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Abstract. The recurrence rate and determinism are two of the basic complexity measures studied in the
recurrence quantification analysis. In this paper, the recurrence rate and determinism are expressed in terms

of the correlation sum, and strong laws of large numbers are given for them.

1. Introduction

The notion of recurrence is one of the fundamental notions in the theory of dynamical systems. Recurrence
plots, introduced by Eckmann, Kamphorst and Ruelle [4] in 1987, provide a powerful tool for recurrence
visualization. The recurrence plot of the trajectory x0, x1, . . . , xn−1 of a point x = x0 is a black-and-white
image with a pixel (i, j) being black if and only if the trajectory at time j recurs to the state at time i; that
is, the points xi, xj are close to each other. The recurrence plot provides a two-dimensional representation
of an (arbitrary-dimensional) dynamical system.

The quantitative study of recurrence plots, called recurrence quantification analysis (RQA), was initiated
by Zbilut and Webber in [18], where the authors introduced several measures of complexity based on the
recurrence plot. Among them, the recurrence rate RR and the determinism DET are probably the most
important and widely used ones. Their definitions are based on diagonal lines (that is, segments of black
points parallel to the main diagonal), which correspond to recurrences of parts of the trajectory.

Since the seminal paper [18], new RQA tools, quantities and modifications were introduced and recurrence
quantification has been applied in many areas of science, cf. [12] and [10], among others.

Despite its wide use, theoretical properties of recurrence measures were studied rarely. Asymptotic
properties of RQA characteristics were studied e.g. in [6, 3, 5, 16, 19]. The correlation sum, tightly connected
with the recurrence rate, as well as derived quantities such as the correlation integral, correlation dimension
and correlation entropy, were studied extensively, cf. [9]. One of the fundamental results, namely the strong
law for correlation sums of ergodic processes, was proved (by different methods and under different conditions)
in [14, 13, 1, 15, 11]. It states that, for a separable metric space (Z, d) and a µ-ergodic dynamical system on
it, the correlation sum of the trajectories of almost every point x ∈ Z with every (up to countably many)
r > 0 converges to the correlation integral

(1) lim
n→∞

C(x, n, r) = c(r), where c(r) = µ× µ{(x, y) : d(x, y) ≤ r}

and C(x, n, r) = (1/n2) · card{(i, j) : 0 ≤ i, j < n, d(xi, xj) ≤ r}. Recall that the correlation integral c(r)
is just the probability P{d(X,Y ) ≤ r} that two independent random variables X,Y with distribution µ are
r-close. It is worth noting that the correlation sum, which measures the level of dependence in a trajectory,
asymptotically turns into the probability of closeness of two independent random variables.

The main purpose of the present paper is to study asymptotic properties of RQA characteristics for
ergodic processes. We start with a proof of a simple formula giving an expression of the recurrence rate via
correlation sums, see Proposition 1:

(2) RRm
k = k · Cm

k − (k − 1) · Cm
k+1,

where m is the embedding dimension, k is the prediction horizon and Cm
k and RRm

k denote the correlation
sum and recurrence rate, respectively; for the corresponding definitions see Section 2. The relationship (2)
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directly permits to express the determinism DET in terms of the correlation sums

(3) DETm
k =

RRm
k

RRm
1

=
k · Cm

k − (k − 1) · Cm
k+1

Cm
1

.

The bridging formulas (2) and (3) enable us to derive strong laws of large numbers for the recurrence
rate and determinism from that for the correlation sum, see Theorems 4 and 5. To this end, however, we
need to generalize (1) to the case when d is a pseudometric on Z, rather than a metric. For pseudometrics
induced by Borel maps, this problem was studied in [15, Theorem 2]. In the general case, (1) was proved by
Manning and Simon [11]; for details, see Theorem 19 in Section 7.

We apply the strong laws to iid processes, Markov chains and autoregressive processes, and derive explicit
formulas for the recurrence integral, asymptotic determinism and mean diagonal line length of these processes;
see Table 1 and Section 4. On simulated data we demonstrate the speed of convergence of RQA quantities
when the length n of (the beginning of) the trajectory goes to infinity.

IID Markov chain

recurrence integral αk+m−1 [k − (k − 1)α] αβk+m−2 [k − (k − 1)β]

asymptotic determinism αk−1 [k − (k − 1)α] βk−1 [k − (k − 1)β]

mean diagonal line length k + α/(1− α) k + β/(1− β)

Table 1. Formulas for RQA asymptotics for iid processes and Markov chains; here α = c(r)
and β = c2(r)/c(r).

Further, in Section 5 we give an example showing that higher entropy of a process does not necessarily
mean smaller (asymptotic) determinism and that an iid process can have higher determinism than a non-iid
one with the same one-dimensional marginals. This is a rather unexpected behavior since, in a sense, entropy
and determinism are opposite notions.

We also discuss the problem of choosing the distance threshold r. In the literature, the distance threshold
is selected such that, for the embedding dimension m, the recurrence rate attains a fixed level. This rule,
however, can lead to the existence of the so-called spurious structures in recurrence plots of iid processes, as
noted in [17], see also [12, Section 3.2.4]. In Section 6 we show why this happens. For a large embedding
dimension m and distance threshold rm selected by this rule, the determinism detmk (rm) is close to one even
for iid processes. Hence, the appearance of spurious structures is a direct consequence of the selection rule
fixing the recurrence rate.

The explicit formula for the asymptotic determinism detmk can be stated in terms of conditional probabil-
ities that k or (k+ 1) consecutive recurrences occur given that one recurrence has occurred; see Theorem 10.
Hence, if the process under consideration is a Markov one of order p, then over-embedding to dimension
m ≥ p leaves the asymptotic determinism unchanged; see Corollary 11. This is demonstrated in Section 4.3
for autoregressive processes. There we discuss possible use of RQA characteristics for estimation of the order
of such processes.

The paper is organized as follows. In Section 2 we recall the definitions of RQA measures and we prove (2),
see Proposition 1. The strong laws are stated in Section 3 and, in Section 4, they are applied to iid processes,
Markov chains and autoregressive processes. Relationship between entropy and asymptotic determinism is
discussed in Section 5 and the so-called spurious structures in recurrence plots of iid processes are explained
in Section 6. In Section 7 we discuss the strong law for correlation sums on pseudometric spaces.

2. Recurrence quantification analysis (RQA) and correlation sums

In this section we recall the definitions of basic RQA measures and of the correlation sum for (embedded)
trajectories of a general S-valued process. To make the notation easier, we write xmh , x∞h as a shorthand for

(xi)
h+m−1
i=h , (xi)

∞
i=h, respectively.

Let S = (S, %) be a metric space. Fix an integer m ≥ 1 called the embedding dimension. Let Sm be the
embedding space of m-tuples sm0 equipped with a metric %m compatible with the product topology. Natural
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choices for %m are the Manhattan (L1), Euclidean (L2) or Chebyshev (L∞) metrics, the latter given by

(4) %m(sm0 , t
m
0 ) = max

0≤j<m
%(sj , tj),

but in general we do not restrict %m to be one of these.
Let S∞ denote the space of all sequences x∞0 of points from S. This product space is usually equipped

with a metric, say with %∞(x∞0 , y
∞
0 ) =

∑
i 2−i ·min{1, %(xi, yi)}. In practice, however, we know just (finite)

beginnings of trajectories x∞0 and thus we are not able to compute the distance exactly. That is why we use
pseudometrics instead, depending only on the first members of sequences. For an integer k ≥ 1, called the
prediction horizon, a pseudometric dmk on S∞ is defined by

(5) dmk (x∞0 , y
∞
0 ) = max

0≤i<k
%m(xmi , y

m
i ).

For k = 1 we write simply dm instead of dm1 . Notice that dmk depends only on the first (m+ k− 1) members
of x∞0 , y

∞
0 .

2.1. RQA measures. Fix a sequence x = x∞0 ∈ S∞ and consider the embedded trajectory x̃ = x̃∞0 ,
x̃i = xmi ∈ Sm. Fix also a distance threshold r ≥ 0. For i, j ∈ N (here N stands for the set of non-negative
integers {0, 1, . . . }) we say that the couple (i, j) is an r-recurrence (in the m’th embedding of the trajectory
of x) if

dm(x∞i , x
∞
j ) = %m(xmi , x

m
j ) ≤ r.

The recurrence plot of dimension n is a square n × n matrix of zeros and ones, with the entry at (i, j)
(0 ≤ i, j < n) equal to one if and only if (i, j) is a recurrence. Usually, the recurrence plot is visualized by a
black-and-white image, with black pixels representing recurrences. Let us note that to construct the n × n
recurrence plot (in the m’th embedding) one needs to know only the first (n+m− 1) members xn+m−1

0 of
x.

Diagonal lines are basic patterns in the recurrence plot. We say that (i, j) is a beginning of a diagonal
line of length k ≥ 1 in the n× n recurrence plot if the following are true:

• 0 ≤ i, j ≤ n− k;
• (i+ h, j + h) is a recurrence for every 0 ≤ h < k;
• either at least one of i, j is equal to 0 or (i− 1, j − 1) is not a recurrence;
• either at least one of i+ k, j + k is equal to n or (i+ k, j + k) is not a recurrence.

For 0 < i, j < n− k this is equivalent to

dmk (x∞i , x
∞
j ) ≤ r, dm(x∞i−1, x

∞
j−1) > r and dm(x∞i+k, x

∞
j+k) > r.

The number of lines of length k in the n × n recurrence plot is denoted by Lm
k = Lm

k (x, n, r). Notice that
the main diagonal line (i.e. the case i = j) is not excluded, thus Lm

n (x, n, r) = 1; further, Lm
k (x, n, r) = 0 for

every k > n.
Now fix the prediction horizon k ≥ 1. The k-recurrence rate RRm

k is the percentage of recurrences
contained in diagonal lines of length at least k; that is,

(6) RRm
k = RRm

k (x, n, r) =
1

n2

∑
l≥k

l · Lm
l .

The k-determinism DETm
k is the ratio of the k-recurrence rate and 1-recurrence rate

(7) DETm
k = DETm

k (x, n, r) =
RRm

k

RRm
1

(here and throughout we always assume that the denominator is non-zero; otherwise we leave the corre-
sponding quantity undefined). The k-average line length LAVGm

k is the average length of diagonal lines not
shorter than k

(8) LAVGm
k =

RRm
k

(1/n2)
∑

l≥k Lm
l

;

again, this characteristic depends also on x, n, r. For the definitions of other RQA characteristics, such as
the (Shannon) entropy of diagonal line length, trend or measures based on vertical lines, see e.g. [12].
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2.2. Correlation sum. Tightly connected with the recurrence rate is the notion of correlation sum, studied
by Grassberger and Procaccia [8, 7] in relation to the correlation dimension. For a sequence x = x∞0 ∈ S∞,
the embedding dimension m, the prediction horizon k, the distance threshold r ≥ 0 and n ≥ 1, the correlation
sum is defined by

(9) Cm
k = Cm

k (x, n, r) =
1

n2
card{(i, j) : 0 ≤ i, j ≤ (n− k), dmk (x∞i , x

∞
j ) ≤ r}.

Here, as above, the quantity depends only on the beginning xn+m−1
0 of x. Cm

k measures the relative frequency
of recurrences (in the m’th embedding) followed by at least (k − 1) other recurrences. Since, in a diagonal
line of length l ≥ k, just the first (l− k+ 1) points are followed by (k− 1) other recurrences, it immediately
follows that

(10) Cm
k =

1

n2

∑
l≥k

(l − k + 1)Lm
l

for every m, k ≥ 1. Comparison with (6) gives the next statement.

Proposition 1. For m, k ≥ 1,

RRm
k = k · Cm

k − (k − 1) · Cm
k+1.

Proof. By (10) and (6) we have

n2RRm
k = k

n2Cm
k −

∑
l≥k+1

(l − k + 1)Lm
l

+
∑

l≥k+1

lLm
l

= kn2Cm
k − (k − 1)

∑
l≥k+1

(l − k)Lm
l

= kn2Cm
k − (k − 1)n2Cm

k+1,

from which the assertion immediately follows. �

Validity of the previous relation can be also seen from the following picture

· · · ◦ • • · · · •︸ ︷︷ ︸
a

• • · · · •︸ ︷︷ ︸
b:|b|=k

◦ · · ·

of a diagonal line of length l = |a| + |b| ≥ k. The a-dots are counted in the k-recurrence rate as well as in
both the k and (k+ 1)-correlation sum. On the other hand, all of the b-dots are counted in the k-recurrence
rate, but only the first one is counted in the k-correlation sum and none in the (k+ 1)-correlation sum. This
gives RRm

k = k(Cm
k − Cm

k+1) + Cm
k+1, which is equivalent to the formula from Proposition 1.

As a corollary of Proposition 1 we can immediately obtain a formula for the determinism in terms of
correlation sums. Since (10) gives (1/n2)

∑
l≥k Lm

l = Cm
k − Cm

k+1, we also obtain that

(11) LAVGm
k = k +

Cm
k+1

Cm
k − Cm

k+1

.

As was noted by many authors, if the metric %m in the embedding space is the Chebyshev one (see (4)),
the embedded recurrence quantities can be expressed in terms of the non-embedded ones. Let us formulate
this as a lemma; there, Lk,Ck,RRk stand for L1

k,C
1
k,RR1

k, respectively

Lemma 2. Let m, k ≥ 1 and %m be given by (4). Then

Lm
k (x, n, r) = Lh(x, n′, r), Cm

k (x, n, r) =

(
n′

n

)2

· Ch(x, n′, r)

and

RRm
k (x, n, r) =

(
n′

n

)2

· [RRh(x, n′, r)− (m− 1) · (Ch(x, n′, r)− Ch+1(x, n′, r))] ,

where h = k +m− 1 and n′ = n+m− 1.
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Proof. By (4), dmk (x∞i , x
∞
j ) ≤ r if and only if %(xi+l, xj+l) ≤ r for every 0 ≤ l < h. Thus the first equality is

an immediate consequence of the definition of diagonal lines and the second one follows from (10). Further,
(6) gives

n2RRm
k (x, n, r) =

∑
l′≥h

(l′ − (m− 1)) · Lh(x, n′, r)

= (n′)2 · RRh(x, n′, r)− (m− 1) ·
∑
l′≥h

Lh(x, n′, r).

Hence, using (10), also the third formula is proved. �

3. Strong laws for RQA

Here, among other results, we formulate and prove strong laws of large numbers for the recurrence rate
and determinism. First, the necessary notions and results are summarized. By a space we always mean a
topological space.

3.1. Preliminaries. Let Z be a space and BZ be the Borel σ-algebra on Z. A (measure-theoretical)
dynamical system is a quadruple (Z,BZ , µ, T ), where µ is a probability measure on (Z,BZ) and T : Z → Z is
a (Borel) measurable map which preserves µ, that is, µ(T−1(B)) = µ(B) for every B ∈ BZ . A set B ∈ BZ is
said to be T -invariant if T−1(B) = B. We say that T is µ-ergodic or that µ is T -ergodic if µ(B) ∈ {0, 1} for
every T -invariant set B. For n ∈ N, the n-th (forward) iterate Tn of T is defined recursively by T 0 = idZ and
Tn+1 = T ◦ Tn. For m,n ≥ 0 and x ∈ Z we write Tm

n and Tm
n (x) instead of (T i)n+m−1

i=n and (T i(x))n+m−1
i=n ,

respectively.
Let S be a space with the Borel σ-algebra BS . On the product space S∞, the Borel σ-algebra is denoted by

B∞S . An S-valued (discrete time) stochastic process is a sequence X = X∞0 of random variables Xn : Ω→ S
(n ∈ N) defined on a probability space (Ω,B, P ). The distribution of the process X is the measure µ = µX

on (S∞,B∞S ) defined by µ(F ) = P{X∞0 ∈ F}.
The (left) shift on S∞ is the (continuous) map T : S∞ → S∞ defined by

T (x∞0 ) = y∞0 , where yn = xn+1 for every n ∈ N.
Let π : S∞ → S denote the projection onto the zeroth coordinate, that is, π (x∞0 ) = x0. If X is a stochastic
process with distribution µ, then the shift T together with the projection π and the measure µ form the
Kolmogorov representation of the process X. From now on we always assume that X is directly given by its
Kolmogorov representation, that is,

(Ω,B, P ) = (S∞,B∞S , µ) and Xn = π ◦ Tn.

A process X is (strictly) stationary if its distribution µ is T -invariant. The marginal of a stationary process
X∞0 is the distribution of X0. A process X is ergodic if every T -invariant event has probability either 0 or 1.
Thus, a process X is stationary and ergodic if and only if the dynamical system (S∞,B∞S , µ, T ) is ergodic.

3.2. Strong law for correlation sum. For a Borel measure µ on S∞, m, k ≥ 1 and r ≥ 0 define the
correlation integral cmk (r) by

(12) cmk (r) = µ× µ{(x, y) : dmk (x, y) ≤ r}.
If µ is the distribution of a process X∞0 , then cmk (r) is the probability that, for two independent random

vectors Y k+m−1
0 , Zk+m−1

0 with the distribution equal to that of Xk+m−1
0 , every Y m

i , Zm
i (i < k) are r-close

according to %m:

(13) cmk (r) = µ {%m(Y m
i , Zm

i ) ≤ r for every 0 ≤ i < k} .
The following theorem, the proof of which is postponed to Section 7, follows from [11].

Theorem 3. Let S be a separable metric space, X be an S-valued ergodic stationary process with distribution
µ and m, k ≥ 1 be integers. Then for µ-a.e. trajectory x ∈ S∞ of X and for every r > 0

(14) lim
n→∞

Cm
k (x, n, r) = cmk (r) > 0

provided cmk is continuous at r.
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Notice that cmk is right continuous and non-decreasing, so it has at most countably many discontinuities;
it is continuous at r if and only if µ × µ{(x, y) : dmk (x, y) = r} is zero. Further, the convergence in (13) is
uniform over r on any compact interval on which cmk is continuous.

3.3. Strong laws for RQA. The purpose of this section is to show that the basic RQA characteristics
converge almost surely to constants, which depend only on the distribution µ of the (ergodic) process and
on the distance threshold r. To formulate the results, we introduce the recurrence integral rrmk , asymptotic
determinism detmk and mean diagonal line length lavgm

k for every r by

rrmk (r) = k · cmk (r)− (k − 1) · cmk+1(r),

detmk (r) =
rrmk (r)

rrm1 (r)
and

lavgm
k (r) = k +

cmk+1(r)

cmk (r)− cmk+1(r)
;

(15)

if k is such that cmk (r) = cmk+1(r) > 0 we put lavgm
k (r) = ∞. Thus all the quantities are defined for every

r > 0.
Proposition 1 and Theorem 3 immediately give the following theorem.

Theorem 4 (Strong law for recurrence rate). Under the assumptions of Theorem 3, for µ-a.e. x ∈ S∞ and
for every (up to countably many) r > 0,

lim
n→∞

RRm
k (x, n, r) = rrmk (r).

Theorem 5 (Strong laws for DET and LAVG). Under the assumptions of Theorem 3, for µ-a.e. x ∈ S∞
and for every (up to countably many) r > 0,

lim
n→∞

DETm
k (x, n, r) = detmk (r) and lim

n→∞
LAVGm

k (x, n, r) = lavgm
k (r).

Proof. The statements follow since a.e.-convergence is preserved by elementary arithmetic operations pro-
vided that, for division, the numerator or denominator is non-zero. �

Remark 6. Theorem 3 can be trivially used to derive strong law also for another RQA quantity called the
k-ratio defined by RATIOm

k = DETm
k /RRm

1 . Further, for the maximal diagonal line length LMAXm defined
by

LMAXm = LMAXm(x, n, r) = max{l < n : Lm
l (x, n, r) > 0}

using Birkhoff ergodic theorem one can easily show that, under the assumptions of Theorem 3,

lim
n→∞

LMAXm(x, n, r) =∞

for µ-a.e. x ∈ S∞ and for every r > 0. As a corollary we immediately have that the reciprocal value
DIVm = 1/LMAXm called the divergence converges almost surely to zero.

Remark 7. Recurrence measures as well as correlation sums are often defined using strict inequalities
dmk (x, y) < r, and/or with excluding the main diagonal i = j. Clearly, the latter has no effect on asymptotic
properties, that is, Theorems 3–5 remain true also in this case. When one uses strict inequalities, then again
the results are valid provided strict inequality is used also in the definition (12) of the correlation integral.
The relationship between this new “open” correlation integral and the used “closed” one is straightforward,
see [13, Remark 2.2].

Remark 8. As can be seen from Theorem 19, Theorem 3 is valid with dmk replaced by any separable Borel
pseudometric d on S∞. For example, d can be defined via order patterns (cf. [2]): d(x∞0 , y

∞
0 ) = 1 if

xm0 , y
m
0 have the same order pattern, d(x∞0 , y

∞
0 ) = 0 otherwise. In this way we obtain strong laws for RQA

characteristics based on order patterns recurrence plots.

As for “empirical” RQA quantities (see Lemma 2), the dependence of asymptotic ones on the embedding
dimension m is straightforward provided the maximum metric is used.
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Lemma 9. Let m, k ≥ 1, r ≥ 0 and %m be given by (4). Then

cmk = ch, rrmk = rrh − (m− 1)(ch − ch+1) and lavgm
k = lavgh − (m− 1),

where h = k +m− 1.

Proof. The first equality follows from (12) and the definition (5) of dmk . The others are then consequences
of (15). �

3.4. Asymptotic determinism via conditional probabilities. Here we assume (4). For h, l ≥ 1 and
r > 0 define the conditional correlation integral by

cl|h(r) =
ch+l(r)

ch(r)
=
µ× µ{(y, z) : dh+l(y, z) ≤ r}
µ× µ{(y, z) : dh(y, z) ≤ r}

.

Particularly, if µ is the distribution of an ergodic stationary process X∞0 and Y h+l
0 , Zh+l

0 are independent

random vectors with the distribution equal to that of Xh+l
0 , then cl|h(r) is the conditional probability

cl|h(r) = µ
{
%l(Y l

h, Z
l
h) ≤ r | %h(Y h

0 , Z
h
0 ) ≤ r

}
.

Thus, cl|h(r) is the probability that h consecutive recurrences are followed by at least l other ones. In
view of this we have the following interesting expression of asymptotic determinism in terms of conditional
probabilities.

Theorem 10. Under (4), the asymptotic determinism can be expressed via a linear combination of condi-
tional correlation integrals

detmk = k · ck−1|m − (k − 1) · ck|m.

Consider now the special case of (ergodic stationary) Markov processes of order p ≥ 1. Then for every
m ≥ p one has cl|m = cl|p. That is, over-embedding has no effect on the asymptotic determinism.

Corollary 11. For every (ergodic stationary) Markov process of order p ≥ 1 and for every m ≥ p, detmk =
detpk.

4. Asymptotic RQA measures for some processes

Now we present some applications of the asymptotic results obtained in the previous section. We assume
that S = (S, %) is a separable metric space and S∞ is equipped with the pseudometric dmk given by (5),
where m is the embedding dimension, k is the prediction horizon and the embedding metric %m is given by
(4). We also assume that X∞0 is (a Kolmogorov representation of) an ergodic stationary S-valued process.
In the following we derive explicit formulas for asymptotic RQA measures for some classes of processes. To
make the paper self-contained we include here also the proofs, though the results (at least for correlation
integrals) are known. The convergence is demonstrated by simulation studies. We start with the simplest
case of iid processes.

4.1. IID processes.

Proposition 12. Let X∞0 be an iid process. Then, for m, k ≥ 1 and r ≥ 0,

cmk (r) = αm+k−1, where α = c(r).

Hence
detmk (r) = αk−1 [k − (k − 1)α] and lavgm

k (r) = k +
α

1− α
do not depend on the embedding dimension m.

Proof. By Lemma 9 we may assume that m = 1. Let Y k
0 , Z

k
0 be independent random vectors with the

distribution equal to that of Xk
0 . Then, for every r > 0,

ck(r) = µ{%k(Y k
0 , Z

k
0 ) ≤ r} = µ{%(Yi, Zi) ≤ r for every 0 ≤ i < k}

=
∏

0≤i<k

µ{%(Yi, Zi) ≤ r} = [c(r)]k.

Thus the first statement is proved. The rest follows from the definitions (15) of detmk and lavgm
k . �
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Figure 1. Convergence of the empirical determinism (solid line) to the asymptotic
determinism (dashed line) for an iid process with distribution N(0, 1); n = 100, 1 000, 10 000.

For example, the asymptotic determinism of a Gaussian iid process with variance σ2 is

detmk (r) = 2k [2Φ (r′)− 1]
k−1 ·

[
1− 1

2k − Φ (r′)
]
, where r′ =

r√
2σ

and Φ is the distribution function of the standard normal distribution. To see this, use that for iid Gaussian
random variables Y,Z with variance σ2, Y − Z ∼ N(0, 2σ2) and so c(r) = µ{|Y − Z| ≤ r} = 2Φ (r′)− 1.

Figure 1 illustrates the convergence of the empirical determinism (withm = 1 and k = 2) to the asymptotic
one for a Gaussian iid process.

4.2. Markov chains. Let S = {0, 1, . . . , q−1} be a finite space equipped with the discrete metric % (that is,
%(x, y) = 1 if x 6= y and %(x, y) = 0 for x = y). Consider an S-valued Markov chain X∞0 with the transition

matrix P = (pst)
q−1
s,t=0 and the stationary distribution π = (π0, . . . , πq−1)′. Recall that π′P = π′ and that

X∞0 is ergodic if and only if the matrix P is transitive or, equivalently, the probability of the transition
from any state s to any state t in a finite time is non-zero. The formulas for asymptotic values of RQA
characteristics of Markov chains are given in the following proposition. As in the iid case, also here we can
see that both the determinism and mean diagonal line length do not depend on the embedding dimension.
(Notice that, in this discrete setting, only the distance threshold r less than 1 needs to be considered and,
for 0 ≤ r < 1, RQA quantities do not depend on r.)

Proposition 13. Let X∞0 be a finite-valued Markov chain with the transition matrix P and the stationary
distribution π. Then, for r ∈ [0, 1),

cmk (r) = αβk+m−2, detmk (r) = βk−1 [k − (k − 1)β] and lavgm
k (r) = k +

β

1− β
where α = π′π and β = (π′diag(PP ′)π)/α.

Proof. Only the equality for cmk (r) needs a proof since the other two follow from (15). We may assume that
m = 1. Let Y k

0 , Z
k
0 be independent random vectors with the distribution equal to that of Xk

0 . Fix r < 1 and
put α = c(r); then α = µ{d(Y0, Z0) ≤ r} =

∑
s µ{Y0 = Z0 = s} = π′π.

If k = 1 we are done. So assume that k ≥ 2 and put β = c1|1(r) = µ{d(Y1, Z1) ≤ r | d(Y0, Z0) ≤ r}. Then

β =
1

α
µ{Y0 = Z0, Y1 = Z1} =

1

α

∑
s,t

µ{Y0 = Z0 = s, Y1 = Z1 = t}

=
1

α

∑
s,t

µ{X0 = s,X1 = t}2 =
1

α

∑
s,t

π2
s · p2

st =
1

α
(π′diag(PP ′)π) .

Since X∞0 is a stationary Markov chain, we obtain

ck(r) = µ{dk(Y k
0 , Z

k
0 ) ≤ r} = µ{Yi = Zi ∀0 ≤ i < k}

= µ{Yk−1 = Zk−1 | Yi = Zi ∀0 ≤ i < k − 1} · ck−1(r) = βck−1(r).

Now a simple induction gives the desired result. �
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Figure 2. Convergence of the empirical determinism (solid line) to the asymptotic
determinism (dashed line) for a 3–state Markov chain with the transition matrix P ;
n = 100, 1 000, 10 000.

Figure 2 depicts the convergence of the empirical determinism (with m = 1) to the asymptotic one for a

3–state Markov chain with the (randomly selected) transition matrix P =

 0.362 0.438 0.200

0.484 0.447 0.069

0.120 0.503 0.377

.

4.3. Autoregressive processes. Next we consider asymptotic RQA characteristics of a (stationary) au-
toregressive process X∞0 ∼ AR(p) of order p ≥ 1 with coefficients θi (i = 1, . . . , p) and with Gaussian zero
mean noise ε∞0 of variance σ2. It is given by Xn = θ1 ·Xn−1 + θ2 ·Xn−2 + · · ·+ θp ·Xn−p + εn.

Proposition 14. Let X∞0 be an (ergodic stationary) autoregressive process AR(p) with coefficients θ1, . . . , θp
and Gaussian WN(0, σ2). Let r > 0, m, k ≥ 1 and h = k +m− 1. Then

cmk (r) = µ{Y h
0 ∈ [−r, r]h},

where Y h
0 ∼ N(0,Σ) with Σ being the h × h autocovariance matrix of an AR(p) process with coefficients

θ1, . . . , θp and Gaussian WN(0, 2σ2).

Proof. Since the difference of two independent AR processes with the same parameters θ1, . . . , θp, σ
2 is an

AR(p) process with the same coefficients and noise variance 2σ2, the statement immediately follows from
(13). �
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Figure 3. Convergence of the empirical determinism (solid line) to the asymptotic
determinism (dashed line) for an AR(3) process with parameters a1 = 0.25, a2 = 0.4, a3 =
0.3 and σ2 = 1.5; n = 100, 1 000, 10 000.

The convergence of the empirical determinism DET1
2 to the asymptotic one for an AR process is exhibited

in Figure 3.
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Corollary 11 implies that over-embedding of an AR(p) process into dimension m > p leaves the deter-
minism unchanged. Thus, the asymptotic determinism can be used to estimate (from below) the order of
an autoregressive process. This is demonstrated in Table 2 on an AR(3) process. There one can see that
embedding into dimension 4 or 5 gives the determinism equal to that for dimension 3, but the determinisms
for m = 1, 2 are smaller. Thus one can conclude that the order of the process is at least 3.

HH
HHHk

m
1 2 3 4 5

2 0.638
(0.009)

0.725
(0.008)

0.759
(0.008)

0.760
(0.008)

0.760
(0.009)

3 0.407
(0.010)

0.491
(0.011)

0.514
(0.012)

0.515
(0.013)

0.516
(0.014)

4 0.258
(0.010)

0.312
(0.011)

0.327
(0.012)

0.328
(0.013)

0.329
(0.014)

5 0.158
(0.008)

0.191
(0.010)

0.201
(0.011)

0.201
(0.012)

0.202
(0.013)

Table 2. Determinisms for AR(3) process with a1 = 0.25, a2 = 0.4, a3 = 0.3 and white

noise’s variance 1.5; here n = 2 500 and r =
√

1.5. Average determinisms with standard
errors in parentheses obtained by a Monte Carlo simulation of size 1 000.

5. Kolmogorov entropy and asymptotic determinism

In the following three examples we demonstrate that behavior of the RQA determinism can sometimes be
counterintuitive. First we show that the determinism of an iid process can be higher than that of a non-iid
one with the same marginal. In the second example it is shown that higher entropy does not necessarily
mean smaller determinism. Finally, a Markov chain indistinguishable (from the RQA point of view) from
an iid process is constructed.

Example 15 (Determinism of iid and non-iid processes). Fix 0 < a, b < 1 and consider a 01-valued Markov
chain X∞0 with the transition matrix P = (pst)

1
s,t=0 such that p00 = a, p11 = b. Then X∞0 is ergodic and the

stationary distribution of it is given by π =
(

1−b
2−a−b ,

1−a
2−a−b

)′
. Fix any r ∈ [0, 1). By Proposition 13,

detmk (r)Markov = kβk−1 − (k − 1)βk, where β = c1|1(r) =
(1−a)2·[b2+(1−b)2]+(1−b)2·[a2+(1−a)2]

(1−a)2+(1−b)2 .

On the other hand, for a 01-valued iid process with the same marginal π, Proposition 12 gives

detmk (r)iid = kαk−1 − (k − 1)αk, where α = (1−a)2+(1−b)2
(2−a−b)2 .

If we take a = 3/5 and b = 1/5, then α > β. Since the function x 7→ kxk−1− (k−1)xk is increasing on [0, 1],
we have that detmk (r)Markov > detmk (r)iid for any m, k ≥ 1.

Example 16 (Determinism and entropy). The previous example also shows that higher entropy does not
necessarily mean smaller determinism. In fact, the entropy of an iid process is strictly larger than that of
any stationary non-iid process with the same marginal. In this simple case the entropies can be calculated
analytically, since the entropy of an iid process is hiid = −

∑
s πs log πs and the entropy of the Markov chain

is hMarkov = −
∑

st πspst log pst. See also Figure 4 for an illustration of this phenomenon.

Example 17 (Indistinguishable Markov chain and iid process). In the 2-state Markov chain considered
in Example 15, fix b = 1/5 and, for given a, denote by αa, βa the corresponding correlation integrals
c1(r), c1|1(r), respectively. Since α1/2 < β1/2 and α3/5 > β3/5, there is a ∈ (1/2, 3/5) with αa = βa. For this
particular (non-iid) Markov chain X∞0 , the probability of finding a diagonal line of length k (in the infinite
recurrence plot) is the same as that for an iid process Y∞0 with the same marginal. Hence, no RQA measure
based on diagonal lines can distinguish between X∞0 , Y∞0 .
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Figure 4. Entropy versus determinism det1
2 for a 2-state Markov chain (MC) with b = 1/5

and an iid process with the same marginal.

6. Spurious structures

In [17], see also [12, Section 3.2.4], it was pointed out that, for iid processes, over-embedding leads to
existence of spurious structures in recurrence plots. The appearance of spurious structures is illustrated in
Figure 5. The left panel depicts the “usual” recurrence plot of an iid process for the embedding dimension
m = 1. On the right panel there is the recurrence plot for the embedding dimension m = 250. It contains
long diagonal lines, which would suggest that the process should be well predictable.
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Figure 5. The effect of equal recurrence rates for embedding dimensions m = 1 and 250;
uniform iid data.

Proposition 12 enables us to explain why this happens. In fact, this is due to a special choice of the distance
threshold r, which selects such r = rm that the recurrence rate RRm

1 (rm) is fixed to a predetermined level.
As the following proposition demonstrates, this selection rule leads to the determinism close to one and
average diagonal line length arbitrarily high for large embedding dimensions.

Proposition 18. Let X∞0 be an iid process. Let θ > 0 and let rm > 0 (m ∈ N) be such that all the recurrence
rates rrm1 (rm) are equal to θ. Then, for k ≥ 1,

lim
m→∞

detmk (rm) = 1 and lim
m→∞

lavgm
k (rm) =∞.

Proof. For m ≥ 1 put αm = c(rm). Then, by the assumption and Proposition 12, θ = rrm1 (rm) = (αm)m for
every m; thus αm = θ1/m → 1 for m→∞. Using Proposition 12 we obtain that, for every k ≥ 1, rrmk (rm) =
(αm)m+k−1 · [k − (k − 1)αm]→ θ for m→∞, and so limm detmk (rm) = 1 and limm lavgm

k (rm) =∞. �
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Hence, appearance of the spurious structures for iid processes is an artefact of this particular selection
rule for density thresholds. The artificial “predictability” which appears on the right panel of Figure 5 is
due to the distance threshold r, which is several times higher than the standard deviation of the process.
Different selection rule, which chooses r independently of the embedding dimension, leaves the determinisms
detmk (r) and mean diagonal line lengths lavgm

k (r) constant for m→∞, as one expects for iid processes.

7. Strong law for correlation sums on pseudometric spaces

Here we give a proof of Theorem 3, based on the strong law for correlation sums on pseudometric spaces;
see Theorem 19 below. Recall that, for a (topological) space Z, a map d : Z × Z → R+ is a pseudometric
on Z if d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ Z. A pseudometric d
is separable if the topology generated by it is separable. We say that d is a Borel (continuous) pseudometric
on Z if it is a pseudometric which is Borel (continuous) w.r.t. the product topology on Z × Z. Notice that
a continuous pseudometric on a separable space is automatically separable.

If d is a pseudometric on Z, Bd(x, r) and Sd(x, r) denote the (closed) d-ball and d-sphere with radius r
centered at x, respectively. Notice that if d is Borel then d-balls and d-spheres are Borel sets in Z; to see it,
use that Bd(x, r) = {y : (x, y) ∈ d−1([0, r])} and analogously for Sd(x, r). The d-diameter of a set A ⊆ Z is
denoted by diamd(A).

Assume that (Z,BZ , µ, T ) is a dynamical system and that d is a Borel pseudometric on Z. For x ∈ Z,
n ∈ N and r ≥ 0 define the correlation sum

Cd(x, n, r) =
1

n2
card{(i, j) : 0 ≤ i, j < n, d(T i(x), T j(x)) ≤ r}

and the correlation integral

cd(r) = µ× µ{(x, y) : d(x, y) ≤ r} =

∫
Z

µBd(x, r) dµ(x).

Recall that cd is non-decreasing, right continuous and tends to 1 if r →∞. Further, cd is continuous at r if
and only if µSd(x, r) = 0 for µ-a.e. x ∈ Z, see e.g. [13, Remark 2.2].

The strong law for the correlation sum was studied under different conditions in [14, 13, 1, 15, 11]. Though
not stated in this form, the following theorem was proved in [11].

Theorem 19. Let Z be a topological space, µ be a Borel probability on Z and T : Z → Z be a µ-ergodic
Borel map. Let d be a separable Borel pseudometric on Z. Then, for µ-a.e. x ∈ Z and for every r > 0,

lim
n→∞

Cd(x, n, r) = cd(r) > 0

provided cd is continuous at r.

Let us note that this “pseudometric” version of the strong law for correlation sums cannot be directly
derived from the “metric” one. Indeed, it is true that one can easily obtain a metric space from the
pseudometric one by gluing together points of zero distance, as is usually done. The considered dynamical
system, however, does not necessarily fit to this projection and so, in general, there is no induced system on
the obtained metric space; take e.g. the case when Z = R∞, T is the shift and d(x∞0 , y

∞
0 ) = |x0 − y0|.

The proof from [11], however, perfectly fits to this general setting, as was noted by the authors. Indeed,
it is based on the Birkhoff ergodic theorem and on the existence of finite Borel partitions Am = {Am

j :

0 ≤ j ≤ Mm} (m ≥ 1) with µ(Am
0 ) ≤ 2−m and diamd(Am

j ) ≤ 2−m for every j ≥ 1. Since the former is
true for arbitrary ergodic system and the latter immediately follows from separability of (Z, d) and Borel
measurability of d-balls, the convergence in Theorem 19 can be proved using the same reasoning as in [11].
Finally, the fact that cd(r) > 0 for every r > 0 is obvious due to separability of (Z, d). (To see it, take any
d-ball B with radius r/2 and µ(B) > 0 and use that cd(r) ≥ µ(B)2.)

Next we show how Theorem 3 can be obtained from Theorem 19.

Proof of Theorem 3. Let (S, %) be a separable metric space, m, k ≥ 1 be integers and r > 0 be such that cmk
is continuous at it. Let %m be a metric on Sm compatible with the product topology. Put Z = S∞ and
define d = dmk by (5). Then obviously d is a continuous pseudometric on Z; it is separable due to separability
of Z.
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Let X∞0 be an S-valued ergodic stationary process with distribution µ. We may assume that X∞0 is given
by its Kolmogorov representation, that is, Xn = π ◦ Tn, where T : Z → Z is the shift and π : Z → S is the
projection x∞0 7→ x0. Then, for every x = x∞0 ∈ Z and every n, Tn(x) = x∞n and so

cmk (r) = cd(r) and Cm
k (x, n, r) =

(
n− k + 1

n

)2

Cd(x, n− k + 1, r).

Application of Theorem 19 to the ergodic system (Z,BZ , µ, T ) gives the desired result. �
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