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This paper re-evaluates the security of a chaotic image encryption algorithm called MCKBA/
HCKBA and finds that it can be broken efficiently with two known plain-images and the cor-
responding cipher-images. In addition, it is reported that a previously proposed breaking on
MCKBA/HCKBA can be further improved by reducing the number of chosen plain-images
from four to two. The two attacks are both based on the properties of solving a composite
function involving the carry bit, which is composed of the modulo addition and the bitwise OR
operations. Both rigorous theoretical analysis and detailed experimental results are provided.
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1. Introduction

The subtle similarities between chaos and cryptography make chaos considered as a special way to design
secure and efficient encryption schemes [Chen et al., 2004, 2011]. Meanwhile, some cryptanalysis work
demonstrated that some chaos-based encryption schemes are vulnerable to various conventional attacks
from the viewpoint of modern cryptology [Li et al., 2004; Xiao et al., 2006; Solak et al., 2010a,b]. In
addition, some specific security flaws of chaos-based encryption schemes were reported [Zhou & Au, 2011;

Chen et al., 2012]. [Álvarez & Li, 2006] concluded some general approaches to evaluating security of chaos-
based encryption schemes.

Due to the simplicity and low computation complexity of bitwise exclusive OR operation and modulo
addition, they are widely used in traditional text encryption schemes and hash functions. Possible genera-
tion of carry bit by the modulo addition makes the two operations are neither identical nor interchangeable.
Some properties existing in multi-round combination of the two basic operations were derived to facilitate
differential attacks on some traditional text encryption schemes or searching collision of hash functions
[Paul & Preneel, 2005; Wang et al., 2005]. Among many chaos-based encryption schemes, the two oper-
ations are the basic involved (even only) substitution functions. In [Li et al., 2005], [Li et al., 2006], [Li
et al., 2008], and [Li et al., 2009], the following properties about n-bit integers α, β, γ, x, y were found to
support or enhance the proposed attacks on the corresponding encryption schemes in turn.

∗Corresponding author, chengqingg@gmail.com

1

ar
X

iv
:1

20
7.

65
36

v2
  [

cs
.C

R
] 

 2
9 

Se
p 

20
16



November 2, 2018 8:48 EMCKBA

2 C. Li et al.

• If α ⊕ β = 2n − 1, then equation (α ⊕ x) = (β ⊕ x) u γ has unique solution modulo 2n−1, where
(au b) = (a+ b) mod 2n;
• Equation |(α⊕ β)− (β ⊕ γ)| = |(α⊕ β̄)− (β ⊕ γ̄)| always exists;
• If α⊕ β = γ, then |α− β| ≤ γ;
• If (((xu α)⊕ β)u γ) ≡ x⊕ y, then y ≡ β (mod 2n−1).

In 2000, Yen et al. proposed a chaotic key-based algorithm (CKBA) by encrypting each pixel of a
plain-image by four possible operations: XORing or XNORing it with one of two predefined sub-keys. The
exerted operation is determined by a pseudo-random number sequence (PRNS) generated by iterating the
logistic map [Yen & Guo, 2000]. In 2002, S. Li et al. broke CKBA with only one known/chosen-image in
[Li & Zheng, 2002]. In 2005, Socek et al. proposed an enhanced version of CKBA (ECKBA) employing
the following four methods: 1) replacing the logistic map with a piecewise linear chaotic map (PWLCM);
2) increasing the bit length of secret key to 128; 3) adding a modulo addition and an XOR operation;
4) running all the basic encryption functions multiple times. To achieve a much better balance between
encryption load and security of high level, in 2007 Rao et al. proposed a modified version of CKBA
(MCKBA) in [Rao & Gangadhar, 2007] by employing a modular addition operation like [Socek et al.,
2005]. To further enhance the security of MCKBA against brute-force attack, in 2010 Gangadhar et al.
replaced the logistic map with a simple hyperchaos generator proposed in [Takahashi et al., 2004] and
names the algorithm HCKBA (Hyper Chaotic-Key Based Algorithm) [Gangadhar & Rao, 2010]. Since the
two schemes MCKBA and HCKBA share the same structure, [Li et al., 2011] analyzed them together and
reported the following points:

• Equivalent secret key of MCKBA/HCKBA can be obtained from four pairs of chosen-plaintexts;
• Encryption result of MCKBA/HCKBA is not sensitive to changes of plain-image;
• Encryption result of MCKBA is not sensitive to changes of two sub-keys.
• The lower bound on the number of queries (α, β) to solve unknown variable x in equation

y = (αu x)⊕ (β u x) (1)

in terms of modulo 2n−1 is 3 if n ≥ 4.

This paper re-evaluates the security of MCKBA/HCKBA and reports the following points: 1) some
properties of Eq. (1) are provided to support practical approaches to solving Eq. (1); 2) MCKBA/HCKBA
can be efficiently broken with two known-plaintexts; 3) the chosen-plaintext attack proposed in [Li et al.,
2011] can be further improved and the number of required chosen-plaintexts is only two.

The rest of this paper is organized as follows. The image encryption algorithm under study is briefly
introduced in Sec. 2. A known-plaintext attack and an improved chosen-plaintext attack on the algorithm
is presented in Sec. 3 with experimental results. The last section concludes this paper.

2. The Chaotic Image Encryption Algorithm Under Study

The encryption object of MCKBA is a gray-scale image of size M ×N (width×height), which is scanned in
the raster order and represented as a one dimensional sequence I = {I(i)}MN−1

i=0 . Then, a binary sequence

Ib = {Ib(l)}8MN−1
l=0 is constructed, where

∑7
j=0 Ib(8 · i + j) · 2j = I(i) for i = 0 ∼ MN − 1. With a

pre-defined integer parameter n, an n-bit number sequence J = {J(k)}d8MN/ne−1
k=0 is generated, where

J(k) =
∑n−1

j=0 Ib(n · k + j) · 2j . In case (8MN) is not a multiple of n, the sequence Ib is padded with some

zero bits. Without loss of generality, it is assumed that n can divide (8MN) in this paper. MCKBA operates

on the intermediate sequence J and obtains J ′ = {J ′(k)}8MN/n−1
k=0 , where J ′(k) =

∑n−1
j=0 I

′
b(n · k + j) · 2j .

Finally, cipher-image I ′ = {I ′(k)}MN−1
k=0 is obtained via I ′(k) =

∑7
j=0 I

′
b(8 · k + j) · 2j . Based on the above

preliminary introduction, MCKBA is described with the following four parts1.

1Since the sole difference between MCKBA and HCKBA is the generator of PRBS, only MCKBA is introduced here with a
concise and consistent form to illustrate the encryption procedure.



November 2, 2018 8:48 EMCKBA

Breaking a chaotic image encryption algorithm based on modulo addition and XOR operation 3

• The secret key : Two random numbers key1, key2 ∈ {0, · · · , 2n−1}, and the initial condition x(0) ∈ (0, 1)
of the logistic map

x(k + 1) = 3.9 · x(k) · (1− x(k)), (2)

where
∑n−1

j=0 (key1,j ⊕ key2,j) = dn/2e, key1 =
∑n−1

j=0 key1,j · 2j , key2 =
∑n−1

j=0 key2,j · 2j , and ⊕ denotes

the eXclusive OR (XOR) operation.

• Initialization: Run Eq. (2) iteratively to generate a sequence {x(k)}MN/(2n)−1
k=0 and derive a pseudo-

random binary sequence (PRBS), {b(l)}16MN/n−1
l=0 , from the 32-bit binary representation of elements of

the sequence, namely x(k) =
∑32

j=1 b(32 · k + j − 1) · 2−j .
• Encryption: For k = 0 ∼ 8MN/n− 1, encrypt the k-th plain-element of J via

J ′(k) =


(J(k)u key1)⊕ key1 if B(k) = 3;

(J(k)u key1)� key1 if B(k) = 2;

(J(k)u key2)⊕ key2 if B(k) = 1;

(J(k)u key2)� key2 if B(k) = 0,

(3)

where B(k) = 2 · b(2k) + b(2k + 1), and a� b = a⊕ b = a⊕ b̄.
• Decryption: The decryption procedure is similar to that of the encryption except that Eq. (3) is replaced

by

J(k) =


(J ′(k)⊕ key1)−̇key1 if B(k) = 3;

(J ′(k)⊕ key1)−̇key1 if B(k) = 2;

(J ′(k)⊕ key2)−̇key2 if B(k) = 1;

(J ′(k)⊕ key2)−̇key2 if B(k) = 0,

(4)

where a−̇b = (a− b+ 2n) mod 2n.

3. Cryptanalysis

Assume that two plain-images and the corresponding cipher-images encrypted with the same secret key are

available, and let J1 = {J1(k)}8MN/n−1
k=0 and J2 = {J2(k)}8MN/n−1

k=0 denote the corresponding intermediate
sequences, respectively. Then, one can assure that the two sequences and the corresponding encrypted

results J ′1 = {J ′1(k)}8MN/n−1
k=0 and J ′2 = {J ′2(k)}8MN/n−1

k=0 satisfy

J ′1(k)⊕ J ′2(k) =

{
(J1(k)u key1)⊕ (J2(k)u key1) if B(k) ∈ {2, 3};
(J1(k)u key2)⊕ (J2(k)u key2) if B(k) ∈ {0, 1}.

(5)

No matter what the value of B(k) is, the above equation can be represented in the form of Eq. (1). In
this section, we first present some properties of the kernel function (1) on obtaining its solution and then
illustrate how to obtain an equivalent secret key of MCKBA/HCKBA with two known plain-images and
two chosen plain-images, respectively.

3.1. Some properties of the kernel function

Property 1. Equivalent form of Eq. (1)

ỹ = y ⊕ α⊕ β = (αu x)⊕ (β u x)⊕ α⊕ β (6)

can be represented as an iteration form
ỹi+1 = ci+1 ⊕ c̃i+1,

ci+1 = (xi · αi)⊕ (xi · ci)⊕ (αi · ci),
c̃i+1 = (xi · βi)⊕ (xi · c̃i)⊕ (βi · c̃i),

(7)

where c0 ≡ 0, c̃0 ≡ 0, x =
∑n−1

i=0 xi ·2i, α =
∑n−1

i=0 αi ·2i, β =
∑n−1

i=0 βi ·2i, ỹ =
∑n−1

i=0 ỹi ·2i (These notations
are the same hereinafter.).
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Proof. Set c0 = 0, one can calculate ci+1 from ci and αi via

ci+1 = (xi · αi)⊕ (xi · ci)⊕ (αi · ci) (8)

for i = 0 ∼ n− 2. So, ci+1 denote the carry bit generated by x and α in the i-th bit plane. Set c̃0 = 0, one
can then obtain

c̃i+1 = (xi · βi)⊕ (xi · c̃i)⊕ (βi · c̃i)

for i = 0 ∼ n−2. Similarly, c̃i+1 denote the carry bit generated by x and β in the i-th bit plane. Obviously,
ỹ0 = (α0 ⊕ x0)⊕ (β0 ⊕ x0)⊕ α0 ⊕ β0 ≡ 0. Then, the (i+ 1)-th bit plane of Eq. (6) can be represented as

ỹi+1 = (αi+1 ⊕ ci+1 ⊕ xi+1)⊕ (βi+1 ⊕ c̃i+1 ⊕ xi+1)⊕ αi+1 ⊕ βi+1

= ci+1 ⊕ c̃i+1,

where i = 0 ∼ n − 2. So, ỹi can be easily calculated iteratively according to Eq. (7) for i = 0 ∼ n − 2,
which can also be done via checking Table 1 listing the values of ỹi+1 under all possible different values of
αi, βi, ỹi, xi, and ci. �

Table 1. The values of ỹi+1 corresponding to the values of αi, βi, ỹi, xi, and ci.

(xi, ci)
(αi, βi, ỹi)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(0, 0) 0 0 0 1 0 0 0 1
(0, 1) 0 0 1 0 1 1 0 1

(1, 0) 0 1 1 1 1 0 0 0
(1, 1) 0 1 0 0 0 1 0 0

Property 2. Given (αi, βi, ỹi, ỹi+1), no information about xi, ci and c̃i can be obtained (Note that c0 and
c̃0 are excluded since they are pre-defined constants.) if and only if (4αi + 2βi + ỹi) ∈ {0, 6}.

Proof. Since only the data in the 0, 6-th column (zero-based) of Table 1 are identical, it is impossible to
obtain any information about xi, ci and c̃i from (αi, βi, ỹi, ỹi+1) if and only if (4αi + 2βi + ỹi) ∈ {0, 6}. �

Property 3. Given (αi, βi, ỹi, ỹi+1), the unknown bit xi can be determined via xi = αi ⊕ ỹi+1, if and only
if (4αi + 2βi + ỹi) ∈ {1, 7}.

Proof. Only under the cases shown in the 1, 7-th column of Table 1, xi can be determined by (αi, βi, ỹi, ỹi+1)
without knowledge of ci. It is easy to verify that xi = αi ⊕ ỹi+1 in terms of value. �

Property 4. Given (αi, βi, ỹi, ỹi+1), carry bits ci and c̃i can be determined via ci = βi ⊕ ỹi+1 and c̃i =
βi ⊕ ỹi+1 ⊕ ỹi if and only if (4αi + 2βi + ỹi) ∈ {3, 5}.

Proof. Only under the cases shown in the 3, 5-th column of Table 1, ci can be determined by (αi, βi, ỹi, ỹi+1)
without knowledge of xi. It is easy to verify that ci = βi ⊕ ỹi+1 in terms of value. Then, one can obtain
c̃i = βi ⊕ ỹi+1 ⊕ ỹi since c̃i = ci ⊕ ỹi. �

Property 5. Given (αi, βi, ỹi, ỹi+1), the scope of the unknown bits xi, ci can be narrowed via

(xi, ci) ∈

{
{(0, 0), (1, 1)} if ỹi+1 = 0;

{(0, 1), (1, 0)} if ỹi+1 = 1,
(9)

if and only if (4αi + 2βi + ỹi) ∈ {2, 4}.



November 2, 2018 8:48 EMCKBA

Breaking a chaotic image encryption algorithm based on modulo addition and XOR operation 5

Proof. Referring to the cases shown in the 2, 4-th column of Table 1, the scope of (xi, ci) can be narrowed
according to value of ỹi+1. It is easy to obtain Eq. (9) from Table 1. Therefore, the “if” part of the property
is proven. Note that the number of possible values of (4αi + 2βi + ỹi) is only eight, and the sufficient
and necessary conditions on obtaining different information on xi and ci under other six cases have been
presented. Therefore, the “only if” part of the property is also proven. �

Property 6. If (αi−1 ⊕ βi−1) = 1 and ỹi = 1, one has ci = αi−1, where i ∈ {1, 2, · · · , n− 2}.

Proof. When (αi−1, βi−1) = (1, 0) and ỹi = 1, one can get ci = 1 from Eq. (7) no matter the value of xi−1.
Similarly, one has ci = 0 when (αi−1, βi−1) = (0, 1) and ỹi = 1. So, the property is proven. �

Property 7. Given α, β, ỹ, some bits among the (n−1) least significant bits of x in Eq. (6) can be determined
from the least significant bit to the most significant one.

Proof. The concrete approaches to solving Eq. (1) and determining the carry bits can be divided into the
following two classes of operations.

• Obtaining information on x0 and c1: According to how much information on x0 and c1 can be obtained,
(α0, β0, ỹ0) is further classified as the following two cases.

(a) (4α0 + 2β0 + ỹ0) ∈ {0, 6}: Referring to Property 2, x0 can not be determined in this case, but one can
obtain c1 = 0 if α0 = 0.

(b) (4α0 + 2β0 + ỹ0) ∈ {2, 4}: As c0 = 0, one can obtain

x0 =

{
0 if ỹ1 = 0;

1 if ỹ1 = 1,
(10)

from Eq. (9). Then, one can further obtain

c1 =


0 if ỹ1 = 0;

1 if α0 = 1 and ỹ1 = 1;

0 if α0 = 0 and ỹ1 = 1.

• Obtaining information on xi, ci and ci+1 for i = 1 ∼ n− 2: According to how much information on xi,
ci and ci+1 can be obtained by checking (αi, βi, ỹi) and the obtained information on ci for i = 1 ∼ n− 2
in order, (αi, βi, ỹi) is categorized as the following four cases2.

(a) (4αi + 2βi + ỹi) ∈ {0, 6}: Referring to Property 2, no information on x can be determined in this case.
The value of ci+1 can be determined by Eq. (8) if

{ci + αi} ∈ {0, 2} is known. (11)

(b) (4αi + 2βi + ỹi) ∈ {1, 7}: One has

xi = αi ⊕ ỹi+1 (12)

from Property 3. If ci has been determined, one can obtain ci+1. Even ci is still unknown, one can
confirm ci+1 by Eq. (8) if (αi + xi) = 0 or (αi + xi) = 2 is known.

(c) (4αi + 2βi + ỹi) ∈ {2, 4}: If ci has been determined, based on Property 5 one can obtain

xi =

{
1− ỹi+1 if ci = 1;

ỹi+1 if ci = 0,
(13)

and further confirm the value of ci+1.
(d) (4αi + 2βi + ỹi) ∈ {3, 5}: Referring to Property 4, one can obtain ci = βi ⊕ ỹi+1.

�

2As confirmation of ci is equivalent to that of c̃i, the latter is not mentioned.
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3.2. Known-plaintext attack

Known-plaintext attack is one of the classic attack models where the attacker (or cryptanalyst) can access
both some plaintexts and the corresponding encryption results encrypted with the same secret key. In
[Gangadhar & Rao, 2010, Sec. 3.2], the original authors claimed that HCKBA has strong vulnerability
against known-plaintext attack. However, we found MCKBA/HCKBA is very weak against the attack,
which is supported by the properties of Eq. (1) shown in the previous subsection.

Under the scenario of known-plaintext attack, breaking MCKBA/HCKBA is to determine some infor-

mation of its equivalent secret key, key1, key2 and {B(k)}8MN/n−1
k=0 , by solving Eq. (5) and utilizing some

properties of MCKBA/HCKBA. From Property 7, one can see that some bits of key1 and key2 can be
obtained from Eq. (5) for any k ∈ {0, · · · , 8MN/n− 1}, where the other unknown bits are just set as zero.
Let key(k) denote the obtained solution of Eq. (5) and s(k, i) represent key(k)i is confirmed definitely or
not, i.e. set s(k, i) = 1 if key(k)i is confirmed by Eq. (10), Eq. (12), or Eq. (13); otherwise set s(k, i) = 0,
where key(k) =

∑n−1
i=0 key(k)i · 2i, and k = 0 ∼ 8MN/n− 1. Then, one may reconstruct set {key1, key2}

from {key(k)}8MN/n−1
k=0 and {s(k, i)}8MN/n−1,n−2

k=0,i=0 by identifying and combining the known bits belonging
to the same number, which is described by the following steps.

• Step 1): Set K = {key(0), key(1), · · · , key(8MN/n−1)}. Delete some elements of K to assure that every
pair of elements of K has at least one different confirmed bit.
• Step 2): Search for the first two elements in K whose number of confirmed bits are most but the confirmed

bits of the two elements are not all the same. Let Seed(0) and Seed(1) denote the two seed elements
and delete them from K.
• Step 3): Check each element of K in turn and do the following two operations if it has one confirmed bit

which is different from that of Seed(i): 1) update Seed(1− i) by combining all the confirmed bits of the
element into that of Seed(1− i); 2) delete the element from K, where i ∈ {0, 1}.
• Step 4): Repeat Step 3) iteratively till the numbers of confirmed bits of Seed(0) and Seed(1) are not

increased in the whole step.
• Step 5): Terminate the whole search operation when all bits of Seed(0) and Seed(1) are confirmed bits;

otherwise repeat Step 2) through Step 4) till the cardinality of K is less than 2.

Let us study the probability on obtaining xi and ci with one pair of α, β and ỹ under assumption that
α, β and x distributes over {0, · · · , 2n − 1} uniformly. First, one has Prob(c0 = 1) = 0 and

Prob(ci = 1) =
3

4
Prob(ci−1 = 1) +

1

4
Prob(ci−1 = 0)

for i = 1 ∼ n− 1. Solve the above iteration function, one can obtain Prob(ci = 1) = 2i−1
2i+1 . Obviously, one

has Prob(ỹ0 = 0) = 1. Observe Table 1, one can see that the value of ỹi is determined by the values of
ỹi−1, ci−1, xi−1, αi−1 and βi−1 for i = 1 ∼ n− 1. Considering all possible cases, one has

Prob(ỹi = 0)=Prob(ỹi−1 = 0)

(
Prob(ci−1 = 0)

(
1

2
· 1 +

1

2
· 1

2

)
+ Prob(ci−1 = 1)

(
1

2
· 1

2
+

1

2
· 1
))

+Prob(ỹi−1 = 1)

(
Prob(ci−1 = 0)

(
1

2
· 1

2
+

1

2
· 1

2

)
+ Prob(ci−1 = 1)

(
1

2
· 1

2
+

1

2
· 1

2

))
=

3

4
Prob(ỹi−1 = 0) +

1

2
Prob(ỹi−1 = 1)

for i = 1 ∼ n− 1. Solve the iteration function, one can obtain

Prob(ỹi = 0) =
2

3
+

1

3 · 4i
. (14)

From the proof of Property 7, one can first calculate Prob[c0] = 1, Prob[c1] = Prob((4α0 + 2β0 + ỹ0) ∈
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{0, 6}) · 12 + Prob((4α0 + 2β0 + ỹ0) ∈ {2, 4}) · 1 = 1
4 + 1

2 = 3
4 and

Prob[ci]=Prob((4αi + 2βi) ∈ {0, 6})Prob(ỹi−1 = 0)Prob[ci−1]Prob(Condition (11) holds)

+Prob((4αi + 2βi) ∈ {0, 6})Prob(ỹi−1 = 1) (Prob[ci−1] + (1− Prob[ci−1])Prob((αi + xi) ∈ {0, 2}))
+Prob((4αi + 2βi) ∈ {2, 4})Prob(ỹi−1 = 0)Prob[ci−1] + Prob((4αi + 2βi) ∈ {2, 4})Prob(ỹi−1 = 1)

=
1

2
Prob(ỹi−1 = 0)Prob[ci−1]

1

2
+

1

2
Prob(ỹi−1 = 1) ·

(
Prob[ci−1] + (1− Prob[ci−1]) ·

1

2

)
+

1

2
Prob(ỹi−1 = 0)Prob[ci−1] +

1

2
Prob(ỹi−1 = 1)

=Prob[ci−1]

(
1

2
Prob(ỹi−1 = 0) +

1

4

)
+

3

4
Prob(ỹi−1 = 1)

=Prob[ci−1]

(
7

12
+

1

6 · 4i−1

)
+

1

4
− 1

4i
(15)

for i = 2 ∼ n− 1, where Prob[a] denotes the probability that the bit a can be confirmed. Finally, one has
Prob[x0] = 1

2 and

Prob[xi]=
1

2
Prob(ỹi = 1) +

1

2
Prob(ỹi = 0)Prob[ci] (16)

for i = 1 ∼ n − 2. Incorporate Eq. (14) and Eq. (15) into Eq. (16), one can obtain that Prob[x0] = 1
2 ,

Prob[x1] = 0.4062, Prob[x2] = 0.3818, and Prob[xi] ≈ 0.37 for i ≥ 3. Now, one can assure that key1i and
key2i can not be confirmed definitely with a probability smaller than or equal to (1 − 0.37)n0 = 0.63n0

and 0.63(8MN/n−n0) respectively, where n0 is cardinality of the set {k|B(k) ∈ {2, 3}, k = 0 ∼ 8MN/n− 1}.
Note that confirmation of the bits of x in Eq. (1) is determined by α, β, and the used unknown variable
x, and no any bit can be confirmed under some cases (See the examples shown in Table 2). In addition,
as for plaintext chose from natural images, α follows Gaussian distribution. But, we can still believe that
the set {key1, key2} can be reconstructed in a high probability since the values of n0 and 8MN/n−n0 are
both very large in general.

Table 2. The number of confirmed bits of x in Eq. (1) under some sets of (α, β, ỹ) when
n = 8, where ỹ is determined by (α, β, x) via Eq. (1).

x
(α, β)

(0, 1) (17, 54) (31, 102) (44, 93) (51, 95) (73, 79) (87, 122) (125, 126)

7 4 1 3 4 1 0 6 1
8 1 3 1 1 1 0 3 2
9 2 1 3 2 1 1 3 1
28 1 7 1 1 2 1 2 2
59 3 4 6 7 3 1 3 1
71 8 1 3 4 1 0 6 1
76 1 6 1 1 1 1 2 2
95 6 2 5 5 0 0 6 1
99 3 3 3 4 1 2 4 1
111 5 1 4 1 0 0 5 1
125 2 4 7 2 0 1 2 1
127 7 1 6 6 0 0 5 1

Referring to Proposition 1 and Eq. (3), one can obtain the scope of B(k),

B(k) =

{
{1, 3} if (J ′1(k)⊕ J1(k)) mod 2 = 0;

{0, 2} otherwise,
(17)

for k = 0 ∼ 8MN/n− 1.

Proposition 1. Assume that a and x are both n-bit integers and n ∈ Z+, ((aux)⊕x) has the same parity
as a and ((au x)� x) has opposite parity as a.
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Proof. Existence of four equations

((1 + x0) mod 2)⊕ x0 ≡ 1,

((0 + x0) mod 2)⊕ x0 ≡ 0,

((1 + x0) mod 2)� x0 ≡ 0,

((0 + x0) mod 2)� x0 ≡ 1,

is independent of x0, so the proposition is proved. �

Proposition 2. Assume that a and x are both n-bit integers, n ∈ Z+, one has the following two equations

(a⊕ x)−̇x = (a⊕ x⊕ 2n−1)−̇(x⊕ 2n−1),

(a⊕ x)−̇x = (a⊕ x⊕ 2n−1)−̇(x⊕ 2n−1).

Proof. See the proof of Proposition 1 in [Li et al., 2011]. �

According to the pre-defined condition key1 6= key2, there are only two possible combinations of key1
and key2. Let (key1∗, key2∗) denote the searched version of (key1, key2). Proposition 2 illustrates that the
unknown most significant bit of key1∗ =

∑n−1
j=0 key1∗j · 2j and key2∗ =

∑n−1
j=0 key1∗j · 2j has no influence on

decryption of MCKBA/HCKBA. Then, one can further obtain the approximate value of B(k), B∗(k), and
the n− 1 least significant bits of key1 and key2 by the following two different ways:

• W1) For k = 0 ∼ 8MN/n− 1, one has

B∗(k) =



3 if F (key∗1, J1(k), J ′1(k)) = 0, F (key∗2, J1(k), J ′1(k)) 6= 0

or F (key∗1, J2(k), J ′2(k)) = 0, F (key∗2, J2(k), J ′2(k)) 6= 0;

2 if G(key∗1, J1(k), J ′1(k)) = 0, G(key∗2, J1(k), J ′1(k)) 6= 0

or G(key∗1, J2(k), J ′2(k)) = 0, G(key∗2, J2(k), J ′2(k)) 6= 0;

1 if F (key∗1, J1(k), J ′1(k)) 6= 0, F (key∗2, J1(k), J ′1(k)) = 0

or F (key∗1, J2(k), J ′2(k)) 6= 0, F (key∗2, J2(k), J ′2(k)) = 0;

0 if G(key∗1, J1(k), J ′1(k)) 6=, G(key∗2, J1(k)∗, J ′1(k)) = 0

or G(key∗1, J2(k), J ′2(k)) 6= 0, G(key∗2, J2(k), J ′2(k)) = 0,

(18)

where F (x, α, y) = y − ((αu x)⊕ x), G(x, α, y) = y − ((αu x)� x). Note that Eq. (17) makes only two
conditions in Eq. (18) need being verified. Obviously, one can assure that

∑n−2
j=0 key

∗
1,j ·2j =

∑n−2
j=0 key1,j ·

2j ,
∑n−2

j=0 key
∗
2,j · 2j =

∑n−2
j=0 key2,j · 2j .

• W2) When there exists i ∈ {0, · · · , n− 2} satisfying that s(k, i) = 1, one can obtain

B∗(k) =

{
{2, 3} if key(k)i 6= key2∗i ;

{0, 1} if key(k)i 6= key1∗i ,
(19)

for k = 0 ∼ 8MN/n− 1. Then, the value of B(k) can be obtained by setting B∗(k) = B∗(k)
⋂
B(k) for

k = 0 ∼ 8MN/n − 1. Finally, one can conclude that (key1∗, key2∗) = (
∑n−2

i=0 key1∗i · 2i,
∑n−2

i=0 key2∗i ·
2i), and {B∗(k)}8MN/n−1

k=0 can work together as equivalent secret key of MCKBA/HCKBA due to that
(key1, key2, B(k)) = (a, b, c) and (key1, key2, B(k)) = (b, a, (c+ 2) mod 4) are equivalent for Eq. (4).

Now, let’s study the success probability of the above two methods. The success of the method W1)
depends on existence of one of the eight condition in Eq. (18). As F (x, α, y) = 0 if and only if G(x, α, y ⊕
(2n − 1)) = 0, only one of the two functions need being studed. Obviously,{

F (x, 0, y) ≡ y,
F (x, 2n−1, y) ≡ y − 2n−1.

(20)
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So, B(k) can not be confirmed by Eq. (18) when J1(k) ∈ {0, 2n−1} and J2(k) ∈ {0, 2n−1} exist at the
same time. It is very hard to derive the probability for other cases theoretically. Instead, we calculate the
probability that F (x1, α, y) = F (x2, α, y) = 0 via simulation, where

n−1∑
j=0

(x1,j ⊕ x2,j) = dn/2e, (21)

x1 =
∑n−1

j=0 x1,j · 2j , x2 =
∑n−1

j=0 x2,j · 2j . Assume key1, key2 distributes uniformly, the distribution of

probability F (key1, α, y) = F (key2, α, y) = 0 under different values of α and some values of n is shown in
Fig. 1.
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Fig. 1. The probability F (x1, α, y) = F (x2, α, y) = 0 under different value of α, where x1, x2 satisfy the constraint condition
(21).

The success of the method W2) can be analyzed as follows. Assume key1, key2 distributes uniformly,
one can get the probability that at least one bit (exclude the most significant bit) of key(k) satisfy s(k, i) = 1
and one condition of Eq. (19) is

Prob[Eq. (19) holds]=1−
n−1∑
i=0

(
n− 1

i

)
(Prob[xi])

i (1− Prob[xi])n−1−i
(

1

2

)i

≥1−
n−1∑
i=0

(
n− 1

i

)(
1

2

)i(
1− 1

2

)n−1−i(1

2

)i

=1−
(

1

2

)n−1 n−1∑
i=0

(
n− 1

i

)(
1

2

)i

=1−
(

3

4

)n−1
.

From the above analysis, one can see that B(k), k = 0 ∼ 8MN/n−1, can be determined with a probability

larger than 1−
(
3
4

)n−1
when α, β and x in Eq. (1) distributes uniformly. Although pixels of natural images

follow Gaussian distribution, and J1(k) and J2(k) in Eq. (5) do not distribute uniformly, we still can
believe that the success probability of this method is very high since only one bit satisfying the conditions
in Eq. (19) is needed, especially when n is relatively large.

To verify the real performance of the above analysis, a number of experiments are carried out on
some plain-images of size 512 × 512 with the method W1) when n = 32. When x0 = 319684607/232,
key1 = 3835288501, and key2 = 1437224678. Two known plain-images “Peppers” and “Baboon”, and the

corresponding cipher-images are adopted. Equivalent key key1∗, key2∗ and {B∗(k)}8MN/n−1
k=0 is used to

decrypt another cipher-image shown in Fig. 2a) and the recovered result is shown in Fig. 2b), which is
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identical with the original version. From the experiment, we found that only a little pixels (no more than
ten pixels for plain-image of size 512× 512) are not recovered correctly when n ≤ 28. This agree with our
expectation as the probability that none of condition of Eq. (18) and condition (20) are satisfied become
larger when n is smaller.

a) b)

Fig. 2. The decryption result of another cipher-image encrypted with the same secret key: a) cipher-image; b) decrypted
plain-image.

3.3. Chosen-plaintext attack

Chosen-plaintext attack is an enhanced version of known-plaintext attack, where the plaintext can be
chosen arbitrarily to obtain the information about the secret key in a more efficient way. In this subsection,
the chosen-plaintext attack on MCKBA/HCKBA is briefly introduced due to the following two points:
1) the known-plaintext attack on MCKBA/HCKBA works well in a relatively high probability and the
chosen-plaintext version can improve its performance a little; 2) the underlying theorem supporting the
attack proposed in [Li et al., 2011, Theorem 1] is not right and corrected in Proposition 3.

Proposition 3. Assume that α, β, x are all n-bit integers, then a lower bound on the number of queries
(α, β) to solve Eq. (1) in terms of modulo 2n−1 for any x is 1 if n = 2; 2 if n > 2.

Proof. When n = 2, one can obtain x0 = ỹ1 by choosing (α0, β0) = (1, 0). When n > 2, ỹ1 may be
equal to zero or one no matter what (α0, β0) is, which means that it is impossible to satisfy the con-
dition of Property 3 for any x. So, we have to resort to another query (α′, β′). Let α′i, β

′
i, y
′
i, ỹ
′
i and c′i

denote the counterparts of αi, βi, yi, ỹi, and ci corresponding to (α′, β′). Given a set of (αi+k, βi+k) and
(α′i+k, β

′
i+k), one can obtain (ci+k+1, ỹi+k+1) and (c′i+k+1, ỹ

′
i+k+1) from (ci+k, ỹi+k) and (c′i+k, ỹ

′
i+k), respec-

tively, where i, k are non-negative integers. Let arrows of plain head and “V-back” head denote xi+k = 0
and xi+k = 1, respectively, Fig. 3 illustrates the mapping relationship between (ci+k, ỹi+k, c

′
i+k, ỹ

′
i+k) and

(ci+k+1, ỹi+k+1, c
′
i+k+1, ỹ

′
i+k+1) for a given (αi+k, βi+k, α

′
i+k, β

′
i+k), where k = 0, 1. Since (c0, ỹ0, c

′
0, ỹ
′
0) ≡

(0, 0, 0, 0), the dashed arrows in Fig. 3 describe operations of Eq. (6) in the two least significant bit planes
corresponding to two sets of (α, β). Note that the data in the third column is exactly the same as the first
one. Therefore, Fig. 3 demonstrates operations of Eq. (6) under all different bit levels if the variable i goes
through 2 · t, where t = 0 ∼ bn/2c and i+ k ≤ n− 1. Referring to Fig. 3, it can be easily verified that

1 ∈ {yi, y′i}

is always satisfied, which means that xi can be derived from Table 1. �

Under scenario of chosen-plaintext attack, one may make the plaintext satisfy that at least one pair
of elements in {(J1(k), J2(k)) |B(k) ∈ {0, 1}} whose i-th bit plane satisfy the condition of Property 3.
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Fig. 3. Relationship between (ci+k, ỹi+k, c
′
i+k, ỹ

′
i+k) and (ci+k+1, ỹi+k+1, c

′
i+k+1, ỹ

′
i+k+1) for a given (αi+k, βi+k,

α′i+k, β
′
i+k), where k = 0, 1.

The same case exists for {(J1(k), J2(k)) |B(k) ∈ {2, 3}}. The expected chosen-plaintext can be obtained
in a high probability by assigning (J1(k), J2(k)) with one of the two sets of number given in Corollary 3.1
randomly. Compared with the known-plaintext attack, the chosen-plaintext attack has the following two
superior performances: 1) the set {key1, key2} can be reconstructed with much less complexity and much
higher degree of accuracy; 2) the bits of key(k) can be confirmed with a little higher probability.

Corollary 3.1. The (n− 1) least significant bits of x in Eq. (1) can be determined easily by setting (α, β)
with the following two sets of numbers{(∑dn/2e−1

j=0
(00)2 · 4j

)
mod 2n,

(∑dn/2e−1

j=0
(10)2 · 4j

)
mod 2n

}
,{(∑dn/2e−1

j=0
(10)2 · 4j

)
mod 2n,

(∑dn/2e−1

j=0
(01)2 · 4j

)
mod 2n

}
,

and checking the corresponding ỹ = y ⊕ α⊕ β.

Proof. The proof is straightforward and therefore omitted. �

4. Conclusion

In this paper, the security of the image encryption algorithm MCKBA/HCKBA has been restudied in
detail. Based on some properties of a composite function composed of the modulo addition and the XOR
operation, a known-plaintext attack and an improved chosen-plaintext attack were provided to determine
an equivalent secret key of MCKBA/HCKBA. The cryptanalysis provided in this paper sheds some light
on breaking other encryption schemes based on multiple combination of the modulo addition and XOR
operations.
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