ĉ111 = −c11 − 4h11c20, ĉ102 = c20

For simplification, we study system (65) in two cases h11 = 0 and h11 = 1 separately.

First, let h11 = 0. Then for system (65) we have

H1(u, v) =
1

2
(u2 + v2)− 1

2
u3 − 2h22uv

2 + h31v
3 +

1

8
u4 + h22u

2v2 − h31uv
3 + h40v

4

and
ĉ100 = c00 + c02, ĉ110 = −2c02, ĉ101 = c11,

ĉ120 = c02, ĉ111 = −c11, ĉ102 = c20.

Therefore, we have the following theorem

Theorem 9. Suppose system (65) satisfies h11 = 0 and

h02(h20 + h22) < 0.

Introduce

δ = (c00, c02, c11, c20), σ = (h31, h22, h40),

and

δ0 = (c∗00, c
∗
02, c

∗
11, c

∗
20), σ0 = (h∗31, h

∗
22, h

∗
40),

where δ0 and σ0 satisfy

c∗00 = −c∗02, c∗20 = 3h∗31c
∗
11 + (2 + 4h∗22)c

∗
02, c

∗
11 6= 0,

c∗02 =
h∗31[20(h

∗
22)

2 − 8h∗22 − 10h∗40 − 1]

−2 + 20(h∗31)
2 + 8h∗22 − 4h∗40

c∗11,

h∗31 6= 0, h∗22 =
1

2
− 105± 56

√
3

4
(h∗31)

2, h∗40 =
1

14
[28(h∗22)

2 − 21(h∗31)
2 − 12h∗22 − 1].

Then, for some (ε, δ, σ) near (0, δ0, σ0) the system (65) has 5 limit cycles near the origin.

Proof. Let M(h, δ) be the Melnikov function of system (65) near the origin. Then, by

Theorem 2, we have

M(h, δ) = h
∑

j≥0

bj(δ)h
j .
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Executing the Mathematica program yields

b0 = 2 π (c00 + c02).

Letting c00 = −c02, which implies b0 = 0, we obtain the following expressions for bi’s:

b1|b0=0 = π[c20 − 3h31c11 − (2 + 4h22)c02],

b2|b0=0 =
π

2

[
(1 + 4h22 + 20h222 + 35h231 − 10h40)c20

+(h31 + 20h22h31 − 140h222h31 − 105h331 + 70h31h40)c11

+(−10 + 10h231 − 4h22(3 + 6h22 + 20h222 + 35h231 − 10h40) + 4h40)c02
]
,

bi|b0=0 = Li(δi1c20 + δi2c11 + δi3c02), i = 3, 4, 5,

(66)

where

L3 = − 5

32
π, L4 = − 7

64
π, L5 = − 21

1024
π,

and
δ31 = −7− 8h22(3 + h22(9 + 14h22(2 + 9h22)))− 3003h431

+12h40 + 112h22(1 + 9h22)h40 − 252h240

+14h231(1 + 36(1− 11h22)h22 + 198h40)

δ32 = h31(−3− 24h22 + 28h40 + 21(−96h322 + 528h422 + 429h431,

+2h231(3 + 44h22(−3 + 13h22)− 286h40) + 48h22h40

+132h240 − 8h222(1 + 66h40))),

δ33 = −2(−63− 2h22(35 + 4h22(15 + 2h22(15 + 7h22(5 + 18h22))))

+231(3− 26h22)h
4
31 + 12h40 + 24h22(3 + 14h22(1 + 6h22))h40

−28(1 + 18h22)h
2
40 − 6h231(−1 + 14h22(−1 + 6h22(−3 + 22h22)

−66h40) + 42h40)),

δ41 = · · · .

Let

b̃j = bj |b0=0, j = 1, 2, 3, 4, 5. (67)

Noticing (66), we can solve c20 from b̃1 = 0 as

c20 = 3h31c11 + (2 + 4h22)c02 (68)

Substituting (68) into b̃2 results in

b̃2 = 2π
[
2(10h231 + 4h222 − 2h40 − 1)c02 + h31(10h40 + 8h22 − 20h222 + 1)c11

]
.

For σ near σ∗ we have 10h231+4h222− 2h40− 1 6= 0. Thus, we see that b̃2 = 0 if and only if

c02 =
h31(20h

2
22 − 8h22 − 10h40 − 1)

−2 + 20h231 + 8h22 − 4h40
c11. (69)
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Substituting (68) and (69) into b̃3, b̃4 and b̃5 results in

b̃3+i ≡ ∆iL, i = 0, 1, 2, (70)

where

L =
h31(1− 8h231 + 16h231h22 − 8h222 + 16h422 + 4h40 − 16h222h40 + 4h240)

16(10h231 + 4h222 − 2h40 − 1)
πc11,

and
∆0 = 80(1 + 12h22 − 28h222 + 21h231 + 14h40),

∆1 = 168(3 + 32h22 − 40h222 + 192h322 − 528h422 + 36h231

+264h22h
2
31 + 429h431 + 28h40 − 96h22h40

+528h222h40 − 132h240),

∆2 = 21(143 + 1452h22 − 1340h222 + 9632h322 − 16368h422 + 45760h522

−137280h622 + 1509h231 + 10648h22h
2
31 − 17160h222h

2
31

+205920h322h
2
31 − 194480h422h

2
31 + 11869h431 + 48620h22h

4
31

+184756h222h
4
31 + 138567h631 + 1158h40 − 4528h22h40

+18832h222h40 − 45760h322h40 + 205920h422h40

+2860h231h40 − 102960h22h
2
31h40 + 194480h222h

2
31h40

−92378h431h40 − 5324h240 + 11440h22h
2
40−

102960h222h
2
40 − 48620h231h

2
40 + 17160h340).

For c11 near c
∗
11 and σ near σ∗ we have L 6= 0. Thus, b̃3 = 0 if and only if ∆0 = 0, which

yields

h40 = − 1

14
(1 + 12h22 − 28h222 + 21h231).

In this case, we have

∆1 =
96

7

[
4(1− 2h22)

2 + 420(−1 + 2h22)h
2
31 + 1617h431

]
.

Then, ∆1 = 0 if and only if h22 = f1(h31) or h22 = f2(h31), where

fi(h31) =
1

2
− 105

4
h231 − (−1)i14

√
3h231, i = 1, 2.

Thus, it follows that when h22 = fi(h31) we have

∆2 = 688128(54 + (−1)i31
√
3)h631, i = 1, 2.

Hence, it is clear that the conclusion follows from Theorem 4.

The proof is complete.
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Now we turn to the case h11 = 1. Similarly, we can prove the following theorem

Theorem 9′. Suppose system (65) satisfies h11 = 1 and

−4 − 8h02(h20 + h22) > 0.

Introduce

δ = (c00, c02, c11, c20), σ = (h31, h22, h40),

and

δ0 = (c∗00, c
∗
02, c

∗
11, c

∗
20), σ0 = (h∗31, h

∗
22, h

∗
40),

where δ0 and σ0 satisfy

h∗22 <
7

10
, h∗31 =

8

25
− 4

5
h∗22 −

1

25

√
1

232

√
(15− 8

√
3)[7− 10(h∗22)

2],

h∗40 = −139

250
− 22

5
(h∗22)

2 +
554

175
h∗22 − 12h∗22h

∗
31 +

22

5
h∗31 −

17

2
(h∗13)

2,

c∗00 = −c∗02, c∗20 =
1

5

[
(52h∗22 + 60h∗31 − 22)c∗02 + (75h∗31 + 60h∗22 − 26)c∗11

]
, c∗02 6= 0,

c∗11 =
−2L∗c∗02

(−8 + 20h∗22 + 25h∗31)(−263 + 20(42− 25h∗22)h
∗
22 + 500h∗31 + 1250h∗40)

with

L∗ = 979 + 6250(h∗31)
2 − 50h∗31(101 + 4h∗22(−72 + 25h∗22)− 250h∗40)− 4050h∗40

+4h∗22(−1366 + 5 ∗ (457− 200h∗22)h
∗
22 + 2500h∗40).

Then, for some (ε, δ, σ) near (0, δ0, σ0) the system (65) has 5 limit cycles near the origin.

Therefore, system (64) has 5 limit cycles near the elementary center (0, 1). For the

symmetry, system (64) also has 5 limit cycles near the center (0,−1). Namely, there

are altogether 10 limit cycles of system (64) bifurcating from both symmetric elementary

centers (0,±1).

If △ = −4h211 − 8h02(h20 + h22) = 0, h31 = −2h11h20 and h220 + h40 < 0, then there is a

nilpotent center of order 1 of Hamiltonian system (S) at the point (0, 1). For convenience,

let h02 = 1/2. Then, we can take

h22 = −h211 − h20.

Introducing a change of variables (x, y) as

u = −1

2
(y − 1), v = h11x+ y − 1,

one can obtain the normal form of system (64) near the center (0, 1) as

du

dt
=
∂H2

∂v
(u, v) + εp̂2(u, v),

dv

dt
= −∂H2

∂u
(u, v) + εq̂2(u, v), (71)
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where H2 is the same as that in section 3, namely,

H2(u, v) =
1

2
v2+(4h20−2h211)u

2v+
1

2
v3+2(h411−4h211h20−4h40)u

4+(2h20−h211)u2v2+
1

8
v4,

and
∂p̂2
∂u

+
∂q̂2
∂v

=

2∑

i+j=0

ĉ2iju
ivj,

where

ĉ200 = c00 + c02, ĉ210 = −2c11 + 4h11c02, ĉ201 = 2c02,

ĉ220 = 4c20 − 4h11c11 + 4h211c02, ĉ211 = −2c11 + 4h11c02, ĉ202 = c02.

Theorem 10. Suppose system (71) satisfies

−4h211 − 8h02(h20 + h22) = 0, h31 = −2h11h20, h
2
20 + h40 < 0.

Introduce

δ = (c00, c02, c11, c20), σ = (h11, h20, h40),

and

δ0 = (c∗00, c
∗
02, c

∗
11, c

∗
20), σ0 = (h∗11, h

∗
20, h

∗
40),

where δ0 and σ0 satisfy

(h∗20)
2 + h∗40 < 0, c∗00 = −c∗02, c∗02 6= 0,

c∗20 = h∗11c
∗
11 − 2c∗02[(h

∗
11)

2 − h∗20].

Then, for some (ε, δ, σ) near (0, δ0, σ0) the system (71) has 2 limit cycles near the origin.

Proof. Let M(h, δ) be the Melnikov function of system (71) near the origin. Then, by

Theorem 2, we have

M(h, δ) = h3/4
∑

j≥0

bj(δ)h
j/2.

Executing the Mathematica program yields

b0 =
2Γ(5/4)

√
2π

Γ(7/4)(B − 2A2)1/4
(c00 + c02).

Letting c00 = −c02 (implying b0 = 0), we obtain the following expressions for bi’s:

b1|b0=0 =
Γ(3/4)

√
π

Γ(9/4)(−2h220 − 2h40)3/4
(c20 − h11c11 + 2c02(h

2
11 − h20)),

b2|b0=0 =
Γ(1/4)

√
π

4Γ(11/4)(−2h220 − 2h40)5/4
[δ21(c20 − h11c11) + δ22c20],

b3|b0=0 = Γ(7/4)
√
π [δ31(c20 − h11c11) + δ32c20],

(72)
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where
δ21 = h211 − 2h20, δ22 = h411 − 3h211h20 − 2h220 − 4h40 ,

δ31 = 3h411 − 12h211h20 + 4h220 − 8h40 ,

δ32 = 3h611 − 15h411h20 + 8h211(h
2
20 − 2h40) + 12h320 + 24h20h40 .

Let

b̃j = bj |b0=0, j = 1, 2, 3.

Noticing (72), we can obtain c20 = h11c11−2c02(h
2
11−h20) by solving b̃1 = 0. Substituting

c20 = h11c11 − 2c02(h
2
11 − h20) into b̃2 and b̃3 results in

b̃2 =
Γ(1/4)

√
π

Γ(11/4)(−2h220 − 2h40)1/4
c02,

b̃3 = −16Γ(7/4)
√
π (h211 − 2h20)(h

2
20 + h40)c02.

For (h20, h40) near (h∗20, h
∗
40), we have −2h220 − 2h40 > 0. Then b̃2 = 0 if and only if

c02 = 0, which yields b̃3 = 0. Hence, it is clear that the conclusion follows from Theorem

3.

The proof is complete.

Therefore, system (64) has 2 limit cycles near the nilpotent center (0, 1). For the sym-

metry, system (64) also has 2 limit cycles near the nilpotent center (0,−1). Namely, there

are altogether 4 limit cycles of system (64) bifurcating from both symmetric nilpotent

centers (0,±1).

Appendix

Basing on the formulae given in section 2 we have written the Mathematica code for

computing {bj}, presented below. It contains several subroutines (as shown in the code)

for computing ej , qj(x), H
∗
j (x), aj(x), q̄j(x), ψ(x), q̂j , rij , βij and bj .

########## compute the e_j=e[j] coefficients ##########
H=h[2,0]x^2+h[0,2]y^2+Sum[Sum[h[i-j,j]x^{i-j}y^j,{j,0,i}],{i,3,n+1}];
div=Sum[Sum[c[i-j,j]x^{i-j}y^j,{j,0,i}],{i,0,n-1}];
phi=Sum[e[j]x^j,{j,2,m}];
H1=D[H,y];H1=H1/.{y->phi};
Do[H2[i]=Coefficient[H1,x,i],{i,2,m}];
Do[t[i]=Solve[H2[i]==0,e[i]],{i,2,m}];
?t
########## compute q_j(x)=q[j] ##########
Do[q[j]=(1/j!)D[div,{y,j-1}],{j,1,n}];
Do[q[j]=q[j]/.{y->phi},{j,1,n}]
########## compute H*_j(x)=Hs[j] ##########
Do[Hs[j]=(1/(j+1)!)D[div,{y,j+1}],{j,1,n}];
Do[Hs[j]=Hs[j]/.{y->phi},{j,1,n}]
########## compute a_j(x)=a[j] ##########
V1=Sum[a[j]w^j,{j,1,m}]
Ht=Sum[Hs[j]V^{j+1},{j,1,n}]
F=Ht-w^2;
Do[W[j]=Coefficient[F,w,j],{j,1,m}]
Do[t1[j]=Solve[W[j+1]==0,a[j]],{j,1,m}]
?t1
########## compute bar_q_j(x)=qb[j] ##########
Q=Sum[q[j]V1^j,{j,1,n}]
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Do[qb[j]=2Coefficient[Q,w,2j+1],{j,0,m}]
### compute psi(x)=psi ###
H0=H/.{y->phi}
psi=[H0]^{1/(2p)};
########## compute tilde_q_j=qt[j] ##########
Psi=Sum[PS[j]u^j,{j,1,m}]
H00=H0/.{x->Psi}
G=H00^{2p}-u
Do[g[j]=Coefficient[G,u,j],{j,0,m}]
Do[t2[j]=Solve[g[j]==0,PS[j]],{j,1,m}]
?t2
Do[qt[j]=(qb[j]/.{x->Psi})D[Psi,u],{j,0,m}]
########## compute r_ij coefficients ##########
Do[r[i,j]=2Coefficient[qt[j],2i],{i,0,m},{j,0,m}]
########## compute beta_ij=bt[i,j] coefficients ##########
Do[bt[i,j]=Integrate[u^{(1-p+2i)/p}(1-u^2)^j Sqrt[1-u^2],{u,0,1}],{i,0,m},{j,0,m}]
########## compute b_j coefficients ##########
Do[b[j]=Sum[r[j-p*i,i]bt[j-p*i,i],{i,0,IntegerPart[j/p]}],{j,0,m}]

Executing the above program yields expressions in the original coefficients hij and cij.

Below we list the final coefficients bj (the intermediate expressions such as ej , aj , etc. are

omitted) for p = 2, ω = 1 and n = 3. We found

b0 =
2π

(4h40 − 2h221)
1/4

c00.

If b0 = 0, i.e., c00 = 0, then

b1 =
16

3 (4h40 − 2h221)
7/4

[
(4h40 − 2h221)c20 − (h12h

2
21 − 3h21h31 + 4h12h40)c10

−h21(4h40 − 2h221)c01

]
,

b2 =
π

(4h40 − 2h221)
17/4

×
{
2(h221 − 2h40)

[
− 12h421h22 + 30h12h21h31(h

2
21 + 4h40)

+h221(−35h231 + 8h22h40) + 4h40(−5h231 + 8h22h40) + 3h212(h
4
21 − 24h221h40 − 16h240)

−4h03h21(h
4
21 − 14h221h40 + 24h240)

]
c20

−32(h221 − 2h40)
3h40c02

−8(h221 − 2h40)
2
[
h12h21(h

2
21 − 12h40) + h31(3h

2
21 + 4h40)

]
c11

+2(h221 − 2h40)
[
4h03(h

2
21 − 2h40)(h

4
21 − 24h240) + 6h12h31(h

4
21 − 24h221h40 − 16h240)

+5h212h21(h
4
21 − 8h221h40 + 48h240) + h21(−4h421h22 + 12h40(5h

2
31 − 8h22h40)

+h221(15h
2
31 + 56h22h40))

]
c01

−8h13h21(h
2
21 − 12h40)

[
(h221 − 2h40)

2 − 15h212h21h31(h
4
21 − 40h221h40 − 80h240)

−5h312(h
6
21 − 12h421h40 + 144h221h

2
40 + 64h340) + 3h31(4h03(h

6
21 − 26h421h40 + 32h221h

2
40

+32h340) + 5h21(4h
4
21h22 + 4h40(3h

2
31 − 8h22h40) + h221(7h

2
31 + 8h22h40)))

+h12(20h03h21(h
2
21 − 2h40)(h

4
21 − 8h221h40 + 48h240) + 3(4h621h22 + 16h240(−5h231

+8h22h40) + 8h221h40(−35h231 + 16h22h40)− h421(35h
2
31 + 104h22h40))

]
c10

}
,

b3 =
16

15(4h40 − 2h221)
27/4

× (· · · ) .
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