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W -LIKE MAPS WITH VARIOUS INSTABILITIES OF ACIM’S

ZHENYANG LI

Abstract. This paper generalizes the results of [13] and then provides an
interesting example. We construct a family of W -like maps {Wa} with a
turning fixed point having slope s1 on one side and −s2 on the other. Each
Wa has an absolutely continuous invariant measure µa. Depending on whether
1

s1
+ 1

s2
is larger, equal or smaller than 1, we show that the limit of µa

is a singular measure, a combination of singular and absolutely continuous
measure or an absolutely continuous measure, respectively. It is known that
the invariant density of a single piecewise expanding map has a positive lower
bound on its support. In Section 4 we give an example showing that in general,
for a family of piecewise expanding maps with slopes larger than 2 in modulus
and converging to a piecewise expanding map, their invariant densities do not

necessarily have a positive lower bound on the support.

1. Introduction

In practice, due to external noise, or roundoff errors in computation, there is a
natural interest in the stability of properties of chaotic dynamical systems under
small perturbations. If we consider a family of piecewise expanding maps τa : I → I,
a > 0 with absolutely continuous invariant measures (acim’s) µa, converging to a
piecewise expanding map τ0 with acim µ0, then under general assumptions µa’s
converge to µ0. One such assumption is that inf |τ ′a| > 2 for all a > 0 (see [1],
[6], [7] or [10]). This is useful in the study of the metastable systems [15], or to
approximate the invariant densities [8].

Keller [9] introduced the family of {Wa} maps that are piecewise expanding,
ergodic transformations with a “stochastic singularity”, i.e., µa’s converge to a
singular measure. This occurs because of the existence of diminishing invariant
neighborhoods of the turning fixed point. The slopes of the Keller’s Wa maps
converge to 2 and -2 on the left and right hand sides of the turning fixed point,
respectively.

Given two numbers, s1 and s2, greater than 1, we consider a W -like map with
one turning fixed point having slope s1 on one side and −s2 on the other. In [13],
the authors considered the special case where s1 = s2 = 2. Their perturbed maps
Wa are piecewise expanding with slopes strictly greater than 2 in modulus and are
exact with their acim’s supported on all of [0, 1]. The standard bounded variation
method [2] cannot be applied in this setting as the slopes of the maps in that family
are not uniformly bounded away from 2. Other methods, for example, those studied
in [3], [12] and [14] cannot be applied either. Using the main result of [5], it can
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2 Families of piecewise expanding maps

be shown that the µa’s converge to 2
3µ0 +

1
3δ( 1

2 )
, where δ( 1

2 )
is the Dirac measure

at point 1/2 and µ0 is the acim of the W0 map. Thus, the family of measures µa

approach a combination of an absolutely continuous and a singular measure rather
than the acim of the limit map. Similar instability was also shown in [4] for a
countable family of transitive Markov maps approaching Keller’s W0 map.

In this paper, we construct a family of maps for which the instability of the
acim’s has a global character, not a local one. In the more general case considered
in this paper, with s1, s2 not necessarily equal to 2, we will discuss the limits of
the acim’s µa of the {Wa} maps. We have three cases:
(I) If 1

s1
+ 1

s2
> 1, then µa’s converge ∗-weakly to δ( 1

2 )
.

(II) If 1
s1

+ 1
s2

= 1, then µa’s converge ∗-weakly to

(qs1 + ps2 − p− q)(s2 + 2)

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s22
µ0+

2rs1s
2
2

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s22
δ( 1

2 )
,

where p, q and r are parameters defining our family of maps.
(III) If 1

s1
+ 1

s2
< 1, then µa’s converge to µ0.

Additionally, in Theorem 2, we prove that in case (III) the densities of the µa’s
are uniformly bounded. The first case of our result contains the example in which
Keller [9] obtained the “stochastic singularity.” In the second case, the limit measure
is a combination of an absolutely continuous and a singular measure, and this
combination is varying according to p, q and r for fixed s1 and s2. This is a
generalization of the result of [13]. In the third case, we have a map with a stable
acim.

At the end of the paper, we use our main results to provide an interesting
example. Keller [11] and Kowalski [12] proved that for a piecewise expanding map
τ : I → I with 1

|τ ′(x)| being a function of bounded variation, the density of the acim

of τ has a uniform positive lower bound on its support. We construct a family of
piecewise expanding, piecewise linear maps τn such that τn are exact on [0, 1], τn
converge to τ = W0 (s1 = s2 = 2), |τ ′n| > 2 for all n but the densities of the acims
µn’s do not have a uniform positive lower bound.

In Section 2, we introduce our family of Wa maps and state the main result. In
Section 3 we present the proofs. In Section 4, we show the example related to the
results of Keller [11] and Kowalski [12].

2. Family of Wa maps and the main result

Let s1, s2 > 1 and p, q, r > 0. We consider the family {Wa : 0 ≤ a} of maps of
[0, 1] onto itself defined by

(1) Wa(x) =





1− 2(s1+pa)
s1−1+pa−2rax , for 0 ≤ x < 1

2 −
1
2+ra

s1+pa ;

(s1 + pa)(x− 1/2) + 1/2 + ra , for 1
2 −

1
2+ra

s1+pa ≤ x < 1/2 ;

−(s2 + qa)(x − 1/2) + 1/2 + ra , for 1/2 ≤ x < 1
2 +

1
2+ra

s2+qa ;

1 + 2(s2+qa)
s2−1+qa−2ra (x− 1) , for 1

2 +
1
2+ra

s2+qa ≤ x ≤ 1 .

For each choice of s1, s2 > 1, p, q, r > 0, we consider only a > 0 such that
0 ≤ Wa(x) ≤ 1 for x ∈ [0, 1].

An example of a Wa map is shown in Fig.1. Fig.1(a) is the unperturbed W0 map
with turning fixed point at 1/2 and s1 = 3/2, s2 = 3. Fig.1(b) is the perturbed
map Wa, with a = 0.05, r = 2, p = 3, q = 2. The slope of the second branch is
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s1 + pa = 1.65, the slope of the third branch is s2 + qa = 3.1, and W0.05(1/2) =
1/2 + ra = 0.6.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

(a)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

(b)

Figure 1. The W -like maps with 1
s1

+ 1
s2

= 1: (a) W0 with s1 =

3/2 and s2 = 3, (b) Wa with s1 = 3/2, s2 = 3; a = 0.05; r = 2,
p = 3, q = 2; also several initial points of the trajectory of 1/2.

Every Wa has a unique absolutely continuous invariant measure µa since all the
slopes are greater than 1 in modulus. We will show later that, for 1

s1
+ 1

s2
≤ 1, µa is

supported on [0, 1] and for 1
s1

+ 1
s2

> 1 it is supported on a subinterval around 1/2.
Wa is an exact map with the measure µa. Let ha denote the normalized density of
µa, a ≥ 0. Since the W0 map is a Markov one, it is easy to check that

(2) h0 =

{
2s1(s2+1)

2s1s2+s1−s2
, for 0 ≤ x < 1/2 ;

2s2(s1−1)
2s1s2+s1−s2

, for 1/2 ≤ x ≤ 1 .

Our main result is the following theorem

Theorem 1. As a → 0 the measures µa converge ∗-weakly to the measure
(I) δ( 1

2 )
, if 1

s1
+ 1

s2
> 1;

(II) (qs1+ps2−p−q)(s2+2)
(qs1+ps2−p−q)(s2+2)+2rs1s22

µ0 +
2rs1s

2
2

(qs1+ps2−p−q)(s2+2)+2rs1s22
δ( 1

2 )
, if 1

s1
+ 1

s2
= 1;

(III) µ0, if
1
s1

+ 1
s2

< 1,

where δ( 1
2 )

is the Dirac measure at point 1/2.

The proof relies on the general formula for invariant densities of piecewise linear
maps [5] and direct calculations. Most objects and quantities we use depend on the
parameter a. We suppress a from the notation to make it simpler.

In case (III), we actually prove a little more:

Theorem 2. If 1
s1

+ 1
s2

< 1, then the normalized invariant densities {ha} are

uniformly bounded for given p, q and r. Consequently, we obtain Theorem 1(III).

3. Proofs

This section contains the proofs of Theorems 1 and 2, divided into a number of
steps.



4 Families of piecewise expanding maps

3.1. Assume 1
s1

+ 1
s2

> 1. Let

x∗
l =

s1 − 1 + pa− 2ra

2(s1 − 1 + pa)

and

x∗
r =

s2s1 − s2 + (2rs1 − q + ps2 + qs1)a+ (2rp+ pq)a2

2(s1 − 1 + pa)(s2 + qa)
.

x∗
l is the fixed point on the second branch of Wa, and x∗

r is the preimage of x∗
l

under the third branch of Wa. Both x∗
r and x∗

l converge to 1
2 as a approaches 0.

For small a, we have

Wa(1/2)− x∗
r =

ra [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)]

(s1 − 1 + pa)(s2 + qa)
< 0.

In this case, we have Wa([x
∗
l , x

∗
r ]) ⊆ [x∗

l , x
∗
r ]. Wa|[x∗

l
,x∗

r ]
is a skewed tent map with

Wa(1/2) > 1/2; it is known that with acim µa, it is exact on [x∗
l ,Wa(1/2)]. Since

µa is concentrated on [x∗
l , x

∗
r ], we conclude that µa converge ∗-weakly to δ( 1

2 )
. This

proves Theorem 1(I).
Fig.2 shows an example with a = 0.05, r = 2, p = 3, q = 2; s1 = 4/3, s2 = 5/2.
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Figure 2. The Wa map with 1
s1

+ 1
s2

> 1

3.2. Formula for the non-normalized invariant density of Wa if 1
s1
+ 1

s2
≤ 1.

An example of a map Wa is shown in Fig.1. We have the following proposition.

Proposition 1. For 1
s1

+ 1
s2

≤ 1, the map Wa has an absolutely continuous invari-

ant measure µa supported on [0, 1] and the map Wa with respect to µa is exact.

Proof. Wa is a piecewise expanding transformation. From the general theory (see
for example [2]), it follows that it is enough to show that the images Wn

a (J) grow to
cover all [0, 1] as n → ∞, for any interval J ⊂ [0, 1]. Since Wa is expanding, Wn

a (J)
grow until some image Wn0

a (J) contains an internal partition point. If this point is
not 1/2, then Wn0+2

a (J) contains the repelling fixed point 1. Then its images grow
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to cover all of [0, 1]. If this point is 1/2, we proceed as follows. First, assume that
1
s1

+ 1
s2

< 1. Consider a small neighborhood J = (z1, z2) around 1/2 with length ℓ,
then

min
z2−z1=ℓ

max

{
(
1

2
− z1)(s1 + pa), (z2 −

1

2
)(s2 + qa)

}
=

1
1

s1+pa + 1
s2+qa

ℓ > ℓ.

Thus, the interval J will grow until its image covers two partition points of Wa.
Then the second iteration afterward will cover [0, 1]. Therefore, Wa is exact with
respect ot µa.

Assume 1
s1

+ 1
s2

= 1. If a 6= 0, then 1
1

s1+pa
+ 1

s2+qa

> 1, which implies Wa is exact

with respect to µa. In the case a = 0, we first note that 1/2 is a turning fixed point.
Take again a small interval J = (z1, z2) ∋ 1/2. Its image is an interval (z, 1/2). It
will grow under iteration and its iterations still contain 1/2. It will grow until its
image covers another partition point of Wa. Then, the second iteration afterward
will covers all of [0, 1]. Thus, Wa is again exact with respect to µa. �

We adapt the general formulas of [5] to our case and obtain the following lemma:

Lemma 1. (I) N=4, K=2, L=0 ;

(II) α = (1, 1/2 + ra, 1/2 + ra, 1), β = (β1, β2, β3, β4), where β1 = − 2(s1+pa)
s1−1+pa−2ra ,

β2 = s1 + pa, β3 = −(s2 + qa) and β4 = 2(s2+qa)
s2−1+qa−2ra , γ = (0, 0, 0, 0) ;

(III) The digits A = (a1, a2, a3, a4), where a1 = −1, a2 = s1−1+pa−2ra
2 , a3 =

− s2+1+qa+2ra
2 , a4 = s2+1+qa+2ra

s1−1+pa−2ra ;

(IV ) There are two ci’s, which are c1 = (1/2, 2) and c2 = (1/2, 3), and j(c1) = 2,
j(c2) = 3. Then, Wu = {c1, c2},Wl = ∅, Ul = {c2},Ur = {c1} ;
(V ) β(c1, 1) = s1 + pa since j(c1) = 2, then β(c1, 2) = −(s1 + pa)(s2 + qa) and
β(c1, k) = −(s2 + qa)(s1 + pa)k−1 up to some k which is the first moment j when

the W j
a (1/2) is less than 1

2 − 1/2+ra
s1+pa , and is the same one defined in Lemma 4 ;

(V I) β(c2, 1) = −(s2+qa) since j(c2) = 3, then β(c2, 2) = (s2+qa)2 and β(c2, k) =
(s2 + qa)2(s1 + pa)k−2 up to the same k in part (e), Wn

a (c1) = Wn
a (c2) for all n ;

(V II) Based on (V I), we have the following for the matrix S = (Si,j)1≤i,j≤2 :

For c1 ∈ Ur

S1,1 =

∞∑

n=1

δ(β((c1, n) > 0))δ(Wn
a (c1) > 1/2) + δ(β((c1, n) < 0))δ(Wn

a (c1) < 1/2)

|β(c1, n)|
,

S1,2 =

∞∑

n=1

δ(β((c1, n) > 0))δ(Wn
a (c1) > 1/2) + δ(β((c1, n) < 0))δ(Wn

a (c1) < 1/2)

|β(c1, n)|
.

For c2 ∈ Ul

S2,1 =

∞∑

n=1

δ(β((c2, n) < 0))δ(Wn
a (c2) > 1/2) + δ(β((c2, n) > 0))δ(Wn

a (c2) < 1/2)

|β(c2, n)|
,

S2,2 =

∞∑

n=1

δ(β((c2, n) < 0))δ(Wn
a (c2) > 1/2) + δ(β((c2, n) > 0))δ(Wn

a (c2) < 1/2)

|β(c2, n)|
.

Remark 1. It follows from (V, V I) of Lemma 1 that

S1,1 = S1,2 , S2,1 = S2,2 and S1,1 =
s2 + qa

s1 + pa
S2,2 .
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Let Id be the 2 × 2 identity matrix and let V = [1, 1]. Then, for the solution,
D = [D1, D2], of the system :

(
−ST + Id

)
DT = V T , (1)

we have D1 = D2. Let us denote them by Λ.

Let I1, I2, I3, I4 be the partition of I = [0, 1] into maximal intervals of monotonic-

ity of Wa: I1 = [0, s1−1+pa−2ra
2(s1+pa) ), I2 = ( s1−1+pa−2ra

2(s1+pa) , 1/2), I3 = (1/2, s2+1+qa+2ra
2(s2+qa) )

and I4 = ( s2+1+qa+2ra
2(s2+qa) , 1]. We define the following index function:

j(x) = j for x ∈ Ij , j = 1, 2, 3, 4,

and

j(c1) = 2, j(c2) = 3.

We define the cumulative slopes for iterates of points as follows:

β(x, 1) = βj(x), and β(x, n) = β(x, n− 1) · βj(Wn−1
a (x)), n ≥ 2.

In particular, we have

β(1/2, n) = (s1 + pa) ·W ′
a(Wa(1/2)) ·W ′

a(W
2
a (1/2)) · · ·W ′

a(W
n−1
a (1/2)) ,

which is the cumulative slope along the n steps of trajectory of 1/2. Recall that k

is the first moment j when the W j
a (1/2) is less than

1
2 −

1/2+ra
s1+pa . Let k1 = [ 23k] (the

integer part of 2k/3). Note that k1 → ∞ as a → 0. Let

χs(t, x) =

{
χ[0,x] for t > 0 ;

χ[x,1] for t < 0 .

Now, we can obtain the following formula for fa:

Lemma 2. Let

fa = 1 + (1 +
s1 + pa

s2 + qa
)Λ

(
∞∑

n=1

χs(β(1/2, n),Wn
a (1/2))

|β(1/2, n)|

)
.

Then fa is Wa invariant non-normalized density. Furthermore, for small a > 0,
we have:
(I) If 1

s1
+ 1

s2
= 1, then Λ < −1 ;

(II) If 1
s1
+ 1

s2
< 1, the sign of Λ depends on s1 and s2, can be either positive or nega-

tive depending on the sign of ϑ = 1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
= 1− s1+s2

s1s2

(
1 + s1

s2(s1−1)

)
.

The case when ϑ = 0 is discussed at the end of Section 3.

Proof. By the Theorem 2 in [5], it follows from (IV, V, V I) of Lemma 1 that:

fa = 1 +D1

∞∑

n=1

χs(β(c1, n),W
n
a (c1))

|β(c1, n)|
+D2

∞∑

n=1

χs(−β(c2, n),W
n
a (c2))

|β(c2, n)|

= 1 + Λ

∞∑

n=1

χs(β(c1, n),W
n
a (1/2))

|β(c1, n)|
+ Λ

∞∑

n=1

χs(−β(c2, n),W
n
a (1/2))

|β(c2, n)|

= 1 + (1 +
s1 + pa

s2 + qa
)Λ

(
∞∑

n=1

χs(β(1/2, n),Wn
a (1/2))

|β(1/2, n)|

)
.
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Since

S1,1 ≥ 1

s1 + pa
+

1

s2 + qa

k1−1∑

n=1

1

(s1 + pa)n
=

1

s1 + pa
+

1

s2 + qa

1− 1
(s1+pa)k1−1

s1 + pa− 1
,

S1,1 ≤ 1

s1 + pa
+

1

s2 + qa

∞∑

n=1

1

(s1 + pa)n
=

1

s1 + pa
+

1

s2 + qa

1

s1 + pa− 1
,

and Λ = 1

1−
s1+s2+pa+qa

s2+qa
S1,1

, we have

(3) Λl =
1

1− (κ+ η(1 − 1
(s1+pa)k1−1 ))

≤ Λ ≤ 1

1− (κ+ η)
= Λh ,

where κ = s1+s2+pa+qa
(s1+pa)(s2+qa) , η = s1+s2+pa+qa

(s2+qa)2(s1+pa−1) .

To obtain the upper bound of S1,1, we assume s1 < s2. For s1 > s2 the calcula-
tions differ slightly.

(I) Note that for small a both estimates Λl and Λh are smaller than −1 since
both κ and η are smaller than 1 and close to 1. Furthermore, as a approaches 0,
both κ and η approach 1.

(II) As a approaches 0, κ and η approach s1+s2
s1s2

and s1+s2
s22(s1−1)

, respectively. Again,

note that for small a, estimates Λl and Λh can be either positive or negative, and
they have the same sign. �

For small positive a, the first image of 1/2 is Wa(1/2) = 1/2 + ra and the next
one falls just below the fixed point x∗

l slightly less than 1/2. The following images

form a decreasing sequence until they go below 1
2 − 1/2+ra

s1+pa . Since k is the first

iteration j when the W j
a (1/2) is less than 1

2 − 1/2+ra
s1+pa , the consecutive cumulative

slopes of 1/2 are

(s1 + pa),−(s1 + pa)(s2 + qa),−(s1 + pa)2(s2 + qa), . . . ,−(s1 + pa)k−1(s2 + qa) ,

and

(4) fa = 1 + (1 +
s1 + pa

s2 + qa
)Λ


χ[0,Wa(1/2)]

(s1 + pa)
+

k∑

j=2

χ[W j
a (1/2),1]

(s1 + pa)j−1(s2 + qa)
+ . . .


 .

3.3. Estimates, normalizations and integrals on fa for 1
s1

+ 1
s2

≤ 1. Remem-

bering that k = min{j ≥ 1 : W j
a (1/2) ≤ 1

2 − 1/2+ra
s1+pa } and k1 = [ 23k] (the integer

part of 2k/3), we will give the estimates on fa.
Let us define

gl =
χ[0,Wa(1/2)]

s1 + pa
+

1

s2 + qa

k1∑

j=2

χ[W j
a (1/2),1]

(s1 + pa)j−1
,

and

gh = gl +
1

s2 + qa

∞∑

j=0

1

(s1 + pa)j+k1
= gl +

1

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1
.

Also, let χ1 = χ[0,1/2+ra], χj = χ[W j
a (1/2),1/2+ra], j = 2, 3, . . . , k1, χc = χ(1/2+ra,1].
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3.3.1. Estimates on fa if 1
s1

+ 1
s2

= 1. We have the following lemma:

Lemma 3. For the family of Wa maps, if 1
s1

+ 1
s2

= 1, we have

(I) Wa(1/2) = 1/2 + ra, W 2
a (1/2) = −ra(s2 + qa) + 1/2 + ra, and for 3 ≤ m ≤ k,

we have Wm
a (1/2) = −a2(s1 + pa)m−2 r(qs1+ps2−p−q)+rpqa

s1+pa−1 + s1−1+pa−2ra
2(s1+pa−1) ;

(II) lim
a→0

ak = 0;

(III) lim
a→0

1
a(s1+pa)k

= 0;

(IV ) lim
a→0

1
a(s1+pa)k1

= 0;

(V ) lim
a→0

a2(s1 + pa)k1 = 0;

(V I) lim
a→0

W k1
a (12 ) =

1
2 .

Proof. Suppose (I) is true. Let us first prove that (II) and (III) are true.
By the definition of k, we have:

(5)

0 ≤ −a2(s1+pa)k−2 r(qs1 + ps2 − p− q) + rpqa

s1 + pa− 1
+
s1 − 1 + pa− 2ra

2(s1 + pa− 1)
≤ 1

2
−1/2 + ra

s1 + pa
.

The first inequality of (5) implies that (s1+pa)k−2 ≤ s1−1+pa−2ra
2a2(r(qs1+ps2−p−q)+rpqa) , thus

ak ≤ a
ln(s1 − 1 + pa− 2ra)− ln 2− 2 lna− ln(r(qs1 + ps2 − p− q) + rpqa)

ln(s1 + pa)
+ 2a,

a ≤
√
s1 − 1 + pa− 2ra(s1 + pa)√

2(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k/2
,

a2(s1 + pa)k1 ≤ (s1 − 1 + pa− 2ra)(s1 + pa)2

2(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k−k1
,

so we obtain (V), and since lim
a→0

a lna = 0, we obtain (II).

The second inequality of (5) implies

1

a(s1 + pa)k−2
≤ 2a(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)

s1 − 1 + pa− 2ra
.

Therefore,

(6)
1

a(s1 + pa)k
≤ 2a(r(qs1 + ps2 − p− q) + rpqa)

(s1 − 1 + pa− 2ra)(s1 + pa)
,

and as a → 0, we obtain (III).
On the other hand, (6) implies

1

a(s1 + pa)k1
≤ 2a(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k−k1

(s1 + pa− 2ra− 1)(s1 + pa)

≤
√
2(r(qs1 + ps2 − p− q) + rpqa)(s1 + pa)k−k1

√
s1 + pa− 2ra− 1(s1 + pa)k/2

=

√
2(r(qs1 + ps2 − p− q) + rpqa)√

s1 + pa− 2ra− 1(s1 + pa)k1−k/2
.

By the definition of k1, we obtain (IV). (VI) follows from (V).
Now, let us prove (I).
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The fixed point slightly less than 1/2 is x∗
l = s1−1+pa−2ra

2(s1−1+pa) , and

x∗
l −W 2

a (1/2) =
ra2(q(s1 − 1) + p(s2 − 1) + apq)

s1 − 1 + pa
> 0,

which implies that Wm
a (1/2) are all in the domain of the second branch of Wa for

3 ≤ m ≤ k. For a linear map T (x) = m0x + b0, we have T n(x) = mn
0x +

mn
0 −1

m0−1 b0.

This proves (I). �

Using (4) and (3) we see that for the functions fl = 1 + (1 + s1+pa
s2+qa )Λlgh and

fh = 1 + (1 + s1+pa
s2+qa )Λhgl, we have

(7) fl ≤ fa ≤ fh .

Now, we will represent functions fl and fc as combinations of functions χj , j =
1, . . . , k1 and χc. After some calculations, we obtain

fl = 1 + (1 +
s1 + pa

s2 + qa
)Λl

(
χ[0,Wa(1/2)]

s1 + pa
+

1

s2 + qa

k1∑

j=2

χ[W j
a (1/2),1]

(s1 + pa)j−1

+
1

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1

)

=

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λl + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λl

k1∑

j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + pa)2
Λl

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc

+

s1+s2+pa+qa
s2+qa Λl

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1
,

fh = 1 + (1 +
s1 + pa

s2 + qa
)Λh

(
χ[0,Wa(1/2)]

s1 + pa
+

1

s2 + qa

k1∑

j=2

χ[W j
a (1/2),1]

(s1 + pa)j−1

)

=

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑

j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc .

In the case we are considering, (3) implies that both Λl, Λh are smaller than -1.
Using this, one can show that all the coefficients in the representation of fl and fh
are negative for sufficiently small a. For example, let us consider the coefficient of
χ1 in fh:

s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1 =

κ

1− (κ+ η)
+ 1 =

1− η

1− (κ+ η)
< 0 .
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3.3.2. Normalizations and integrals if 1
s1
+ 1

s2
= 1. Let us define J1 = [0,W k1

a (1/2)],

J2 = (W k1
a (1/2), 1/2+ ra], J3 = (1/2+ ra, 1]. We will calculate integrals of fh over

each of these intervals J1, J2 and J3, and use them to normalize fh. We have

C1 =

∫

J1

fh dλ =

∫

J1

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dλ

=

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
W k1

a (
1

2
) =

[
κ

1− (κ+ η)
+ 1

]
W k1

a (
1

2
)

=

[
a(2qs1s2 + ps22 − 2qs2 − p− q)

(1− (κ+ η))(s2 + qa)2(s1 + pa− 1)

+
a2(2pqs2 − q2 + q2s1) + pq2a3

(1− (κ+ η))(s2 + qa)2(s1 + pa− 1)

]
W k1

a (
1

2
) .

Using Lemma 3, we obtain

lim
a→0

C1

a
= −2qs1s2 + ps22 − 2qs2 − p− q

2s22(s1 − 1)
= −2qs1 + ps22 − p− q

2s2s1
.

In the same way, we can see that for any 0 < θ < 1/2, we obtain

lim
a→0

1

a

∫ θ

0

fhdλ = −2qs1 + ps22 − p− q

s2s1
θ .

On the interval J2, the integral of fh is:

C2 =

∫

J2

fh dλ =

∫

J2

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dλ

+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑

j=2

∫

J2

χj

(s1 + a)j−1
dλ

=
1− η

1− (κ+ η)

(
1

2
+ ra−W k1

a (
1

2
)

)

+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

[
ra(s2 + qa)

s1 + pa
+

ra(1 − 1
(s1+pa)k1−2 )

(s1 + pa− 1)2

+
a2(k1 − 2)

s1 + pa

r(qs1 + ps2 − p− q) + rpqa

s1 + pa− 1

]
.

Using Lemma 3, we obtain

lim
a→0

C2

a
= −s1 + s2

s22

[
rs2
s1

+
r

(s1 − 1)2

]
= −rs2.

On the interval J3, the integral of fh is:

C3 =

∫

J3

fh dλ =

∫

J3

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc dλ

=

[(
1− 1

(s1 + pa)k1−1

)
η

1− (κ+ η)
+ 1

]
(
1

2
− ra)

=

a(qs1+ps2−p−q)+pqa2

(s1+pa)(s2+qa) − η
(s1+pa)k1−1

1− (κ+ η)
(
1

2
− ra) .
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Using Lemma 3, we obtain

lim
a→0

C3

a
= −qs1 + ps2 − p− q

2s1s2
.

In the same way, we can see that for any 0 < θ < 1/2, we obtain

lim
a→0

1

a

∫ 1

1/2+θ

fhdλ = −qs1 + ps2 − p− q

s1s2

(
1

2
− θ

)
.

If we define B = C1 + C2 + C3, then
fh
B is a normalized density. We see that

lim
a→0

B

a
= − (qs1 + ps2 − p− q)(s2 + 2) + 2rs1s

2
2

2s1s2
.

Our calculations show that the normalized measures {(fh/B) · λ} converge ∗-
weakly to the measure

(qs1 + ps2 − p− q)(s2 + 2)

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s22
µ0+

2rs1s
2
2

(qs1 + ps2 − p− q)(s2 + 2) + 2rs1s22
δ( 1

2 )
.

Now, we will show the same holds for the normalized measure defined by fl. To
this end, let us notice that

fh − fl = (1 +
s1 + pa

s2 + qa
)Λhgl − (1 +

s1 + pa

s2 + qa
)Λlgh

= (1 +
s1 + pa

s2 + qa
)(Λh − Λl)gl − Λl

1 + s1+pa
s2+qa

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1

= (1 +
s1 + pa

s2 + qa
)

η
(s1+pa)k1−1

[1− (κ+ η)][1 − κ− η(1 − 1
(s1+pa)k1−1 )]

gl

−Λl

1 + s1+pa
s2+qa

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1
,

where |gl| ≤ 2
s1

and lim
a→0

Λl = −1. Using Lemma 3 once again, we can show that

for any subinterval J ⊂ [0, 1], we have

lim
a→0

1

a

∫

J

(fh − fl)dλ = 0 .

For J = [0, 1] this means that the normalizations of fl and fh are asymptotically
the same. With this, the limit for a general J means in particular that the ∗-weak
limit of normalized measures defined using fl is the same as for those defined using
fh. In view of inequality (7), this proves Theorem 1(II).

3.3.3. Estimates on fa if 1
s1

+ 1
s2

< 1. We have the following lemma:

Lemma 4. For the family of Wa maps, if 1
s1

+ 1
s2

< 1, we have

(I) Wa(1/2) = 1/2+ra, W 2
a (1/2) = −ra(s2+qa)+1/2+ra, and for 3 ≤ m ≤ k, we

have Wm
a (1/2) = −a(s1 + pa)m−2 r[s1s2−s1−s2+a(qs1+ps2−p−q+pqa)]

s1+pa−1 + s1−1+pa−2ra
2(s1+pa−1) ;

(II) lim
a→0

ak = 0;

(III) lim
a→0

a(s1 + pa)k1 = 0;

(IV ) lim
a→0

W k1
a (12 ) =

1
2 .
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Proof. Suppose (I) is true. Let us first prove that (II) and (III) are true.
By the definition of k, we have:

0 ≤− a(s1 + pa)k−2 r [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)]

s1 + pa− 1

+
s1 − 1 + pa− 2ra

2(s1 + pa− 1)
.

(8)

The inequality (8) implies a(s1 + pa)k−2 ≤ s1−1+pa−2ra
2r[s1s2−s1−s2+a(qs1+ps2−p−q+pqa)] , thus

ak ≤ a
ln(s1 − 1 + pa− 2ra)− ln 2 + 2 ln(s1 + pa)− ln r − ln a

ln(s1 + pa)

−a
ln(2r [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)])

ln(s1 + pa)
,

a(s1 + pa)k1 ≤ (s1 − 1 + pa− 2ra)(s1 + pa)2

2r [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)] (s1 + pa)k−k1
,

and since lim
a→0

a lna = 0, we obtain (II) and (III). (IV) follows from (III).

Now, let us prove (I).
The fixed point slightly less than 1/2 is x∗

l = s1−1+pa−2ra
2(s1−1+pa) , and

x∗
l −W 2

a (1/2) =
ra [s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa)]

s1 − 1 + pa
> 0,

which implies that Wm
a (1/2) are all in the domain of the second branch of Wa for

3 ≤ m ≤ k. Now, (I) follows by the same reasoning as in Lemma 3. �

Lemma 5. If the normalized densities {ha}a<a0 , for some a0 > 0, are uniformly
bounded, then ha → h0 in L1.

Proof. The uniform boundedness implies {ha}a<a0 is a weakly precompact set in
L1. Thus, any limit of {ha}a<a0 is a invariant density by Proposition 11.3.1 [2]. At
the same time, this limit is an L1 function, thus defines an absolutely continuous
invariant measure. Since the map W0 is exact and has only one acim, we conclude
that ha → h0 in L1. �

Now, we will prove Theorem 2:
The main idea of the proof is the following: since non-normalized densities {fa}

are uniformly bounded (formulas (9, 10, 11)), it is enough to show that {
∫ 1

0
fa dλ}

are uniformly separated from zero.
For small a, by Lemma 2, Λ (and then both Λl and Λh) can be either positive

or negative. Thus, we can have the following cases.
Case (i): Λl < 0:

Comparing with (4) and (3), we see that for the functions f̂l = 1+(1+ s1+pa
s2+qa )Λlgh

and f̂h = 1 + (1 + s1+pa
s2+qa )Λhgl, we have

(9) f̂l ≤ fa ≤ f̂h .

Note that f̂l and f̂h have the same form as fl and fh in Section 3.3.1, so their
representations as combinations of functions χj , j = 1, . . . , k1 and χc are similar to
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that of fl and fh. At the same time, now we have 1
s1
+ 1

s2
< 1, so the representation

is as follows:

f̂l =

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λl + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λl

k1∑

j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + pa)2
Λl

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc

+

s1+s2+pa+qa
s2+qa Λl

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1
,

f̂h =

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑

j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc .

(3) implies that all the coefficients in the representation of f̂l and f̂h are negative
for sufficiently small a.

We use the same notations J1, J2 and J3 as in Section 3.3.2. First, we do the

calculations assuming that ϑ = 1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
6= 0.

We will calculate the integrals of f̂h over each of J1, J2 and J3, and use them to

normalize f̂h. We have

Ĉ1 =

∫

J1

f̂h dλ =

∫

J1

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dλ

=

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
W k1

a (
1

2
) =

[
κ

1− (κ+ η)
+ 1

]
W k1

a (
1

2
)

=

[
s1s

2
2 − s1 − s2 − s22

1− (κ+ η))(s2 + qa)2(s1 + pa− 1)

+
a(2qs1s2 + ps22 − 2qs2 − p− q)

(1− (κ+ η))(s2 + qa)2(s1 + pa− 1)

+
a2(2pqs2 − q2 + q2s1) + pq2a3

(1− (κ+ η))(s2 + qa)2(s1 + pa− 1)

]
W k1

a (
1

2
) .

Using Lemma 4, we have

lim
a→0

Ĉ1 =
1

2

s1s
2
2−s1−s2−s22
s22(s1−1)

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) =
1

2

1− s1+s2
s22(s1−1)

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) .

On the interval J2, the integral of f̂h is:

Ĉ2 =

∫

J2

f̂h dλ =

∫

J2

[
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
Λh + 1

]
χ1 dλ

+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

k1∑

j=2

∫

J2

χj

(s1 + pa)j−1
dλ
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=
1− η

1− (κ+ η)

(
1

2
+ ra−W k1

a (
1

2
)

)

+
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

[
ra(s2 + qa)

s1 + pa
+

ra(1 − 1
(s1+pa)k1−2 )

(s1 + pa− 1)2

+
a(k1 − 2)

s1 + pa

r(s1s2 − s1 − s2 + a(qs1 + ps2 − p− q + pqa))

s1 + pa− 1

]
.

Using Lemma 4, we have lim
a→0

Ĉ2 = 0.

On the interval J3, the integral of f̂h is:

Ĉ3 =

∫

J3

f̂h dλ =

∫

J3

(
s1 + s2 + pa+ qa

(s2 + qa)2
Λh

1− 1
(s1+pa)k1−1

s1 + pa− 1
+ 1

)
χc dλ

=

[(
1− 1

(s1 + pa)k1−1

)
η

1− (κ+ η)
+ 1

]
(
1

2
− ra)

=

s1s2−s1−s2+a(qs1+ps2−p−q)+pqa2

(s1+pa)(s2+qa) − η
(s1+pa)k1−1

1− (κ+ η)
(
1

2
− ra) .

Using Lemma 4 once again, we have

lim
a→0

Ĉ3 =
1

2

1− s1+s2
s1s2

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) .

Note that if we define B̂ = Ĉ1 + Ĉ2 + Ĉ3, then

lim
a→0

B̂ =
1

2

2−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)

1−
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

) ,

which is not 0. Since {f̂h} are uniformly bounded, we conclude that the normalized

{f̂h} are also uniformly bounded.

Now, we will show that the normalized {f̂l} are also uniformly bounded. To this
end, let us notice that

f̂h − f̂l = (1 +
s1 + pa

s2 + qa
)Λhgl − (1 +

s1 + pa

s2 + qa
)Λlgh

= (1 +
s1 + pa

s2 + qa
)(Λh − Λl)gl − Λl

1 + s1+pa
s2+qa

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1

= (1 +
s1 + pa

s2 + qa
)

η
(s1+pa)k1−1

[1− (κ+ η)][1 − κ− η(1 − 1
(s1+pa)k1−1 )]

gl

−Λl

1 + s1+pa
s2+qa

(s2 + qa)(s1 + pa− 1)(s1 + pa)k1−1
,

where |gl| ≤ 1
s1
+ 1

s2(s1−1) and lim
a→0

Λl =
1

1−

(

s1+s2
s1s2

+
s1+s2

s2
2
(s1−1)

) . Thus, lim
a→0

f̂h− f̂l = 0 .

We conclude that the normalized {f̂l} are uniformly bounded since the normalized

{f̂h} are uniformly bounded. Thus, after normalization, {fa} are also uniformly
bounded.
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Case (ii): Λl > 0:
This case implies that fa given by (4) has the following properties:

(10) fa ≥ 1 ,

and all the coefficients of the characteristic functions appearing in (4) are positive.
We note that Λ is always positive for small a. Thus,

(11) fa ≤ 1 + (1 +
s1 + pa

s2 + qa
)Λ

∞∑

n=1

1

|β(1/2, n)| ,

which is finite since our maps {Wa} are expanding. In view of (10), we conclude
that the normalized {fa} are uniformly bounded.

If ϑ = 1 −
(

s1+s2
s1s2

+ s1+s2
s22(s1−1)

)
= 0, then we have lim

a→0

1
Λl

= lim
a→0

1
Λh

= 0, Λl and

Λh are still of the same sign. We can renormalize fa. Let us take the f̂h as an
example. Multiplying it by 1

Λh
, we obtain

1

Λh
f̂h =

(
s1 + s2 + pa+ qa

(s2 + qa)(s1 + pa)
+

1

Λh

)
χ1 +

s1 + s2 + pa+ qa

(s2 + qa)2

k1∑

j=2

χj

(s1 + pa)j−1

+

(
s1 + s2 + pa+ qa

(s2 + qa)2

1− 1
(s1+pa)k1−1

s1 + pa− 1
+

1

Λh

)
χc .

Note that the coefficients of χ1 and χc converge to
s1+s2
s1s2

and s1+s2
s22(s1−1)

, respectively.

Thus, {
∫ 1

0
1
Λh

f̂h dλ} are separated from 0. This implies { 1
Λh

f̂h} are uniformly

bounded. A similar procedure can be applied to f̂l. We conclude that { 1
Λfa} are

uniformly bounded.

4. Example

One of the important properties of a piecewise expanding transformation of an
interval is that its invariant density is bounded away from 0 on its support. The
following result was proved, by Keller [11] and by Kowalski [12].

Theorem 3. Let a transformation τ : I → I be piecewise expanding with 1
|τ ′(x)|

a function of bounded variation, and let f be a τ-invariant density which can be
assumed to be lower semicontinuous. Then there exists a constant c > 0 such that
f |supp f > c.

We provide an example showing that this result cannot be generalized to a family
of expanding maps, even if they all have this property and converge to a limit map
also with this property. Let d(·, ·) be the metric on the weak topology of measures.

Example 1. Let us fix

s1 = s2 = 2, p = q = 1.

For small a > 0, let Wa,r denote the Wa maps with varying parameter r, and let
µa,r denote the absolutely continuous invariant measure of Wa,r. We know that
µa,r is supported on [0, 1] and Wa,r with µa,r is exact. Using Theorem 1, we know
that {µa,r} converge ∗-weakly to the measure

µ0,r =
1

1 + 2r
µ0 +

2r

1 + 2r
δ 1

2
.
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Let rn = n, n = 1, 2, 3, · · · . Also, let {an}∞1 satisfy rnan < 1/2 and be so small
that

d(µan,rn , µ0,rn) <
1

n
.

Now, for the family of maps τn = Wan,rn, n = 1, 2, 3, · · · , τn converge to W0 with
|τ ′n(x)| > 2, but the invariant densities µan,rn converge to δ( 1

2 )
. This implies that

the invariant densities {fan,rn} corresponding to {µan,rn} have no uniform positive
lower bound.
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