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Music is an amalgam of logic and emotion, order and dissonance, along with many combinations
of contradicting notions which allude to deterministic chaos. Therefore, it comes as no surprise
that several research works have examined the utilization of dynamical systems for symbolic
music composition. The main motivation of the paper at hand is the analysis of the tonal com-
position potentialities of several discrete dynamical systems, in comparison to genuine human
compositions. Therefore, a set of human musical compositions is utilized to provide “composi-
tional guidelines” to several dynamical systems, the parameters of which are properly adjusted
through evolutionary computation. This procedure exposes the extent to which a system is capa-
ble of composing tonal sequences that resemble human composition. In parallel, a time series
analysis on the genuine compositions is performed, which firstly provides an overview of their
dynamical characteristics and secondly, allows a comparative analysis with the dynamics of the
artificial compositions. The results expose the tonal composition capabilities of the examined
iterative maps, providing specific references to the tonal characteristics that they can capture.

Keywords: Chaos and music; tonal time series; evolutionary composition.

1. Introduction

Music composition is a process that encompasses a
combination of two contradicting forces: the deter-
minism imposed by music rules and the chaos that
is subsumed in human creativity. Therefore, the

utilization of chaotic system for automatic music
composition seems like a direction worthy of exten-
sive exploration. In fact, several research works
have focused on the potential of using dynami-
cal systems for music composition, however, the
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compositional potentiality of dynamical systems
remains relatively unexplored. Although many
methodologies have been proposed, the results that
most works have presented do not provide com-
parative analyses between the dynamical systems’
compositions and the ones composed by humans.
As a result, one may not come up with practical
implications as to whether a human-like “chaotic
composer” can be created. If so, what would its
dynamical and musical characteristics be? The aims
of this paper may be summarized as the examina-
tion of symbolic music compositional capabilities of
several dynamical systems, focusing on the tonal
aspects of music.

Nonlinear characteristics are deeply related to
the human perception of sound. Their existence
in natural sound has been studied for a large
variety of phenomena, such as animal vocalization
[Tokuda et al., 2002] and birdsong production mod-
els [Amador & Mindlin, 2008]. Furthermore, the
relation of nonlinear dynamics with human speech
has been investigated [Behrman, 1999], providing
also significant results in speech recognition [Jafari
et al., 2010]. Additionally, theories that incorpo-
rate nonlinearities in the mechanism through which
humans perceive auditory events have provided
great insights about sound and human perception
[Chialvo, 2003]. Consequently, it comes without say-
ing that the ultimate human cultural manifestation
of sound — music — abounds in nonlinear struc-
tures on many levels: from the level of instrumen-
tal timbre [Fletcher, 1994] and overall orchestration
timbres [Voss & Clarke, 1978, to the level of sym-
bolic composition [Manaris et al., 2005].

Automatic music composition through dynam-
ical systems has been a very popular technique
which inspired many researchers and artists, from
the pioneering works of Pressing [1988], Bidlack
[1992], Herman [1993] and Harley [1994], to more
contemporary works. An interesting approach for
altering the tonal characteristics of a piece was pro-
posed in [Dabby, 1996], where the pitch space of the
specific piece was “convolved” with a chaotic solu-
tion of a dynamical system. Thereafter, new neigh-
boring solutions provided novel tonal sequences
that gradually diverged from the ones of the ini-
tial piece. The mainstream compositional strategy
however, is the utilization of well-known dynami-
cal systems like Chua’s circuit [Chua et al., 1993]
for the generation of sound [Choi, 1994] or music

composition [Bilotta et al., 2007; Rizzuti et al.,
2009]. The latter works not only examine the com-
position of music with Chua’s circuit, but also
evolve its parameters with genetic algorithms. The
fitness of the evolutionary process is provided by the
pitch interval distribution of a target piece. Several
dynamical systems have been examined in [Coca
et al., 2010] and the produced music was charac-
terized according to several music characteristics.
A similar approach was followed in [Kaliakatsos-
Papakostas et al., 2012b], but the musical output
in this case was examined in terms of its informa-
tion complexity.

The paper at hand is motivated by the poten-
tialities of dynamical systems for “symbolic” com-
position of musical tonal sequences, reflected in
numerous works that employ such systems for
automatic composition. Since the focus is on the
tonal aspect of music, the automatic composition
methodology that is followed disregards informa-
tion on rhythm, intensities and timbre. To this end,
two types of analysis are applied, which incorporate
the extraction of several tonal characteristics from
genuine music masterpieces and the composition of
novel tonal sequences using chaotic systems and
evolution. On the one hand, the genuine composi-
tions are examined in terms of their dynamical char-
acteristics through a time series analysis approach
which incorporates phase space reconstruction of
the pieces’ attractors, the extraction of the largest
Lyapunov exponent and fractal dimension. A sim-
ilar approach was presented in [Boon & Decroly,
1995], but the present paper provides an exhaus-
tive experimental research on a large set of com-
positions, combined with a comparative analysis
on the time series characteristics between genuine
and artificial compositions. On the other hand, sev-
eral well-known dynamical systems are utilized to
compose novel tonal sequences, which are “trained”
to share similar characteristics with the aforemen-
tioned pieces. In the latter analysis, the param-
eters of these dynamical systems are optimized
through evolutionary computation, so that the gen-
erated novel pieces share similar characteristics to
the respective “target” genuine ones.

These tonal characteristics are exhibited to
highlight the exceptional characteristics of different
music styles and therefore constitute a qualitative
measurement of the potentialities of each dynami-
cal system concerning music composition. Through
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an extensive experimental study, the tonal
sequences produced by some of the examined dis-
crete dynamical systems are observed to encompass
some tonal characteristics that are present in gen-
uine human compositions. However, through the
phase space reconstruction that is realized with
the time series analysis of the genuine pieces, it
is indicated that dynamical systems with higher
complexity and with a greater number of dimen-
sions are required to compose human-like music.
These results are assessed through a comparative
scrutinization between the genuine and the artifi-
cial compositions, not only on the level of musical
characteristics, but also on the level of their dynam-
ical behavior expressed with the largest Lyapunov
exponent and fractal dimension.

The rest of the paper is organized as follows.
Section 2 discusses the extraction of tonal time
series from genuine symbolic compositions in MIDI
format and presents the tools for the time series
analysis, which allows the phase space reconstruc-
tion and the computation of the largest Lyapunov
exponent and fractal dimension. The utilized auto-
matic music composition methodology is reviewed
in detail in Sec. 3. Specifically, the evolutionary
scheme that allows the tuning of the dynamical
systems’ parameters is presented and the music
features that constitute the basis for the fit-
ness function are throughly analyzed. Section 3
also discusses the automatic tonal composition
methodology which encompasses coarse composi-
tional guidelines to the dynamical systems. A thor-
ough experimental report is given in Sec. 4, which
incorporates the most important findings that were
extracted by the application of the methodologies
described in the preceding sections. The paper con-
cludes in Sec. 5 with a synopsis along with conclud-
ing remarks and some pointers to future work.

2. Dynamical Properties of the
Genuine Compositions Through
Time Series Analysis

As mentioned previously, this work is targeted
towards studying the tonal composition potential-
ities of discrete dynamical systems, in the con-
text of automatic music composition. Therefore,
the output produced in consecutive iterations of
these dynamical systems, is mapped to tonal
sequences through a straightforward procedure that

is described below in detail. An initial approach
to this subject is the study of tonal sequences
that derive from “genuine” music masterpieces, in
terms of their dynamical characteristics. In order
to consider a wide spectrum of Western music, this
study incorporates several genuine compositions
from J. S. Bach, Mozart, Beethoven and a collection
of jazz standards composed by various artists. For
the rest of the paper, the entire jazz collection will
be referred to as if it were composed by a single com-
poser for simplicity. The fact that all jazz composi-
tions are considered per composer is not expected to
affect the accuracy of results, because the jazz com-
positional technique varies significantly from that of
classical music. Therefore, their inclusion in a sin-
gle category is intended to examine the differences
in dynamical properties among the compositional
styles of the collected music sets. The extraction of
dynamical characteristics from the tonal sequences
that derive from all the aforementioned composi-
tions allows a first cartographical overview of the
underlying dynamics that are considered to pro-
duce these compositions. Furthermore, this analysis
allows a comparison in the dynamical characteris-
tics of the genuine and the artificial compositions.
The composition process that is assumed
throughout the paper regards the symbolic level,
i.e. only information that is interpretable in a score
is considered, without any timbre-related informa-
tion. Therefore, the aforementioned genuine com-
positions are collected in MIDI format, which is
a protocol that includes the most viable symbolic
information of music content, allowing a quite accu-
rate interpretation to music score. Additionally,
in order to have comparable results among the
time series extracted from the genuine pieces, only
piano executions were considered. Specifically, the
dataset comprises piano sonatas from Beethoven
and Mozart, the “Well Tempered Clavier” of Bach
and piano transcriptions of several well-known jazz
standards. This fact “neutralizes” the effect of
instrument-imposed constraints, like tonal range
and polyphony, that may affect the format of the
tonal sequences. To this end, the tonal sequence of
a piece is obtained by the serial concatenation of
all its tones in the order they appear, disregarding
inter-onset distance and duration. In the case of
polyphonic events, i.e. music events that incorpo-
rate multiple simultaneous tones, the order of tones
is considered from the lowest to the highest tone
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of the polyphonic cluster. Although this approach
might be considered simplistic, it reflects the qual-
itative demeanor of this study.!

2.1. Phase space reconstruction

Based on Takens’s [1981] theorem, if a time series,
{Ti}tic(o,1,2,...n}» derives from a dynamical system, it
encompasses all the viable characteristics needed to
construct a topologically equivalent dynamical sys-
tem. Thereby, the dynamical behavior of the initial
system can be “reconstructed” in a topologically
consistent manner, even if the system’s dimension-
ality is higher than the observed time series’. This
procedure is called “phase space reconstruction”
and is realized by estimating the “novelty” intro-
duced in segments of the time series (to compute
a proper time delay) and then computing the
dimensionality of the dynamical system’s space.
The phase space of the dynamical system is then
reconstructed by embedding replicates of the time
series, shifted by a proper index expressed by
an optimal time lag, in each dimension of the
reproduced system. The resulting dynamical sys-
tem is considered to produce the following vector
sequence, y(i) = (i, Titr, Titor, ... 7$i+(u71)7)-
A brief review of this methodology is discussed
in the following paragraphs, while for a more
thorough review the reader is referred to [Lai &
Ye, 2003; Kodba et al., 2005]. In the paper at
hand, the software implementation presented in
[Kugiumtzis & Tsimpiris, 2010] was utilized. The
solicitation of further dynamical information is
realized through two more measures, namely the
Largest Lyapunov Exponent (LLE) and the Frac-
tal Dimension (FD) as described later. The latter
two dynamical measures are not necessary for the
phase space reconstruction, they are rather used as
measures of comparison between the genuine and
the automatically produced compositions.

2.1.1. Embedding delay

The rationale behind determining a proper time
delay is the allocation of a time series segmen-
tation to equal segments of length 7, where each
segment incorporates information about the other.
Such a segmentation exposes the interrelations that

the underlying dynamical system imposes to each
segment of the time series. The time delay (or seg-
ment length) value, 7, should be chosen so that the
variables Tiy Tigrs Tit 27y« - 5 Tig (g—1)7s where ¢ =
|l/7| and [ is the length of the time series, are as
independent as possible. To this end, Fraser and
Swinney [1986] proposed the examination of the
mutual information between all segments of the
time series, for various 7 values. The computa-
tion of mutual information is performed with the
MATS [Kugiumtzis & Tsimpiris, 2010] toolbox in
MATLAB, in which a partitioning is considered
that produces a grid in the time series domain
interval [min{wz;}, max{w;}];c0,1,2,. 1}, With k par-
titions of length k/(max{z;} —min{z;})ic(0,1,2,....n}-
Given the aforementioned domain partitioning, the
mutual information for a time delay 7 is given by
[Kodba et al., 2005]

k

k
1) =~ 30 Panlr)log P20 T),
0

where [ is the length of the time series, P, and P,
are the probabilities that a time series value is in the
nth and mth grid position respectively and P, ,,(7)
is the joint probability that x; is in the nth grid
position and x;4, is in the mth grid position. The
first minimizer of I(7) constitutes the proper time
delay (segmentation length), to obtain the dynam-
ical behavior as has hitherto been discussed.

n=1m=1

2.1.2. Embedding dimension

The computation of the embedding dimensions, i.e.
the number of dimensions in which the attractor of
the assumed dynamical system lies, is vitally impor-
tant for the phase space reconstruction. Thereby,
the attractor of the underlying dynamical system
is assumed to fold and unfold smoothly when
the embedding changes from an integer value to
the next one, without sudden irregularities in its
structure. A popular method for estimating a
proper embedding dimension for the dynamical sys-
tem’s attractor, denoted by pu, is the false nearest
neighbor [Kennel et al., 1992] method. With this
method, the unfolding smoothness of the attrac-
tor is examined in spaces with increasing dimension

ISeveral other considerations of polyphonic events were considered, like from lowest to highest tone, selecting only the highest
tone, and random selection of tone order in polyphonic events, and the results were similar, and therefore omitted in the

present study.
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(u values). Thus, for each reconstructed point in
the examined embedding dimensions, u, it is inves-
tigated whether its nearest neighbor remains below
a distance threshold when the embedding dimension
is increased to p+1. If this does not hold, then these
points are called false neighbors. The embedding
dimension that is chosen as appropriate, is the one
that incorporates a small percentage of false neigh-
bors when the dimension is increased. In the context
of the presented work, the satisfactory percentage
of false nearest neighbors was set to zero. Therefore,
the proper embedding dimension was chosen to be
the smallest one that incorporates no false nearest
neighbors.

2.2. Largest Lyapunov exponent

The sensitivity of a dynamical system to initial con-
ditions is quantified by the Lyapunov exponents,
which roughly discuss the expansion or contrac-
tion rate of trajectories with initial conditions over
a small p-dimensional sphere. While the system’s
iterations progress, the sphere evolves into an ellip-
soid the principal directions of which expand, con-
tract or remain unchanged, as measured by positive,
negative or zero Lyapunov exponents. In directions
which incorporate negative Lyapunov exponents,
the attractor’s projection is a fixed point, while zero
Lyapunov exponents denote directions of limit cir-
cles. Positive Lyapunov exponents signify the exis-
tence of chaos. The set of Lyapunov exponents to all
directions is called the Lyapunov spectrum and it is
denoted by (A1, A2,...,A,), but random initial con-
dition vectors are expected to converge to the most
unstable manifold (with probability 1 [Rosenstein
et al., 1993]). Therefore, the computation of the
largest Lyapunov exponent (LLE), A1, is sufficient
to indicate the existence of chaos in the examined
system.

Although there are numerical methods for com-
puting the entire Lyapunov spectrum [Wolf et al.,
1985] from time series, the acquisition of the largest
exponent is needed to define the attractor’s chaotic
potentiality. A well-known methodology for evalu-
ating the LLE of the reconstructed attractor from
a time series, is due to Rosenstein [Rosenstein
et al., 1993] and is the numerical method utilized in
the paper at hand. A prerequisite for Rosenstein’s
method is to reconstruct the attractor’s phase space
based on the time series observation, thus obtaining
the time delay (7) and embedding dimension (u) as
described in Sec. 2.1. After the reconstruction, the

nearest neighbor (y;) of each point (y;) in the tra-
jectory is located and their distance in this initial
iteration is computed as

di(0) = min lyi — yill2- (2)

The LLE is then estimated as the mean rate of near-
est neighbor separation throughout their successive
iterations. By definition, therefore, it holds that

d;(t) = dy(0)eM ), (3)

where Ai(t) is the LLE estimation at time step t.
Taking the logarithm of both sides in the equation,
we have

In(d; (t)) = In(di(0)) + Ay (2). (4)

The average LLE is finally approximated by the gra-
dient of the linear regression among all neighboring
pairs

b(t) = (In(di(t)))i, (5)

where (-); denotes the mean value over all possible
7 indexes.

2.3. PFractal dimension

Fractal dimension (FD) is a concept that describes
the complexity of geometric objects as a ratio of
change in detail to the change in scale [Mandel-
brot, 1982]. Unlike the topological dimension, FD
may have noninteger values and a popular method
for its computation is the well-known box count-
ing method [Alevizos & Vrahatis, 2010]. Several
methods have been proposed for the FD computa-
tion of time series, among which are the correlation
dimension method [Grassberger & Procaccia, 1983],
the methods of Kantz [1988], Higuchi [1988], Pet-
rosian [1995] and Sevcik [1998]. Many works have
compared the above methodologies either by their
effectiveness on experimental data (for example, for
seizure detection in EEG), and/or on functions with
theoretically computable FD values (like the Weier-
strass cosine functions [Tricot, 1994]) [Esteller et al.,
2001; Goh et al., 2005; Raghavendra & Dutt, 2010;
Ahmadi & Amirfattahi, 2010; Polychronaki et al.,
2010]. The results yielded by these works provide
uncertain and contradicting results about the suit-
ability of each method for different tasks, reflecting
the fact that the computation of the FD of time
series is case dependent.

The method used for the results presented in
this paper is the method of Sevcik [1998], since
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it is among most easily implementable and faster
methods. This method is based on the computa-
tion of

Dy — lim 128V (E)

e—0  log(e) (6)

where N () is the number of n-dimensional open
balls with radius € needed to completely cover the
set under examination. If a length L is assumed
for the set that comprises the curve under exami-
nation, then this curve can be covered by at least
N(e) = [L/(2¢)] balls of radius e. Sevcik pro-
posed the consideration of the time series as a two-
dimensional object, laying on the plane defined by
time (z-axis) and the time series’ values (y-axis).
Therefore, the balls that are utilized for the exam-
ination of the curve coverage, are considered as
two-dimensional balls. With these facts under con-
sideration, the computation of Dy may be written
as [Raghavendra & Dutt, 2010]

log(L) — log 2
Dy =1 lim 08(F) ~log2.

= o (&) (7)

The method proposed by Sevcik utilizes the latter
expression of Dy to derive the counterpart compu-
tation for time series. Thereby, if a single dimen-
sional time series is considered, a normalization of
both the time series values (y;) and indexes (z;) is
considered, with y: = (yz - ymin)/(ymax - ymin) and
xf = (25 — Tmin)/(Tmax — Tmin) respectively, where
Ymins Ymax, Tmin and Tmax are the minimum and
maximum values and indexes respectively. By con-
sidering a time series with N observations, an N x N
grid is constructed on the normalized zy time series
plane, and the fractal dimension is approximated as
[Raghavendra & Dutt, 2010]

log(L)  log (2)
log 2V — 1)) ®)

D=1+

where L is the length of the normalized time series.

3. Automatic Composition of Tonal
Sequences with Specified
Characteristics

Automatic symbolic music composition encom-
passes a great variety of methodologies that produce
novel music content in the form of tones, onsets,
note durations and timbre among others. The spe-
cific subdomain that the paper at hand discusses
could be characterized as “supervised” algorithmic

composition, in a sense that the compositional algo-
rithm is “forged” to compose music which complies
with certain musical characteristics. Under this per-
spective, the composition process is integrated with
a supervised training process, in which the parame-
ters of the automatic music generation algorithm
are properly adjusted, to allow the composition
of music that is circumscribed within a musical
area of predefined characteristics. In the context of
the presented work, the algorithm that generates
notes comprises an iterative map among the ones
demonstrated in Table 1 and a typical iteration-to-
tones interpretation methodology that is described
in Sec. 3.3.

The tunable parameters of the automatic com-
position algorithm are the parameters of the maps,
within the ranges demonstrated in the third column
of Table 1. It has to be noticed that the initial con-
ditions of a map is also considered as a parameter
in the present work. Parameter values within the
selected ranges, allow the respective maps to expose
their dynamic potentialities, from fixed points and
periodic orbits to chaos. These parameters are prop-
erly adjusted so that the generated tones comply
with some musical criteria that are defined by a
set of music features. The adjustment process is
realized with the Differential Evolution (DE) algo-
rithm [Storn & Price, 1997; Price et al., 2005], which
evolves populations of parameter values towards
values that are better fitted to the problem at
hand, i.e. they allow the respective iterative sys-
tems to compose music that complies with the tar-
get music features. The target music features are
extracted from each piece in the set of available gen-
uine pieces. Under the guidance provided by a tar-
get genuine piece in the form of music features, each
map generates a new composition which is expected
to have similar features to the ones provided by
the target piece. The rhythmic and orchestration
part of music are not considered and therefore,
the notes produced by the dynamical systems are
“attached” to the respective rhythmic values of the
target pieces.

3.1. FEwolving dynamical systems
to composers

The appropriateness of a map’s parameters, con-
sidering the established evolutionary nomenclature,
is called “fitness” and it is a value that describes
the “distance” between the features of the target
and the artificial composition. A proper distance
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Table 1. The iterative maps used as tone generators, their parameters and the parameters’ considered ranges.
Logistic Tpt1 = 4ren (1 — zn) relo,1], z€[0,1]
. 1
21Ty, if x, € |0, 3
Tent Tyl = relo,1], z€[0,1]
1
2r(1 —xn), ifzn € {57 1}
. K . 2
Circle Tpt1 = | Tn +Q — o sin(2rzy) ) mod 1 (Q,K) €10,10)*, = € [0,1]
™
Hénon Tpi1 = o —z2 + Byn a€l0,2], pBel-1,1],
Yn+1 = In (zo,y0) € [-1, 1]2
2 2 3 31"
General Tntl = 00 +Q1Tn + Q2T + a3 + QaYn + As5Yn (@o,a1,...,011) € {*575} )
quadratic _ 2 2
Ynt+1 = @6 + aryn + agyn + Q9 + a10Tn + a11Ty (20, 90) € [~1,1)2
1
Tkeda Tpt1 = a+ B(zn cos(0) + yn sin(6)) d a€l0,10], Be€ {5, 1}, c€[2,5],
. 0=c— —5—
Yn+1 = ﬂ(xn Sln(@) — Yn COS(G))7 CC% + y% +1 5
d € [35,50], (zo,y0) € [—1,1]

measure should consider all features equally impor-
tant, to drive the evolution of new dynamical sys-
tem parameters towards ones that compose better
music, according to every feature impartially. Since
the range of the features is not known a priori, or
it could be any value in (—o0,0), a straightfor-
ward normalization of the feature values in [—1, 1]
is not possible. To this end, the mean relative dis-
tance, denoted dyrp measure could provide a good
impartial approximation of the feature differences,
since it offers an estimation about the percentage of
the difference between the features of the genuine
and the artificial pieces. Considering two vectors of
features, f; and f,, their mean relative distance is
computed as [Kaliakatsos-Papakostas et al., 2013]

£ ()]
) £a(i)})’

where k is the length of the feature vectors and
denotes the number of features, the index i refers
to the ith vector element, or the ith feature and
max(a,b) returns the maximum among the num-
bers a and b. A detailed description of the music
features that comprise the music vector is provided
in Sec. 3.2.

Each iterative map listed in Table 1 is employed
as a music composer that generates tonal sequences
with a methodology described in Sec. 3.3. The
characteristics of the music it composes rely on

dnMRD = k Z max {f )

its parameters’ values. Therefore, a method that
extensively searches for proper parameter values is
required, in order to explore the map’s composi-
tional potentialities comprehensively. As mentioned
earlier, this method is the DE algorithm. With this
method, a population of parameter values (called
individuals) is randomly initialized, and the sys-
tem is allowed to compose music with each one
of them. Afterwards, these parameters are altered
with the application of some evolutionary operators,
which create new individuals (i.e. sets of param-
eter values). If the new individual produces “bet-
ter music” than its ancestor, then it is selected to
belong to the new generation of individuals, else its
ancestor passes on to the new generation. This pro-
cedure continues iteratively, creating populations
of parameter values with better fitness, i.e. they
produce better music. For the presented results, a
population size of 50 individuals was utilized and
evolved for 50 generations. The range of the param-
eter values throughout all iterations, were forced to
remain within the limits demarcated in the third
column of Table 1 respectively for each map.

3.2. Tonal features in short music
segments

When considering automatic music composition
towards the direction provided by some music
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Table 2. The considered tonal features.

Name Acronym Description
Tonal range range Difference between maximum and minimum pitch values
Tonal gradient grad Gradient of the interpolating line through pitch values
Tonal jumps mean pdM Mean value of consecutive pitch value differences
Tonal jumps standard deviation pds Standard deviation of pitch value differences
Ascending profile asc Ratio of ascending intervals over the total number of intervals
Descending profile desc Ratio of descending intervals over the total number of intervals
Constant profile const Ratio of constant intervals over the total number of intervals

features, these features should encompass “fun-
damental” music attributes, which describe as
accurately as possible the desired music output.
Furthermore, features that describe musical charac-
teristics accurately should yield clearer comparison
results, allowing safer determination about which
map exhibits better compositional capabilities. The
features that have been selected for the reported
results are shown in Table 2. Since the purview of
this paper is the tonal musical domain (not rhythm
or orchestration), the features are focused on tonal
aspects, which concern statistics about the tran-
sition of notes. These features do not incorporate
statistics about the tonal constitution of pieces,
i.e. statistics that reflect the key of composition,
since such features would not contribute to the
assessment of the automatic composition system’s
adaptability.

To obtain an insight about the musical descrip-
tiveness of the seven aforementioned music fea-
tures, a two-sided Wilcoxon [Wilcoxon, 1945] rank
sum test is applied on the features extracted by
short segmentations of each piece for each com-
poser. Through this test, the statistical significance
of the difference in each feature’s distribution for
each composer is examined. Specifically, for each
pair of composers we employ the rank sum test to
each respective feature pair, to obtain the proba-
bility that these two features belong to continu-
ous distributions with equal medians, a fact that
would not make them descriptive. Formally, the null

Table 3. Statistical significance in the difference of each
feature’s distributions among the pieces of each composer.

Bach Mozart Beethoven Jazz
Bach — 1101101 1111111 1111111
Mozart — — 1101111 1111111
Beethoven — — — 1111111

hypothesis for each feature pair is that they are
independent samples from identical continuous dis-
tributions with equal medians. If the null hypothesis
is rejected at the 5% significance level for a pair of
composers and a pair of features, then these features
are indicated to encompass significant different sta-
tistical information about each composer.

The results of this test are demonstrated in
Table 3. Each cell in this table concerns the results
about each composer pair. The sequence of binary
digits within each cell denotes the rejection of the
null hypothesis with 1 and contrarily with 0, for
the respective feature. For example, for the Bach—
Mozart pair, the null hypothesis is rejected to all
but the third and sixth features. Therefore, each
quadruple of 1 and 0 digits denotes the signifi-
cance or not respectively, of distribution differences
between composer pairs for the respective feature.
For example, the sequence 1101111 for the Mozart—
Beethoven pair denotes that the distributions of all
features except the third are significantly different.
Since Table 3 exhibits a statistical significance in
the distributions of most pairs of respective fea-
tures for each composer, it is clearly indicated that
these features encompass viable musical informa-
tion. Therefore, within the extent of the presented
statistical analysis, the results that are reported in
Sec. 4 could be trusted as indicative of the compo-
sitional capabilities of each dynamical system.

3.3. Automatic tonal composition
methodology

Since the main subject of examination is the tonal
compositional potentialities of iterative dynami-
cal systems, the automatic composition process
is directed solely towards tonal composition. The
rhythmic elements are considered to be borrowed
by the target piece, thus creating a composition
with identical rhythm. The specific scope of the
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presented tonal composition methodology, assumes
the existence of a target genuine music piece which
provides the tonal compositional guidelines for the
generative system. It is important that these guide-
lines encompass the necessary amount of informa-
tion, which may be assumed by general admissions.
For instance, although it is a tempting conjecture,
one may hardly presume that a dynamical sys-
tem would form musical structures that resemble
human compositions in every hierarchical level, e.g.
key structure, chord progressions or note motifs.
The fact that musical knowledge is not inherent to
dynamical systems has been addressed by several
means, like the imposition of key constraints [Coca
et al., 2010; Kaliakatsos-Papakostas et al., 2012b]
(i.e. eligible notes on certain key) or tonal restric-
tions imposed by a target piece itself [Dabby, 1996].

A tone generation approach similar to the one
presented here has been utilized for the gener-
ation of tonal sequences, in the context of an
automatic intelligent music improviser [Kaliakatsos-
Papakostas et al, 2012a]. The compositional
methodology used in the current work is adjusted to
receive tonal guidelines from the target piece, while
the above cited system receives guidelines from a
human improviser. The target piece provides guide-
lines that encompass music knowledge at an ele-
mentary level, within short segments throughout its
duration. These guidelines incorporate tonal range,
chord information and pitch class profile (PCP)
complexity expressed by the Shannon information
entropy [Shannon, 2001] (SIE). These information
features characterize a list of allowed notes, which
are eligible to be “played” by the dynamical system
through a straightforward mapping procedure. An
overview of the system, as described in this para-
graph, is illustrated in Fig. 1, while a detailed anal-
ysis is provided in the next two paragraphs.

The target piece provides some intrinsic musical
guidelines to the dynamical system, which charac-
terize the target piece’s music content in short time
segments, through the formulation of a note list for
each segment. The note list comprises notes within
the range of each respective segment, which also
belong to certain pitch class values. Initially, the
target genuine piece is segmented in short intervals,
according to its tempo, and the chord of each seg-
ment is recognized with a typical template-based
technique [Oudre et al., 2010], considering several
chord templates with up to five voices. Since the
available pieces are in MIDI format, a segmentation

[P

MIDI target genuine piece with
N note events

run dynamical system for N
v iterations

segmentation

A\
for each segment

for each segment

map iterations to notes
based on note list

'

assign notes to the
genuine's onsets

identify main

chord
estimate PCP
SIE
construct note list

|

Fig. 1. Flow diagram of the automatic composition process.

in certain measure subdivisions is possible. To this
end, a segment length of two beats was considered
the most appropriate compromise between select-
ing a too small, or a too large segmentation length.
The main concern that the discussed methodology
faces is the detection of chords within each seg-
ment. Therefore, too small a segment may not pro-
vide a sufficient amount of notes for successful chord
recognition. Contrarily, larger segments would most
likely incorporate more than one chord, leading, in
the best case, to the disregard of all except one
chord in the segment.

At first, the note list of each segment includes
the notes that pertain in the recognized chord, but
additional notes may be required to capture the
tonal constitution of a segment. No matter what
segmentation length would be chosen, it would still
be possible to find a segment which incorporates
more than one chord, or a segment with no chord
(e.g. chromatic phrase). To this end, the supple-
mentary information provided by the SIE of the
PCP is also considered. In each segment, a value is
obtained from the SIE of the PCP, which indicates
the information complexity of tones in this segment.
If this complexity is “reachable” by utilizing only
notes of the recognized chord, then the notes that
comprise the chord are sufficient and no additional
notes are needed to form the final note list of the
segment. On the contrary, if the SIE threshold of
the recognized chord is exceeded, the most promi-
nent notes of the PCP are added incrementally to
the final note list, except from the ones that are
already added from the recognized chord, until the
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SIE threshold is covered. The final list of available
notes comprises notes within the range dictated by
the respective segment and belong to the recognized
chord, with possible additional notes imposed by
the SIE complexity threshold. After the note list
has been constructed, the iterations of the dynami-
cal system are normalized within [0, 1] and are then
linearly mapped to the indexes of each segment’s
note list. The tonal sequences that are produced,
are adhered to the rhythmic note events of the gen-
uine composition.

4. Results

The results focus on three inquiries. At first,
the dynamical properties of the genuine composi-
tions are assessed, providing information about the
attractor characteristics of each composer’s tonal
sequences. Secondly, results are reported on the
adaptivity of each dynamical system to the tonal
characteristics that are imposed by each composer.
This analysis incorporates a thorough examination
of the musical characteristics that each system is
able to reproduce. Finally, a comparative analysis
is performed on the dynamical characteristics of the
genuine and the artificial compositions.

4.1. Twime series analysis on the
genuine target compositions

This section presents the findings yielded by the
application of the methods presented in Sec. 2.
Specifically, the note sequence of each genuine
piece is considered to form a time series, by which
the information of the attractor reconstruction are
assessed, namely the time delay (7) and embedding
dimension (u), together with the Largest Lyapunov
Exponent (LLE) and the Fractal Dimension (FD).
This analysis is supplementary to the main perspec-
tive of the paper, which is the examination of the
compositional capabilities of several dynamical sys-
tems. Therefore, this analysis firstly aims to pro-
vide some descriptive statistical information about
the attractor characteristics for different composers
through the 7, u, LLE and FD values assessed by
every piece. Secondly, the LLE and FD values offer
the opportunity to perform a comparative analysis,
presented in Sec. 4.3, between the respective val-
ues extracted from the pieces that were artificially
produced by the dynamical systems.

The attractor characteristics are shown in the
box plots in Fig. 2. Although the values presented

therein constitute numerical approximations, it is
clearly observed that there are differences of these
characteristics between pairs of composers. To
examine which time series characteristics are signif-
icantly different between which pairs of composers,
we perform a two-sided Wilcoxon [Wilcoxon, 1945]
rank sum test, in a similar fashion as with the music
features in Sec. 3.2. For the currently examined
case, the null hypothesis is that the observations
deriving from a time series’ values from a composer
pair, are samples from identical continuous distribu-
tions with equal medians. The results for these tests
are demonstrated in Table 4, while it is reminded
that the examined pieces are all piano compositions
or piano transcriptions (in the case of the jazz stan-
dards). Therein, each four-tuple of digits denotes
whether the null hypothesis is rejected for the dis-
tributions of the respective time series values, for
the respective composer of each row and column.
Specifically, the digit 1 shows the rejection of the
null hypothesis on the significance level of 5% (thus
the results are statistically significant), while the
digit 0 the opposite. In specific, each quadruple of 1
and 0 digits denotes the rejection or not respec-
tively, of the null hypothesis for the distribution of
7, 1, LLE and FD respectively between composer
pairs. For example, the sequence 1101 for the Bach—
Mozart pair denotes that the differences in 7, p and
FD distributions are statistically significant, while
the LLE are not. The display order of each digit
corresponds to the distributions of 7, u, LLE and
FD values. It should be noted that for every pair
of composers, there is at least one pair of distribu-
tions that is significantly different, while the oppo-
site holds for the LLE distributions.

4.2. Adaptivity of each dynamical
system

The inquiries discussed in this paragraph incorpo-
rate the adaptivity of each dynamical system to
the specified composition tasks. The adaptivity is
measured by the fitness value of the best individ-
ual yielded by the evolutionary process as described
in Sec. 3.1. Table 5 presents the mean value and
the standard deviation of the fitness values pro-
vided by the best individual in each composition
task. It is reminded that each individual represents
a set of parameter values (including initial iteration)
for each map, as displayed in the third column of
Table 1, and that a composition task is the compo-
sition of novel tonal content that encompasses the
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tonal characteristic of a target piece. From Table 5
one may first notice that the worst performance for
all composers is provided by the tent map, while
the general quadratic map has produced individu-
als with the best mean fitness, for the compositions
of all composers except from Beethoven. The best
mean performance for Beethoven was achieved by
the circle map. Nevertheless, the mean performance
of the general quadratic, the circle and the Hénon

Table 4. Statistical significance of differences between
7, b, LLE and FD distributions among the pieces of each
composer.

Bach Mozart Beethoven Jazz
Bach — 1101 1100 0101
Mozart — — 0001 1101
Beethoven — — — 1101

of ; | ]

14r b
12r +

I
|

10} | §
l

6F . -
1 +

L1 |

Bach Mozart Beethoven Jazz
composer

(b)

Mozart Beethoven Jazz
composer

(d)

Bach

Estimated (a) 7, (b) u, (¢) LLE and (d) FD values for the tonal time series of each piece in the dataset.

maps among all composers are comparable. A more
thorough quantification of the significance of this
similarity is performed below.

Figure 3 depicts the distribution of the train-
ing errors among the examined music features
with error bars, for the best and worst perform-
ing dynamical systems. This figure signifies that
the main differences of performance in these sys-
tems lie on the first and the last three features,
namely the range and percentages of ascending,
descending and constant intervals. An additional
fact that should be noticed is the arithmetic value
of the mean fitness errors. For almost any mea-
surement this value lies between 0.2 and 0.3, while
even the best mean value is above 0.2. By consider-
ing the fitness measurement method, the mean rel-
ative distance (MRD) as defined in Sec. 3.1, one
may assume that the best artificial compositions
are expected to be 20% different than the original
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Table 5.

Mean and standard deviation (in parentheses) of the best individual’s fitness values for all composers

and maps. The best mean fitness value for each composer is demonstrated in boldface typesetting.

Logistic Tent Circle Hénon Gen. Quad. Tkeda
Bach 0.237 (0.017) 0.268 (0.017) 0.213 (0.023) 0.217 (0.017) 0.212 (0.021) 0.229 (0.020)
Mozart 0.279 (0.021) 0.306 (0.015) 0.257 (0.022) 0.260 (0.024) 0.254 (0.024) 0.274 (0.023)
Beethoven 0.261 (0.021) 0.277 (0.020) 0.255 (0.016) 0.256 (0.018) 0.257 (0.022) 0.268 (0.018)
Jazz 0.276 (0.015) 0.295 (0.015) 0.264 (0.020) 0.263 (0.016) 0.258 (0.016) 0.271 (0.013)

ones, if such a lax quantitative conclusion may be
reached. When consulting the findings in Fig. 3,
however, it is indicated that there is a malappor-
tionment of the errors among different features.
Specifically, the grad feature, which is the gradient
of the line that interpolates the notes in a segment,
presents errors around 100%.

This big difference in the gradients may be
explained by consulting Fig. 4, which illustrates
the mean and standard deviation of the artificial
pieces’ tonal features. The values of the gradients
are exhibited to be small in magnitude, a fact that
also holds for the respective feature in the genuine
compositions. Therefore, an endogenous imbalance
of the MRD is exposed when considering small mag-
nitudes. For example, if the target gradient in a seg-
ment is 0.001 and the dynamical system generates
music that presents a gradient of 0.02 in the respec-
tive segment, then the MRD value is 0.95, denot-
ing 95% error. This measurement is in contradiction
with the intuitive approach that both gradients are
small in magnitude. The errors in the rest of the
features remain in levels compared with the over-
all fitness (around 0.2 or 20%), with an exception
in the range feature where better performance was
reached for both the best and the worst performing
maps, although their difference is noticeable. Better

performance for this feature is expected, since the
range is considered in the construction of the note
list, as discussed in Sec. 3.3. Therefore, accurate
measurements for this feature could be assessed if
the iterations of the dynamical systems approached
their entire range in every segment.

Figure 4 also demonstrates that the worst
performing map generates tones which efface the
characteristic tonal marks of each composer, as
imprinted in the collected features. Contrarily, the
best performing map preserves, at some extent, the
uniqueness of features for each composer. There-
fore, the implications of fitness difference are also
indicated to entail a “homogenization” in the qual-
itative and discriminative characteristics of the gen-
erated music. This raises a question of which map
captures each music characteristic, expressed by the
examined features, more successfully. This inquiry
is scrutinized in Table 6 with a comparative analy-
sis between all pairs of maps, for each feature and
for every composer. Therein, the dynamical system
of each row is compared to the system of each col-
umn according to their performance in each feature,
for each composer. If the map of a row performs
significantly better than the map of a column for
a specific feature and composer, then a “+” sign
appears in the respective row, column, composer

T

444

> > >

T
Bach gen. quad
Mozart gen. quad
Beethoven gen. quad
Jazz gen. quad

Bach tent

Mozart tent
Beethoven tent —
Jazz tent

error

o o o o

I

IF #d g B

[ N o S} [ o © [ 8] = o
T

range grad pdM

Fig. 3.

pds asc desc const

feature

The errors of each feature for the best (general quadratic) and the worst (tent) overall fitted maps.

1350181-12



Chaos and Music: From Time Series Analysis to Evolutionary Composition

0.7 o Bach

Mozart
o Beethoven

0.5 Jazz |

norm. value

I
range grad pdM pds asc desc const

norm. value

o o o
N w I

T T T

f——e—

—e—
p—a—
F—e—

pP—a—

1 1

0.2: §§§ §%% :
feature
(b)
0.8 \
i i ]
o 0-5F )
o 0.ap )
¢ ol f i . ?
0';: ﬁ% %H :
-0.1f b
-0.2 ‘ : : : ; ‘ ;

range grad pdM pds asc desc const
feature

(©)

Fig. 4. Error bars of normalized feature distributions for each composer, (a) for genuine composition, (b) for artificial ones
produced by the general quadratic map and (c) by the tent map.

and feature order. The results for each composer a “—” sign, while a “=" sign denotes that there is
appear in each line in the respective cell (with the  no significant difference.
order being (Bach, Mozart, Beethoven and Jazz)), The significance in error differences is measured

while the features are presented from left to right  with the two-sided Wilcoxon rank sum test, as pre-
in the order appeared in Table 2. If the row map  viously, with the null hypothesis being that the
is outperformed significantly, this is denoted with  errors produced by a map for every composer and

1350181-13



M. A. Kaliakatsos-Papakostas et al.

Table 6.

Statistical significance of the compositional superiority of each map according to each feature and composer. Each

cell in the table incorporates the comparison of the maps in the respective row and column. A significant superiority of

the row map per feature and composer is denoted by the “+” sign, the opposite with the

“_»

sign, while no significant

difference with the “=" symbol. Each row of symbols in a cell represents the pieces of each composer.
Logistic Tent Circle Hénon Gen. Quad. Tkeda
Logistic — +—-=++++ —=—+—-——= —=4+=—-—- -—=+-—=—- —=++-—=
TR = —— = == —— = S T — =t —— =
+=—-++++ —=—+=—-= —===—-—= —-—t++=——= -—++=-——=
+-——=4++- ——— == -——t+-——- —=———-—= -——t+—-——-
Tent — — == —tt————  —t == —t ==
-—=+-=—- -—++-——- -—++-——- -—++-——-
—=ft-—— —=f=——— 4t ———— —=f————
== —t = —ft————  —tt————
Circle — — — —t === - ==- + + 4 ====
—=4—4+—- —=F-——— f=t=+4+=
—=+—==- —=+—-—==- +=+-—=
e == — = = — - — =
Hénon —_— —_— —_— —_— 4+ = — ==== + =4+ ==+
t=——-——= f=t+--=
4 =f === 4= = —
+=—=—-——= +=+=—-=+
Gen. Quad. — — — — — 4+ =44+ ==
+=++++=
+ =4 ===
4+ =4 ====

each feature belong to identical continuous distri-
butions with equal medians. The rejection of the
null hypothesis in the 5% significance level for each
respective pair of error distributions is denoted with
a “4” or “—” and the contrary with the “=" sym-
bol. The findings in Table 2 demonstrate that there
is an overall feature superiority for the better per-
forming maps, with some exceptions mainly encoun-
tered for the second and third features (the tonal
range and mean value of consecutive pitch differ-
ences). This fact probably signifies that the dynam-
ical systems with the “weakest” compositional skills
were the ones that could not produce descending,
ascending and constant patterns that resembled the
genuine compositions. Therefore, the evolutionary
process endued these maps with the comparative
advantage to compose music with more accurate
overall tonal gradient and between-pitch distances.

4.3. Dynamical properties of the
genuine and the artificial
compositions

As mentioned in Sec. 2, a comparison of the dynam-
ical properties of the artificial compositions is also

examined. The dynamical characteristics incorpo-
rate the LLE and the FD. The phase space recon-
struction is not necessary since its properties are
already known through the analytic form of the
dynamical systems. Furthermore, since the dynam-
ical systems are known, different approaches could
be followed for the computation of the LLE and FD
(probably including analytic computation where
permitted). Nonetheless, since a comparative analy-
sis is pursued, the same numerical approaches were
considered as for the genuine compositions. There-
fore, the tonal parts of the artificial compositions
were considered themselves as time series, with their
attractor characteristics (time delay and embed-
ding dimension) being provided by the respective
dynamical system that produced them. Through
these time series, the LLE and FD were extracted
and the results, together with the fitness values, are
illustrated with box plots in Fig. 5. These results are
grouped in two manners, according to composer and
map.
The finding in Figs. 5(c) and 5(e) demonstrate
the distributions of the LLE and FD for all the arti-
ficial compositions of all maps. In comparison to the
respective distributions in Figs. 2(c) and 2(d), the

1350181-14



Chaos and Music: From Time Series Analysis to Evolutionary Composition

0.34 - ] 0.34f -
| P |
0.32 . ! . T 0.32f | —
+ [
| + | ! | - |
0.3 _ ! ‘ ! 1 0.3r | . — | ;
! | | | !
0.28 ! } | 1 0.28f | | l :
o) | « ! |
?0.26 | ‘ 1 @0.26f ‘
c ! ! ‘ | g |
H0.24 ‘ ! | 1 H0.24} L
H | | | H : :
0.22 } — —= 1 0.22F ‘ ‘ ‘ |
. T -+ | | l l
0.2 | 1 0.2 | | | |
| I | : | .
0.18 } 1 0.18f w ‘ ;
-1 -1
| -1
0.16 —— 1 0.16r +
Bach Mozart Beethoven Jazz logistic tent circle Henon quad. Ikeda
composer map
(a) (b)
1 8F N ‘ ‘ ‘ : 1 g ‘ N ‘ ‘ —
1.6r . 1 1.6f o |
N |
1.4F — — 1 1.4t | .
| | - |
1.2 | | 1 1 1.2f ! 1
> | | | > |
I
8 1F ‘ ‘ | 1 g 1t | |
4 | | 1 | |
g 0.8f ; | — | 1 g 0.8} w —
S — 1 1 — Ro.ef 1 = L
+ |
0.4f . 0.4} 4 i 1
S
0.2f . 0.2f ! i 1
| |
of == = — of - = = i
Bach Mozart Beethoven Jazz logistic tent circle Henon quad. Ikeda
composer map
(c) (d)
1.76F _ - A 1.76f n — o
| : | : : —_— : 1
| |
1.74 l ! | | ] 1 74 ! | | ‘
. ‘ : | : _ ; ‘ E
E1.72 ] B2t | !
T T |
. o ‘ ‘ i
8 1.7 1 S 170 ! e ‘ ’
g : ‘ ‘ 1 ‘
M : ! 1 T ~ - L |
“1.68 | ! | ! 1 H1.68r i I
| : | : L ] !
| | | | | 4 *
1.66 i e | A 1.66f | N
o o
1.64 ‘ ‘ ‘ ‘ ] l.64t ‘ ‘ ‘ ‘ ‘
Bach Mozart Beethoven Jazz logistic tent circle Henon quad. Ikeda
composer map
(e) ()
Fig. 5. Fitness, LLE and FD per composer and per map for the artificial compositions. (a) Fitness per composer, (b) fitness

per map, (c) Lyapunov per composer, (d) Lyapunov per map, (e) FD per composer and (f) FD per map.

1350181-15




M. A. Kaliakatsos-Papakostas et al.

Table 7. Mean and standard deviation (in parentheses) of the best individual’'s largest Lyapunov exponent values for
all composers and maps. The values that correspond to best mean fitness value in Table 5 are demonstrated in boldface
typesetting.
Genuine Logistic Tent Circle Hénon Gen. Quad. Ikeda

Bach 0.043 (0.105) 0.373 (0.211) 0.627 (0.016) 0.374 (0.457) 0.076 (0.096) 0.070 (0.107) 0.287 (0.169)
Mozart 0.021 (0.031) 0.305 (0.189) 0.629 (0.021) 0.370 (0.496) 0.082 (0.105) 0.029 (0.060) 0.327 (0.197)
Beethoven 0.053 (0.163) 0.345 (0.214) 0.626 (0.015) 0.250 (0.296) 0.089 (0.147) 0.074 (0.109) 0.269 (0.231)
Jazz 0.146 (0.302) 0.311 (0.191) 0.624 (0.019) 0.533 (0.537) 0.057 (0.091) 0.022 (0.031) 0.364 (0.202)

Table 8.

Mean and standard deviation (in parentheses) of the best individual’s fractal dimension values for all composers

and maps. The values that correspond to best mean fitness value in Table 5 are demonstrated in boldface typesetting.

Genuine Logistic Tent Circle Hénon Gen. Quad. Ikeda
Bach 1.637 (0.027) 1.721 (0.013) 1.685 (0.004) 1.701 (0.021) 1.730 (0.017) 1.714 (0.022) 1.732 (0.008)
Mozart 1.657 (0.024) 1.721 (0.015) 1.684 (0.005) 1.692 (0.024) 1.724 (0.019) 1.706 (0.019) 1.730 (0.013)
Beethoven 1.633 (0.041) 1.724 (0.016) 1.685 (0.004) 1.683 (0.024) 1.712 (0.020) 1.709 (0.023) 1.722 (0.023)
Jazz 1.583 (0.031) 1.723 (0.015) 1.685 (0.005) 1.698 (0.021) 1.719 (0.018) 1.699 (0.019) 1.724 (0.024)

LLE and FD distributions for the artificial piece do
not differentiate for different composers. Consulting
the distributions of compositions for all composers
per map, in Figs. 5(d) and 5(f), one may notice
that the LLE and FD distributions for the artifi-
cial pieces are vastly different for each map. Addi-
tionally, the fitness distributions per map, as shown
in Fig. 5(b), seem to follow the behavior of the
LLE distributions per map illustrated in Fig. 5(d).
This observation is evaluated by the strong corre-
lation (0.83) of the fitness and LLE values of the
best individuals. This fact indicates that better fit-
ness is expected to emerge from maps with positive
LLE value closer to zero. Therefore, someone could
arguably notice that there might be a threshold of
“musical chaos” above but near zero LLE values.
Such an argument however, needs more extensive
scrutinization.

The mean values and standard deviations of the
LLE and FD distributions for genuine and artificial
compositions for each composer and map are shown
in Tables 7 and 8 respectively. The LLEs of the gen-
uine piece are exhibited to be closer to zero than any
other LLE value of the artificial pieces in Table 7.
The LLEs that correspond to the best mean fit-
ness, as demonstrated in Table 5, are the smallest
among all other artificial pieces, except from the
piece of Beethoven. Similarly, the FD values of the
genuine pieces is considerably lower than the FDs
of the artificially composed pieces. In this case, the
artificial pieces with the best fitness per composer

are not the ones with the smallest FD value. It is
therefore indicated, that there is no immediate con-
nection between the FD value, at least as expressed
by the computation of the time series algorithm,
and the compositional capabilities of the dynamical
systems.

5. Synopsis and Concluding
Remarks

In this paper we presented a thorough study on the
tonal composition potentiality of several discrete
dynamical systems. Several genuine music master-
pieces composed by J. S. Bach, Mozart, Beethoven
and various jazz musicians, were utilized as music
reference, providing compositional “guidelines” to
the dynamical systems. Through an evolutionary
approach, the parameters of the discussed systems
were optimized so that the tonal sequences that
each system composes, resemble the ones of the gen-
uine pieces, according to some tonal features which
encompass essential musical information. Firstly, a
time series analysis was performed on the tonal
sequences provided by the genuine composition that
allowed an approximate phase space reconstruc-
tion of their attractor. Consequently, their Largest
Lyapunov Exponent (LLE) and Fractal Dimen-
sion (FD) could be assessed, allowing a compar-
ative analysis of their dynamical characteristics
and the respective characteristics of the artificial
pieces. The resulting artificial compositions were
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scrutinized in several aspects, which incorporated
their tonal capabilities and dynamical characteris-
tics for each composer and according to each tonal
feature. Thereby, a thorough survey on the tonal
compositional capabilities of each map was allowed,
together with several comparative studies that pro-
vide insights about the qualitative music character-
istics that may be pursued by utilizing dynamical
systems as automatic music composers.

Through the time series analysis performed on
the genuine musical masterpieces, an interesting
finding is that the attractor characteristics of each
composer differ significantly. The dynamical char-
acteristics of these attractors however, could not
be accurately reproduced by the examined dynam-
ical systems. This is probably due to the fact that
the examined dynamical systems are quite “simple”
in terms of their dimensionality and time delay, as
demonstrated by the respective phase space recon-
struction values. However, some important insights
were provided about the connection of qualita-
tive music features and dynamical characteristics
through the LLE value. Specifically, it was indi-
cated that dynamical systems with smaller posi-
tive LLEs produced compositions which were more
similar to the genuine pieces. Additionally, it may
be assumed that iterative maps which performed
better were the ones that could reproduce tonal
motif-like structure, which is expressed through the
features that incorporated percentages of ascend-
ing, descending or constant pitch intervals within
short segments of music. Contrarily, the worst per-
forming maps, were better at capturing less refined
musical features, like absolute pitch differences and
pitch-change gradient.

The fact that the reconstructed phase space
of the original compositions incorporated a great
number of dimensions, indicates that the appro-
priate dynamical systems should probably also
incorporate more dimensions. Thereby, the task at
hand could be approached by a similar evolution-
ary strategy, with iterative dynamical systems of
higher dimensionality. The equations that consti-
tute these systems however could incorporate a
large number of parameters. For example, the gen-
eral quadratic map, which constitutes a general
form of a two-dimensional quadratic system incor-
porates 12 parameters, considering also the initial
iterations. The n-dimensional version of the general
quadratic map, for example, incorporates 2n + 2n?
parameters and therefore their number becomes

overwhelming even for a relatively small number of
dimensions.

Future work could also include a similar time
series analysis on pieces with more simple tonal
structure, like dances or even contemporary pop-
ular songs. Thereby, the connections between the
perceived tonal complexity and the dynamical char-
acteristics, e.g. the fractal dimension, could be
directly examined. Finally, future work should also
incorporate the examination of the compositional
capabilities of several dynamical systems under
“special” parameter value combinations, which pro-
voke “special” dynamical behavior. For instance,
the compositional characteristics of the logistic
function could be examined when its parameter is
set at the Feigenbaum point, provoking “weakly
chaotic” dynamics, through a similar comparison
with genuine human compositions.
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