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We model the innervation dynamics of interneurons in a cerebral cortex center A between the

time of initial sensory input and acquisition of a sustained steady state. The model assumes that

interneurons in A are heavily interconnected allowing synchronization. This invites modeling

the dynamics by means of a discrete time map. The model takes into account the influence

of excitatory and inhibitory cells and reflects the architecture of synapses along the axons.

The acquisition of a sustained chaotic state is characterized by means of a natural invariant

probability measure. The time to attain this probability measure can be estimated.

Keywords: Discrete time interneural maps, natural invariant probability measure, Frobenius-

Perron operator.

1. Introduction

The nervous system is organized into many local regions called centers [Shepherd, 2004, Chapter 1] (dy-
namic cell assemblies). At each center input fibres activate interneurons which carry on local processing.
Principal neurons then carry signals from one center to another [Rakic, 1976]. In this note we present a
mathematical framework for studying the dynamical behavior of interneural activity in a center A from
the time of initial sensory input until a steady state of activation is achieved. This activity occurs at close
range in a small region and lasts typically around half a second. Our main objective is to describe the
sustained activated state by means of an invariant probability measure, that describes the chaotic steady
state behaviour.

∗The research of the authors was supported by NSERC grants.
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Interneurons of the same type are heavily interconnected by electrical gap junctions [Gibson et al., 1999;
Galarreta and Hestrin, 1999], allowing them to readily synchronize. For example, activation of hippocampal
interneuron networks generates coherent activity in the gamma-frequency range (30-80 Hz) [Bragin et al.,
1995]. In the sequel we make the assumption that interneurons in a cortical center A re-act coherently
to spike trains, allowing the use of a discrete time model to describe the activation dynamics. The model
takes into account the activity of inhibitory as well as excitatory cells by synaptic integration [Kandel and
Seigelbau, 2000]. We prove that there exists well defined sustained chaotic behavior of interneural activity
in A in the sense that there exists a natural probability measure on A that describes the steady state
activity.

In Section 2 we present the model for interneural activation in a center. In Section 3 we prove that,
under certain conditions, a steady state probability measure is achieved. In Section 4 we present an example
for which we computationally estimate the time to attain a steady state of activation.

2. Nonlinear Dynamical Model

The activation process in a center begins when a sensory neuron or a cluster of sensory neurons initiate
activity in A with a coherent spike train. We assume there are X interneurons in a center A that can be
innervated. Typically, X is of the order of millions of interneurons. Because there are thousands of synapses
on a single axon, one interneuron activates many other interneurons. Furthermore, the architecture of the
interneuron is such that its presynapses spread out seemingly randomly in groups along its axon. Thus,
there are spatial gaps between activated interneurons.

Clusters of neurons in cortical centers have been studied in [Friston , 1997; Lehman et al. , 1987].
In [Schmidt et al. , 2010; Chavez et al. , 2010], there are studies of how individual neuronal dynamics
determines large scale results.

We assume that, on average, each of N clusters in a cortical center has approximately the same number
of interneurons. A common theory suggests that individual cells do not exchange signals among each other,
but rather that exchange takes place between groups of cells [Shimazaki et al., 2012], where a mathematical
model is developed to clarify the way neurons collaborate. Furthermore, it appears that these clusters of
neurons can organize themselves within milliseconds into different clusters.

Key to our model are:
1. Discrete time [Cessac, 2008, 2011] dynamical model is a map which describes how clusters of in-

terneurons in A innervate other interneural clusters in A.
2. We represent each of the N interneural clusters in A by a subinterval of length 1/N in the interval

I = [0, 1]. In Figure 1 we show an example for N = 20 interneuron clusters and a gap parameter, α,
α = 0.5. This means any interneuron cluster can fail to activate at most Nα = 10 other interneuron
clusters. The actual number of non-activated interneuron clusters is a random number between 0 and 10.
This number and the location of the gaps are chosen randomly. For example, the first interneuron cluster
in the connection pattern for clusters shown in Figure 1 fails to innervate the 2nd, 3rd, 7th, 11th and 19th
clusters. Figure 2 shows another possible connectivity pattern for N = 20 clusters and α = 0.5.

The connectivity pattern gives rise to a map T from [0, 1] to [0, 1]. T is a semi-Markov map ( [Góra and
Boyarsky, 1993; Jab loński et al., 1995]). A Markov map ( [Boyarsky and Góra, 1997]) maps each subinterval
(cluster of interneurons) onto one contiguous group of subintervals (interneural clusters). Although the
deterministic dynamics of individual orbits of an activated interneuron cluster is unpredictable because of
the nonlinear nature of T , the steady state behavior of this chaotic system can be studied statistically.
This behavior is described by an invariant probability measure which characterizes the onset of the steady
state chaotic dynamics. Such measures have been studied in the context of brain dynamics in [Froyland
and Aihara, 2001; Boyarsky and Góra, 2006, 2009].

In order to analyze the steady state dynamics of T , we define a matrix M (Frobenius-Perron Operator
[Boyarsky and Góra, 1997]), which displays the information in the map T , that is, which interneuron
cluster innervates which, and how effectively this is accomplished as reflected by the slopes of the line
segments in the graph of T . The slope depends on how (on average) an interneuron cluster integrates
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Fig. 1. Connectivity map for N = 20 clusters and α = 0.5. Each subinterval of length 0.05 represents a cluster.
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Fig. 2. Another possible connectivity map for N = 20 clusters and α = 0.5.

(synaptic integration [Kandel and Seigelbau, 2000]) all the excitatory and inhibitory signals and responds
by activation or passivity at the interneuron level.

The final piece in the model relates to time evolution: since the input to A “is composed of a whole
ensemble of spike trains arriving through many parallel inputs” [Abeles, 1991], the map T is iterated at the
rate of the spike train, denoted by τ . Multiplying the matrix by a normalized (total area = 1) left vector
describes the action of interneuron clusters in A on an ensemble of parallel spike trains. The normalized
left eigenvector of M , viewed as a function on I is the steady state of the dynamical system [Boyarsky and
Góra, 1997, Chapter 9].

The 20× 20 matrix M associated with the map T in Figure 3 is shown below. The gaps in the images
over each subinterval in T appear as gaps in the rows of M.
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Fig. 3. Example of a semi-Markov transformation for N = 20, α = 0.4.
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.

The normalized left invariant eigenvector of M yields the invariant probability measure on the 20
interneuron clusters:

[0.05374 0.04791 0.04358 0.05003 0.05383 0.03900 0.05768 0.04687 0.04404 0.05774
0.04915 0.06110 0.04295 0.04220 0.05351 0.05518 0.05022 0.04758 0.05351 0.05009]

Figure 4 shows this invariant measure in grey. Note that it is almost uniform on the interval I which
is interpreted as almost uniform activation of the center A.

In a related setting [Cessac, 2008, 2011], the existence and uniqueness of an invariant measure is
established.

3. Main Result

If the matrix M is irreducible, that is, if any of the N clusters can eventually communicate (activate)
any of the other clusters, then it follows from general Perron-Frobenius Theory [2] that M has a unique
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normalized left eigenvector, that is, a unique invariant probability measure. However, we do not know this
measure unless we solve the matrix equation, which may be a formidable task for large matrices.

We now present the main result of this note. Let a center A have N equal-sized clusters that can be
identified and assume there exists a number α which characterizes the random interaction between clusters:
if α is small, then there is lots of interaction between the interneuron clusters in A. In the main theorem we
shall show that, under general conditions, there exists an invariant probability measure on A that describes
the steady state chaotic activity of interneurons as N → ∞ and α → 0. Moreover, we present a condition
under which the limit invariant measure is uniform on A.

Let P (A) denote the probability of an event A and let P (A|B) denote the probability of an event A
given B. In order to generate random integers to construct the map T and the associated matrix M , we
need to use the ceiling function d·e and floor function b·c as described in the Appendix.

Theorem 1. Assume that α satisfies −2α2 + 3α ∼
3
N

. Then, N approaching ∞ implies that α approaches
0, and the invariant measure of T approaches uniform distribution almost surely.

Proof. For convenience, we drop the notations “bc” and “de” from bN (1 − α)c and dNαe, respectively.
First, we have

P (Mij =
1

N (1 − α) + n
) = P (Mij =

1

N (1 − α) + n
|X = n)P (X = n)

+ P (Mij =
1

N (1 − α) + n
|X 6= n)P (X 6= n)

=
N (1 − α) + n

N

1

Nα
+ 0

=
N (1 − α) + n

N 2α
.

Now, for two integers s 6= t, 1 ≤ s, t ≤ N , we have

P (Mjt = Mjs =
1

N (1 − α) + n
) = P (Mjt = Mjs =

1

N (1 − α) + n
|X = n)P (X = n)

+ P (Mjt = Mjs =
1

N (1 − α) + n
|X 6= n)P (X 6= n)

=

(

N−2
N(1−α)+n−2

)

(

N
N(1−α)+n

)

1

Nα
+ 0

=
(N (1 − α) + n)(N (1− α) + n − 1)

N (N − 1)

1

Nα
.

Thus,

P (Mjt = Mjs 6= 0) =
Nα
∑

n=1

(N (1 − α) + n)(N (1 − α) + n − 1)

N (N − 1)

1

Nα
.

Similarly, we have

P (Mjt = Mjs = 0) =

Nα
∑

n=1

P (Mjt = Mjs = 0|X = n)P (X = n)

=

Nα
∑

n=1

(

N−2
Nα−n−2

)

(

N
Nα−n

)

1

Nα

=
Nα
∑

n=1

(Nα − n)(Nα − n − 1)

N (N − 1)

1

Nα
.
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Therefore, we have

P (Mjt = Mjs) =

Nα
∑

n=1

(N (1 − α) + n)(N (1− α) + n − 1) + (Nα − n)(Nα− n − 1)

N 2α(N − 1)

=

Nα
∑

n=1

[

N 2(1 − α)2 + Nα(Nα − 1) − N (1 − α)

N 2α(N − 1)
+

2n2

N 2α(N − 1)

+
(2N − 4Nα)n

N 2α(N − 1)

]

=
N 2(1 − α)2 + Nα(Nα − 1) − N (1 − α)

N (N − 1)
+

(Nα + 1)(2Nα + 1)

3N (N − 1)

+
(2N − 4Nα)(Nα + 1)

2N (N − 1)

= 1 +
(2α2 − 3α)N 2 − 3αN + 3N − 1

3N (N − 1)
.

On one hand,

lim
N→∞

P (Mjt = Mjs) = (1 − α)2 + α2 +
2α2

3
+

(2 − 4α)α

2
= 1 − α +

2

3
α2.

This shows that P (Mjt = Mjs) is very close to 1 if N is very big. Since event “M1t = M1s, M2t =
M2s, . . . , MNt = MNs” implies event “Mt = Ms”, we have

P (Mt = Ms) ≥ P (M1t = M1s, M2t = M2s, . . . , MNt = MNs)

=

(

1 +
(2α2 − 3α)N 2 − 3αN + 3N − 1

3N (N − 1)

)N

.

Thus, for small α and big N , we obtain

P (M1t = M1s, M2t = M2s, . . . , MNt = MNs) ∼ exp

(

N
(2α2 − 3α)N 2 − 3αN + 3N − 1

3N (N − 1)

)

,

while,

N
(2α2 − 3α)N 2 − 3αN + 3N − 1

3N (N − 1)
= −(−2α2 + 3α)

N

3

N

N − 1
+

N (1 − α)

N − 1
+

1

3(N − 1)
,

which converges to 0 given N → ∞ and the condition of the theorem is satisfied.
Therefore, we conclude that the sum of any two columns of M is equal with probability almost 1,

which implies vector ( 1
N

, 1
N

, . . . , 1
N

) is very close to the left invariant eigenvector for big N (and small α)
given the condition in this theorem. �

4. Experimental estimation of the time of acquisition of the invariant

probability measure

For a randomly chosen initial probability vector v we calculated vMn for a few first n’s. In Figure 4 we
show the vector v (black) and the M -invariant vector (grey) representing invariant probability measure,
both as piecewise constant functions on [0, 1].

In Figure 5 we present the third iteration vM3 with the M -invariant vector. The difference between
them is less than 10−3 so the graphs practically coincide. We see that experiment shows that the time of
acquisition of the invariant probability measure is almost instantaneous.
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Fig. 4. Initial vector v (black) and the M -invariant vector (grey).

Fig. 5. Vector vM
3 (black) and the M -invariant vector (grey). Almost equal.

5. Appendix: Algorithm for construction of matrix M

Now we construct our model for the signal transmission among the neurons by stating a semi-Markov
linear transformation (see [Góra and Boyarsky, 1993; Jab loński et al., 1995]) T : I → I , where I = [0, 1],
I is partitioned into N subintervals of equal length such that T is piecewise linear and monotone on each
subinterval.

Let α be a number satisfying 0 < α < 1, we give the Perron-Frobenius matrix M = (ai,j)1≤i,j≤N

associated with T as follows, we start from i = 1:
(1) For row i, we generate one random integer ki from {1, 2, . . . , dNαe}, where dxe is the ceiling

function, and ki takes each integer with equal probability.
(2) Randomly choose bN (1 − α)c + ki integers from {1, 2, . . . , N}, where bxc is the floor function,

storing these integers in set A we assign values with ai,j = 1
bN(1−α)c+ki

whenever j ∈ A, the rest of the

elements in row i are 0.
(3) If i < N , set i = i + 1, and return to step (1).
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6. Conclusion

We use rudimentary chaos theory to model the activation dynamics in a cerebral cortex center. The
existence of an invariant probability measure characterizes the acquisition of the steady state of activity. In
our model, the acquisition time of the invariant probability measure is almost instantaneous, which accords
with what we know from experience, that interneurons transmit local signals very quickly throughout
cortical centers.
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