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Abstract

The border-collision normal form is a piecewise-linear continuous map on R
N that de-

scribes dynamics near border-collision bifurcations of nonsmooth maps. This paper studies

a codimension-three scenario at which the border-collision normal form with N = 2 ex-

hibits infinitely many attracting periodic solutions. In this scenario there is a saddle-type

periodic solution with branches of stable and unstable manifolds that are coincident, and

an infinite sequence of attracting periodic solutions that converges to an orbit homoclinic

to the saddle-type solution. Several important features of the scenario are shown to be

universal, and three examples are given. For one of these examples infinite coexistence is

proved directly by explicitly computing periodic solutions in the infinite sequence.

1 Introduction

For a map that is smooth except on codimension-one switching manifolds where it is only contin-
uous, a border-collision bifurcation occurs when a fixed point of the map collides with a switch-
ing manifold under parameter change, and local to the bifurcation the map is asymptotically
piecewise-linear [1, 2, 3]. Except in special cases, dynamical behavior near a border-collision bi-
furcation is completely determined by the linear components. Upon omitting higher order terms
and introducing convenient local coordinates, in two dimensions the map may be written as

[

xi+1

yi+1

]

=

{

fL(xi, yi) , xi ≤ 0
fR(xi, yi) , xi ≥ 0

,

fJ(x, y) = AJ

[

x

y

]

+

[

1
0

]

µ , AJ =

[

τJ 1
−δJ 0

]

, J ∈ {L,R} .

(1.1)

The two-dimensional border-collision normal form (1.1) is piecewise-linear and continuous on the
single switching manifold, x = 0. The four parameters, τL, δL, τR and δR, may take any value in

1

http://arxiv.org/abs/1312.2651v1


R. The remaining parameter µ controls the border-collision bifurcation. The bifurcation occurs
at µ = 0, and in the context of border-collision µ is presumed to be small. However, for µ 6= 0 the
structure of the dynamics of (1.1) is independent of the magnitude of µ because the half-maps
fL and fR are affine. All bounded invariant sets of (1.1) collapse to the origin as µ → 0. Hence
for the purposes of determining the behavior of (1.1) it suffices to assume µ ∈ {−1, 0, 1}. In N
dimensions, the matrices in the border-collision normal form are N ×N companion matrices and
there are a total of 2N parameters in addition to µ [4].

The construction and basic properties of (1.1) were first described by Nusse and Yorke [5].
The border-collision normal form also arises as a Poincaré map for corner-collisions in Filippov
systems [6], as well as grazing-sliding bifurcations in these systems, albeit with the restriction that
one of the two matrices in the map has a zero eigenvalue [7, 8, 9]. Recently it has been shown that
dynamics near a grazing-sliding bifurcation in an (N + 2)-dimensional system may be partially
captured by the N -dimensional border-collision normal form because sliding motion relates to a
loss of dimension [10]. Various piecewise-linear continuous maps (that may be transformed to
the normal form) have been used as mathematical models, particularly in social sciences [11].

Since (1.1) is piecewise-linear, it is extremely nonlinear yet relatively amenable to an exact
analysis. Glendinning and Wong showed that (1.1) may exhibit an attractor that fills a two-
dimensional region of phase space by constructing Markov partitions to calculate this region
exactly [12]. Arnold tongues of (1.1) typically display a chain structure with points of zero width
at which there exists an invariant polygon [13, 14, 15]. The map (1.1) may have a unique fixed
point for all µ that is asymptotically stable for all µ 6= 0, yet unstable when µ = 0 [16, 17].
Additional dynamics is possible when (1.1) is non-invertible [18], such as snap-back repellers
which imply chaotic dynamics and the coexistence of infinitely many unstable periodic solutions
[19].

Several authors have described coexisting attractors for (1.1). Since bounded attractors con-
verge to the origin as µ → 0, coexistence produces an unavoidable uncertainty near the border-
collision bifurcation in the presence of small noise [20]. The coexistence of six attracting periodic
solutions for (1.1) was noted briefly in [21]. The purpose of this paper is to show that (1.1) may
exhibit infinitely many attracting periodic solutions, and to describe conditions on the parameter
values that indicate when this phenomenon may occur.

To study orbits of (1.1) it is helpful to consider symbol sequences, S : Z → {L,R}. We can
associate such a symbol sequence to any orbit of (1.1) by setting Si = L if xi < 0 and Si = R

if xi > 0, for all i ∈ Z. (If xi = 0, it is convenient to place no restriction on Si because (1.1) is
a continuous map.) Conversely, given a symbol sequence S and an initial point (x0, y0), we can
define a forward orbit that follows S by setting (xi+1, yi+1) = fSi(xi, yi). In general, iterating the
two half-maps of (1.1) in this fashion produces a different orbit than iterations of (1.1). However,
if the resulting orbit is admissible, that is xi ≤ 0 whenever Si = L, and xi ≥ 0 whenever Si = R,
then the orbit is identical to that produced by iterating (1.1). An orbit that is not admissible is
said to be virtual. If S is periodic, a periodic solution that follows S is referred to as an S-cycle.

As an example, (1.1) has infinitely many attracting periodic solutions when µ = 1 and the
remaining parameter values are given by

τL = −
55

117
, δL =

4

9
, τR = −

5

2
, δR =

3

2
. (1.2)

Fig. 1 shows a phase portrait. Attracting periodic solutions are S[k]-cycles, where k ∈ Z
+ (the
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Figure 1: A phase portrait of the two-dimensional border-collision normal form (1.1) with µ = 1
and (1.2), at which there are infinitely many attractors. There is a RLR-cycle (period-3 solution
with symbol sequence RLR) of saddle-type. Branches of the stable and unstable manifolds of
the RLR-cycle (with stability indicated by arrows) are coincident and together with the RLR-
cycle form an invariant quadrilateral. For each k ∈ Z

+, there is an attracting S[k]-cycle, where
S[k] = (RLR)kLR, (1.3), and a saddle-type S ′[k]-cycle, where S ′[k] = (RLR)kRR, (1.4). The
S[k] and S ′[k]-cycles are indicated by small circles and triangles, respectively, up to k = 8. So
that these periodic solutions may be distinguished clearly, for each k, points of the S[k] and
S ′[k]-cycles are connected with dotted line segments. Take care to note that these line segments
are not invariants and do not relate to dynamics of the map. Also shown is the fixed point of
fR,

(

1
5
, −3
10

)

, which lies in the right half-plane and thus is a fixed point of (1.1).

set of positive integers) and
S[k] = (RLR)kLR , (1.3)

is a periodic symbol sequence of period 3k + 2. This example exhibits several features that
in later sections are shown to be universal. There is an RLR-cycle of saddle-type; specifically
its stability multipliers are 6

13
and 13

6
. As k → ∞, the S[k]-cycles approach an orbit that is

homoclinic to the RLR-cycle. In comparison, near homoclinic and heteroclinic orbits of ODEs
there may be infinitely many attractors [22, 23], and for area-preserving maps there may be
infinitely many elliptic periodic solutions [24]. However, in Fig. 1 the intersection of the stable and
unstable manifolds of the RLR-cycle is non-transversal. The branches of the stable and unstable
manifolds that intersect are coincident and there is no topological horseshoe. Furthermore, for
every k ∈ Z

+, there exist saddle-type S ′[k]-cycles, where

S ′[k] = (RLR)kRR . (1.4)

Each S ′[k] differs from S[k] by a single symbol. The stable manifolds of the S ′[k]-cycles appear
to form the boundaries of the basins of attraction of the S[k]-cycles that are shown in Fig. 2.
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Figure 2: Basins of attraction of the S[k]-cycles of Fig. 1 up to k = 8 computed numerically
by iterating (1.1) from a 2048× 1536 grid of initial points. The color of each of the eight basins
matches the color of the S[k]-cycle shown in Fig. 1, with red for k = 1 and dark green for k = 8.
Initial points are shaded white if the forward orbit appeared to diverge, and shaded black if the
forward orbit appeared to neither converge to an S[k]-cycle with k ≤ 8, or diverge. For clarity,
the S ′[k]-cycles are not shown.

The remainder of this paper is organized as follows. Conditions for the existence, admissibility
and stability of periodic solutions to (1.1) are given in §2. Periodic solutions may be found by
solving linear matrix equations because any composition of fL and fR is affine. Sequences of
symbol sequences of the form S[k] = X kY are considered in §3. The main result of this section
is Theorem 3.1 that gives consequences of the existence of infinitely many stable S[k]-cycles
when the X -cycle is of saddle-type (as in Fig. 1 for which X = RLR). The theorem reveals
three necessary conditions on the parameter values, from which we find that this scenario is
codimension-three, and that the S[k]-cycles limit to a homoclinic orbit as k → ∞. In §4,
additional assumptions are placed on X and Y leading to further consequences, such as the
coincidence of branches of the stable and unstable manifolds of the X -cycle. In §5, the results
are used to obtain parameter values of infinite coexistence for three different choices of X and Y .
For one of these choices, corresponding to Figs. 1 and 2, the existence of attracting S[k]-cycles
and saddle-type S ′[k]-cycles for all k ∈ Z

+ is demonstrated formally in §6. Conclusions and
future directions are discussed in §7.

2 Periodic solutions

Calculations of periodic solutions of N -dimensional piecewise-linear continuous maps are given
in [15, 21, 25]. In this section these calculations are summarized for the two-dimensional normal
form (1.1).
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Let S : Z → {L,R} be a periodic symbol sequence with minimal period n ≥ 1 (that is,
Si+n = Si, for all i ∈ Z, and S does not exhibit this property for a smaller value of n). Then the
word S0 · · · Sn−1 is primitive, that is, cannot be written as a power (e.g. RLR is primitive, but
RLRL = (RL)2 is not). Conversely, given a primitive word of length n, the sequence defined
by the infinite repetition of this word has minimal period n. For this reason, throughout this
paper whenever we write a periodic symbol sequence, as in (1.3) and (1.4), we list the symbols
S0 · · · Sn−1.

Let
fS = fSn−1 ◦ · · · ◦ fS0 , (2.5)

denote the nth iterate of (1.1) following S. A straight-forward expansion leads to

fS(x, y) =MS

[

x

y

]

+ PS

[

1
0

]

µ , (2.6)

where

MS = ASn−1 · · ·AS0 , PS = I + ASn−1 + ASn−1ASn−2 + · · ·+ ASn−1 · · ·AS1 . (2.7)

Let S(i) denote the ith left shift permutation of S (e.g. if S = LLLRR, then S(2) = LRRLL). The

ith point of an S-cycle, denoted
(

xSi , y
S
i

)

, is a fixed point of fS(i)
. When I−MS(i) is non-singular,

this point is unique. Since the spectrum of I −MS(i) is independent of i, we have the following
result.

Lemma 2.1 (Existence). The S-cycle is unique if and only if det (I −MS) 6= 0. Moreover, if
det (I −MS) 6= 0, then for each i,

[

xSi
ySi

]

= (I −MS(i))
−1
PS(i)

[

1
0

]

µ . (2.8)

An S-cycle is admissible if every point lies on the “correct” side of x = 0, or on x = 0. The
following formula results from manipulating (2.8) (see [21, 25]):

xSi =
det (PS(i))µ

det(I −MS)
.

Admissibility is therefore determined by the signs of det (PS(i)), as described in the following
lemma.

Lemma 2.2 (Admissibility). Suppose µ 6= 0 and det(I − MS) 6= 0. Then the S-cycle is an
admissible periodic solution of (1.1) if and only if, whenever det (PS(i)) 6= 0,

if Si = L, then sgn (det (PS(i))) = −sgn (µ det (I −MS)) ,

and if Si = R, then sgn (det (PS(i))) = sgn (µ det (I −MS)) .
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If no points of an admissible S-cycle lie on the switching manifold then there exists a neigh-
borhood of each point

(

xSi , y
S
i

)

for which the nth iterate of (1.1) is given by fS(i)
. In this case

the S-cycle is asymptotically stable if and only if both eigenvalues of MS (these are the stability
multipliers of the S-cycle) lie inside the unit circle. For two-dimensional maps it is well-known
that stability relates to a particular triangle in the space of coordinates trace (MS) and det (MS)
[26, 27, 28], and we have the following result.

Lemma 2.3 (Stability). Suppose µ 6= 0, det (I −MS) 6= 0, det (PS(i)) 6= 0 for all i, and the
S-cycle is admissible. Then the S-cycle is an asymptotically stable periodic solution of (1.1) if
and only if the following three conditions are satisfied

det(MS)− trace(MS) + 1 > 0 , (2.9)

det(MS) + trace(MS) + 1 > 0 , (2.10)

det(MS)− 1 < 0 . (2.11)

If there is equality in at least one of (2.9)-(2.11) but the conditions are satisfied otherwise,
then the S-cycle is stable but not asymptotically stable. Equality in (2.9)-(2.11) corresponds to,
in order, an eigenvalue 1, an eigenvalue −1, and a complex pair of eigenvalues on the unit circle
when |trace(MS)| < 2. Note that det (I −MS) ≡ det(MS)−trace(MS)+1, hence the assumption
det (I −MS) 6= 0 eliminates the possibility of equality in (2.9).

3 Necessary conditions for infinite coexistence

In this section we consider sequences of symbol sequences of the form S[k] = X kY and obtain
conditions on the parameter values of (1.1) that are necessary in order for infinitely many S[k]-
cycles to be admissible and stable. The main result is Theorem 3.1. First some additional
notation is introduced.

Suppose that for a given periodic symbol sequence X , the matrix MX has distinct real eigen-
values λ1 and λ2, neither of which are equal to 1. In this case det (I −MX ) 6= 0, so by Lemma
2.1 the X -cycle is unique. We write the X -cycle as

(

xXi , y
X
i

)

, for i = 0, . . . , nX − 1, where nX

denotes the minimal period of X . From (2.8), with i = 0
[

xX0
yX0

]

= (I −MX )
−1
PX

[

1
0

]

µ . (3.12)

Let ζ1 and ζ2 be eigenvectors ofMX , corresponding to λ1 and λ2 respectively, and let Q =
[

ζ1 ζ2
]

.
We then consider the change of coordinates

[

u

v

]

= Q−1

([

x

y

]

−

[

xX0
yX0

])

, (3.13)

and, for any S, let gS denote fS in (u, v)-coordinates. The coordinates (3.13) are defined such
that gX is linear and completely decoupled, specifically

gX (w) =

[

λ1 0
0 λ2

]

w , (3.14)

where we let w = (u, v).
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Theorem 3.1. Let S[k] = X kY, where X is primitive and X0 6= Y0. Let τL, δL, τR, δR ∈ R and
µ 6= 0. Suppose there exist infinitely many values of k ≥ 1 for which the map (1.1) exhibits a
unique, admissible, stable S[k]-cycle that has no points on the switching manifold. Suppose λ1
and λ2 are eigenvalues of MX , where 0 ≤ λ1 < 1 < λ2, and that the v-axis (as defined by (3.13))
is not parallel to the switching manifold (x = 0). Then,

i) gY maps the v-axis to the u-axis;

ii) λ1 6= 0 and λ2 =
1
λ1
;

iii) the X -cycle is admissible and S[k]-cycles limit to an orbit that is homoclinic to the X -cycle
as k → ∞.

A proof of Theorem 3.1 is given after some remarks. First notice that the scenario depicted
in Fig. 1 conforms to the assumptions of Theorem 3.1. Here X = RLR, which is primitive, and
Y = LR, which begins with a different symbol than X . The (u, v)-coordinates are centered at
(

xRLR, yRLR
)

– the right-most point of the RLR-cycle. Locally, the u and v-axes are, respectively,
the stable and unstable manifolds of this point, and it is straight-forward to verify directly that
parts (i)-(iii) of Theorem 3.1 are satisfied for this example.

The form S[k] = X kY , with the assumptions of Theorem 3.1, is highly general. Given
S[k] = X kY with X not primitive, we may redefine X so that it is primitive by introducing a
higher power of k. Also if X0 = Y0, or S[k] involves symbols preceding X k, as long as Y is not
a power of X we may apply a shift permutation and redefine X and Y so that S[k] takes the
form X kY with X0 6= Y0. Also, the assumption that S[k]-cycles have no points on the switching
manifold is made in part for simplicity – so that their stability is determined purely by the
eigenvalues of MS[k] as opposed to more sophisticated methods [29] – and in part because the
presence of points on the switching manifold represents an additional degeneracy.

The restrictions on the eigenvalues of MX are motivated by observations of infinitely many
stable or asymptotically stable periodic solutions in smooth maps occurring when there is a
homoclinic or heteroclinic connection (which requires the existence of an invariant of saddle-
type). It is not clear if infinite coexistence is possible when MX has a negative eigenvalue,
because in this instance both branches of the corresponding invariant manifold are involved.

In (u, v)-coordinates, gY is an affine map; let us write it as

gY(w) =

[

γ11 γ12
γ21 γ22

]

w +

[

σ1
σ2

]

, (3.15)

for some constants γij, σ1 and σ2. Then part (i) of Theorem 3.1 is equivalent to the statement,
γ22 = σ2 = 0. Assuming that the three requirements λ2 =

1
λ1

(part (ii) of the theorem), γ22 = 0
and σ2 = 0 involve no degeneracy, it follows that the assumptions of Theorem 3.1 describe a
scenario that is at least codimension-three.

The demonstration of σ2 = 0 in the proof below uses the assumption that the v-axis is
not parallel to the switching manifold (equivalently, [0, 1]T is not an eigenvector of MX for the
eigenvalue λ2). As evident in the following proof, with σ2 6= 0, S[k]-cycles grow in size with k

without bound and are virtual for large k if the v-axis is not parallel to the switching manifold.
It remains to determine if infinite coexistence is achievable for (1.1) in the case that σ2 6= 0 and
the v-axis is parallel to the switching manifold.

7



Proof of Theorem 3.1. Here parts (i)-(iii) of Theorem 3.1 are demonstrated sequentially.

i) By composing k instances of (3.14) with (3.15), in (u, v)-coordinates the image of a point
w under S[k] is

gS[k](w) =

[

γ11λ
k
1 γ12λ

k
2

γ21λ
k
1 γ22λ

k
2

]

w +

[

σ1
σ2

]

. (3.16)

The matrix part of (3.16) has the same spectrum as MS[k] (the matrix part of fS[k]),
therefore

trace
(

MS[k]

)

= γ11λ
k
1 + γ22λ

k
2 .

By Lemma 2.3, the assumption that S[k]-cycles are stable for large k implies trace
(

MS[k]

)

6→
∞ as k → ∞. Therefore we must have γ22 = 0, since λ2 > 1.

With γ22 = 0, trace
(

MS[k]

)

→ 0, as k → ∞, and

det
(

MS[k]

)

= −γ12γ21λ
k
1λ

k
2 .

We now show that det
(

I −MS[k]

)

is bounded away from zero for large k. Since det
(

I −MS[k]

)

=
det
(

MS[k]

)

− trace
(

MS[k]

)

+1, this is certainly true if det
(

MS[k]

)

→ 0. If det
(

MS[k]

)

6→ 0,
then, due to the assumption that S[k]-cycles are stable, we must have λ1 6= 0, λ2 = 1

λ1
,

and consequently det
(

MS[k]

)

= −γ12γ21 for all k. Furthermore, in this case we cannot
have det

(

MS[k]

)

= −1 because S[k]-cycles are assumed to be unique and stable for large
k. Therefore, in either case, det

(

I −MS[k]

)

is bounded away from zero for large k.

In (u, v)-coordinates, we denote points of the S[k]-cycle by w
S[k]
i =

(

u
S[k]
i , v

S[k]
i

)

, for i =

0, . . . , knX + nY − 1, where nX and nY are the lengths of the words X and Y , respectively.

The point, w
S[k]
0 , is the unique fixed point of (3.16), and for each j = 1, . . . , k, w

S[k]
jnX

=

gX
(

w
S[k]
(j−1)nX

)

. From these equations, and substituting γ22 = 0, we obtain

w
S[k]
jnX

=
1

1− γ11λ
k
1 − γ12γ21λ

k
1λ

k
2

[

σ1λ
j
1 + γ12σ2λ

j
1λ

k
2

(γ21σ1 − γ11σ2) λ
k
1λ

j
2 + σ2λ

j
2

]

, (3.17)

valid for j = 0, . . . , k.

The symbols S[k](k−1)nX
= X0 and S[k]knX

= Y0 are different, by assumption. Hence, for

each k for which the S[k]-cycle is admissible, each point w
S[k]
(k−1)nX

lies on one side of the

switching manifold (or on the switching manifold) and each point w
S[k]
knX

lies on the other
side of the switching manifold (or on the switching manifold). We now show that this
observation implies σ2 = 0, σ1 6= 0, γ21 6= 0, λ1 6= 0 and λ2 =

1
λ1
.

By (3.17), if σ2 6= 0, then, as k → ∞, the u component of w
S[k]
knX

converges whereas the v

component diverges. Consequently, any line that divides the points w
S[k]
(k−1)nX

and w
S[k]
knX

for
infinitely many values of k must be parallel to the v-axis. The v-axis is assumed to be not
parallel to the switching manifold, thus this scenario is not permitted. Therefore σ2 = 0
and (3.15) is given by

gY(w) =

[

γ11 γ12
γ21 0

]

w +

[

σ1
0

]

, (3.18)

which verifies part (i).
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ii) With σ2 = 0, (3.17) reduces to

w
S[k]
jnX

=
σ1

1− γ11λ
k
1 − γ12γ21λ

k
1λ

k
2

[

λ
j
1

γ21λ
k
1λ

j
2

]

. (3.19)

Hence σ1 6= 0, since the points w
S[k]
jnX

must be distinct. Therefore, as k → ∞, u
S[k]
knX

(the
u-component of (3.19) with j = k) tends to zero. We cannot have γ21 6= 0 and λ1λ2 > 1,

because then
∣

∣

∣
v
S[k]
knX

∣

∣

∣
→ ∞ as k → ∞, which is immediately seen to be not possible in view

of the assumption that the v-axis is not parallel to the switching manifold.

If γ21 = 0 or λ1λ2 < 1, then v
S[k]
knX

→ 0, which we now show is also not possible. When the

S[k]-cycle is admissible, under nX +nY iterations of (1.1) w
S[k]
(k−1)nX

maps to w
S[k]
0 (following

XY) and w
S[k]
knX

maps to w
S[k]
nX

(following YX ). In this scenario, the distance between the

points w
S[k]
(k−1)nX

and w
S[k]
knX

tends to zero as k → ∞, therefore, since (1.1) is a continuous

map, the distance between the (nX + nY)
th iterates of these two points must also tend to

zero. However, from (3.19) we see that the distance between w
S[k]
0 and w

S[k]
nX

does not tend
to zero, which is contradiction. Therefore γ21 6= 0, λ1 6= 0 and λ2 =

1
λ1
.

iii) We now show that the X -cycle is admissible. When the S[k]-cycle is admissible, each w
S[k]
jnX

for j = 0, . . . , k−1 follows X for the next nX iterations under (1.1). By (3.19), with j ≈ k
2
,

w
S[k]
jnX

→ (0, 0) = wX
0 as k → ∞. Since (1.1) is continuous and S[k]-cycles are admissible for

infinitely many values of k, the forward orbit of wX
0 also follows X under (1.1), thus the

X -cycle is admissible.

Finally, by (3.19), as k → ∞, w
S[k]
knX

and w
S[k]
0 limit to points on the v-axis and u-axis

respectively. By the continuity of (1.1), the first limit point belongs to the unstable manifold
of wX

0 . This limit point maps to the second limit point under nY iterations of (1.1) (following
Y) and the second limit point belongs to the stable manifold of wX

0 . Hence these points
belong to a homoclinic orbit of the X -cycle and S[k]-cycles limit to this orbit as k → ∞.

4 Further consequences of infinite coexistence

Part (iii) of Theorem 3.1 tells us that S[k]-cycles (comprised of points that in (u, v)-coordinates

(3.13) are denoted w
S[k]
i , for i = 0, . . . , knX + nY − 1) limit to an orbit that is homoclinic to the

X -cycle as k → ∞. Therefore the stable and unstable manifolds of the X -cycle intersect. In
this section it is shown that with additional assumptions that do not add to the codimension of
the scenario described by Theorem 3.1, the branches of the stable and unstable manifolds that
intersect are coincident.

Before we begin, it is helpful to introduce abbreviated labels to four points of the homoclinic

9



orbit:

a = lim
k→∞

w
S[k]
(k−1)nX

=

(

0 ,
γ21σ1λ1

1− γ12γ21

)

, b = lim
k→∞

w
S[k]
knX

=

(

0 ,
γ21σ1

1− γ12γ21

)

,

c = lim
k→∞

w
S[k]
0 =

(

σ1

1− γ12γ21
, 0

)

, d = lim
k→∞

wS[k]
nX

=

(

σ1λ1

1− γ12γ21
, 0

)

,

(4.20)

where the formulas in (4.20) are obtained from (3.19). Under (1.1), a maps to b following X , b
maps to c following Y , and c maps to d following X . These points are shown in a schematic of
(u, v)-coordinates, Fig. 3. Let Φ0 denote the closed line segment connecting a and b, and let Φi

denote the image of Φi−1 under (1.1), for each i = 1, . . . , nX + nY . Also let,

Ξ =

nX+nY−1
⋃

i=0

Φi .

Since a maps to c under gXY , b maps to d under gYX , and the homoclinic orbit is admissible,
it follows that Φi intersects the switching manifold whenever (XY)i 6= (YX )i. Since X0 6= Y0,
as assumed in Theorem 3.1, then (XY)i 6= (YX )i for i = 0 and for at least one other value of
i. Therefore Ξ must have at least two intersections with the switching manifold. The following
theorem concerns the simplest scenario: that Ξ has exactly two such intersections.

x = 0
Φ0

ΦnX+nY

ϕ0

a

b

cd

w
S[k]
(k−1)nX

w
S[k]
knX

w
S[k]
0

w
S[k]
nX

X

X

Y

X
X

wX
0

u

v

Figure 3: Dynamics in (u, v)-coordinates (3.13). The origin is the point wX
0 (one point of the

saddle-type X -cycle). Locally, the stable and unstable manifolds of the origin are linear and
coincide with the u and v-axes respectively. The small circles represent points of an S[k]-cycle,

where S[k] = X kY . For each j = 0, . . . , k − 1, w
S[k]
jnX

maps to w
S[k]
(j+1)nX

under (1.1) following X

(3.14). Also w
S[k]
knX

maps to w
S[k]
0 following Y (3.18). As k → ∞, the S[k]-cycle limits to the

homoclinic orbit represented by small diamonds. The four points, a, b, c and d, of this orbit are
given by (4.20).
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Theorem 4.1. Suppose (1.1) is invertible and satisfies the conditions of Theorem 3.1. Suppose Ξ
intersects the switching manifold at only two points. Then ΦnX+nY

is the line segment connecting
c and d, and the branches of the stable and unstable manifolds of the X -cycle that involve the
homoclinic orbit of part (iii) of Theorem 3.1 are coincident.

As evident in the following proof, the assumption that Ξ has only two intersections with the
switching manifold is sufficient to ensure that all points on the branch of the stable manifold
involving the homoclinic orbit map to the unstable manifold. The additional assumption of
invertibility allows us to conclude that the stable and unstable branches are coincident. Note
that (1.1) is invertible if and only if δLδR > 0.

Proof of Theorem 4.1. Since X0 6= Y0 and Ξ is assumed to have only two intersections with the
switching manifold, we have (XY)i 6= (YX )i for i = 0 and exactly one other index in the range
i = 0, . . . , nX + nY − 1, call it α. Then there exist ϕ0, ψ0 ∈ Φ0, such that ϕ0 and ψα are the two
points of intersection of Ξ with the switching manifold (where {ϕi} and {ψi} denote the forward
orbits of ϕ0 and ψ0 under (1.1)).

For ease of explanation suppose that either ϕ0 lies closer to a than ψ0, or ϕ0 = ψ0. (Analogous
arguments produce the same result in the case that ϕ0 is further from a than ψ0.) Then under
(1.1), the line segment connecting a and ϕ0 follows X to a line segment on the v-axis, then follows
Y to a line segment on the u-axis. Thus ϕnX+nY

lies on the u-axis. Similarly, under (1.1), the
line segment connecting b and ψ0 follows Y to a line segment on the u-axis, then follows X to
a line segment elsewhere on the u-axis. Thus ψnX+nY

also lies on the u-axis. Since ΦnX+nY
is a

piecewise-linear connection from c to d with possible kinks only at ϕnX+nY
and ψnX+nY

, ΦnX+nY

must lie entirely on the u-axis. Since (1.1) is assumed to be invertible, ΦnX+nY
must be the line

segment connecting c and d.
Since the homoclinic orbit is admissible, under nX iterations of (1.1) both wX

0 and c (which lie
on the u-axis, see Fig. 3) follow X . Therefore the switching manifold (x = 0) does not intersect
the u-axis at a point between wX

0 and c. Therefore ΦnX+nY
is contained in the stable manifold of

the X -cycle. Furthermore, since (1.1) is invertible and every orbit in the branch of the unstable
manifold involving the homoclinic orbit intersects Φ0, the stable and unstable branches must be
coincident.

In the above proof ϕ0 and ψα denote the intersections of Ξ with the switching manifold (where
{ϕi} and {ψi} are orbits of (1.1) with ϕ0, ψ0 ∈ Φ0) and it was shown that the kinks of ΦnX+nY

at ϕnX+nY
and ψnX+nY

are spurious. This implies that Ξ exhibits one of the following properties.
Either Φ0 and Φα both intersect the switching manifold at the unique angle for which their images
do not accumulate a kink, or ϕ0 = ψ0. Since the former property corresponds to an additional
codimension, for the remainder of this paper we do not consider it further.

If ϕ0 = ψ0, then the next nX + nY iterates under (1.1) of any point sufficiently close to ϕ0

(and not necessarily on Φ0) follow one of four symbol sequences depending on which side of the
switching manifold the point and its image under α iterations of (1.1) are located. These are
XY , YX , X 0Y and Y0X , where S0 is used to denote the word that differs from S in only the 0th

index. The following theorem concerns X kY0-cycles, as these are saddle-type periodic solutions
for each of the examples in the following section.

Theorem 4.2. Suppose (1.1) is invertible and satisfies the conditions of Theorem 3.1. Suppose Ξ
intersects the switching manifold at only two points: ϕ0 ∈ Φ0, and its αth iterate under (1.1), ϕα.
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Assume gY
0
does not map the v-axis to the u-axis. Let S ′[k] = X kY0. Then, as k → ∞, S ′[k]-

cycles limit to a homoclinic orbit of the X -cycle that has two points on the switching manifold:
ϕ0 and ϕα.

Since gY maps the v-axis to the u axis (part (i) of Theorem 3.1), it is reasonable to assume that

this is not the case for gY
0
. Note that Theorem 4.2 does not ensure admissibility of S ′[k]-cycles

for large k.

Proof of Theorem 4.2. In (u, v)-coordinates let us write gY
0
as

gY
0

(w) =

[

ξ11 ξ12
ξ21 ξ22

]

w +

[

χ1

χ2

]

, (4.21)

for some constants ξij , χ1 and χ2. We can express χ1 and χ2 in terms of other coefficients by

using the requirement that gY and gY
0
map ϕ0 to the same point because (1.1) is a continuous

map. Write ϕ0 = (0, v̂), in (u, v)-coordinates. Then by (3.18) and (4.21) respectively,

gY(ϕ0) =

[

γ12v̂ + σ1
0

]

, gY
0

(ϕ0) =

[

ξ12v̂ + χ1

ξ22v̂ + χ2

]

.

Therefore χ1 = σ1 + (γ12 − ξ12)v̂ and χ2 = −ξ22v̂. The assumption that gY
0
does not map the

v-axis to the u-axis implies ξ22 6= 0.
By composing (4.21) with k instances of gX (3.14), and substituting λ2 = 1

λ1
and the above

formulas for χ1 and χ2, we obtain

gY
0Xk

(w) =

[

ξ11λ
k
1 ξ12λ

k
1

ξ21
λk
1

ξ22
λk
1

]

w +

[

(σ1 + (γ12 − ξ12) v̂)λ
k
1

− ξ22 v̂

λk
1

]

. (4.22)

Since ξ22 6= 0, for large k (4.22) has the unique fixed point

w
S′[k]
knX

=

[

(σ1 + γ12v̂)λ
k
1 +O

(

λ2k1
)

v̂ +O
(

λk1
)

]

.

Therefore w
S′[k]
knX

→ ϕ0, as k → ∞, and also w
S′[k]
knX+α → ϕα.

5 Finding infinitely many attracting periodic solutions

This section introduces a practical method to finding parameter values τL, δL, τR and δR for
which (1.1) has infinitely many attracting periodic solutions. The method is then applied to
produce three examples.

By Theorem 3.1, three requirements necessary for infinite coexistence are λ2 = 1
λ1
, γ22 = 0

and σ2 = 0, where λ1 and λ2 are the eigenvalues of MX , and γ22 and σ2 are coefficients of the
map gY (3.15). In order to identify suitable values of τL, δL, τR and δR, we translate these
requirements into three restrictions on the parameter values.
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We begin with the requirement λ2 =
1
λ1
, which is equivalent to det (MX ) = 1. Let lX denote

the number of L’s that are present in the word X . Then MX is a product of lX instances of AL,
and nX − lX instances of AR, hence det (MX ) = δlXL δ

nX−lX
R . Therefore λ2 =

1
λ1

is equivalent to

δL = δ
−

nX−lX
lX

R . (5.23)

It is impractical to directly impose the remaining two requirements, γ22 = 0 and σ2 = 0, be-
cause expressions for γ22 and σ2 in terms of the four parameters are extremely complicated even
for simple choices of X and Y . This is because γ22 and σ2 are coefficients in (u, v)-coordinates
(3.13), and consequently expressions for these coefficients involve formulas for the eigenvalues of
MX , which involve a square root. Algebraic manipulations are made substantially more manage-
able by instead using the results of §4 to express ζ1 and ζ2 (eigenvectors of MX ) in terms of the
parameters. This is explained below. We then let

Q =
[

ζ1 ζ2
]

, Ω = Q−1MXQ . (5.24)

If ζ1 and ζ2 are linearly independent eigenvectors of MX , then the matrix Ω must be diagonal.
That is,

ω12 = 0 , ω21 = 0 , (5.25)

where ωij denotes the (i, j)-element of Ω. The equations of (5.25) represent an alternative to
γ22 = 0 and σ2 = 0 that are significantly simpler when expressed in terms of τL, δL, τR and δR.

To obtain expressions for ζ1 and ζ2, let us assume that (XY)i 6= (YX )i only for i = 0 and
i = α, and ϕ0 = ψ0 (see §4). The point ϕ0 lies on the switching manifold, and its image under α
iterations of (1.1) following XY also lies on the switching manifold. In (x, y)-coordinates let us
write ϕ0 = (0, ŷ). The value of ŷ may be determined from the requirement that the x-component
of ϕα is zero. Also, ϕ0 lies on the unstable manifold of

(

xX0 , y
X
0

)

. The point
(

xX0 , y
X
0

)

is given
by (3.12), and its unstable manifold has direction ζ2. Therefore, when µ = 1, there exists η ∈ R

such that

(I −MX )
−1
PX

[

1
0

]

+ ηζ2 =

[

0
ŷ

]

. (5.26)

By using MX ζ2 = λ2ζ2, we may rearrange (5.26) to obtain

η (1− λ2) ζ2 = (I −MX )

[

0
ŷ

]

− PX

[

1
0

]

. (5.27)

Since we are free to choose the magnitude of ζ2, by (5.27) we may set

ζ2 = (I −MX )

[

0
ŷ

]

− PX

[

1
0

]

. (5.28)

In (x, y)-coordinates, the u and v-axes have the same directions as ζ1 and ζ2, respectively. Part
(i) of Theorem 3.1 tells us that gY maps the v-axis to the u-axis. Therefore, ζ1 is a scalar multiple
of MYζ2. We could set ζ1 =MYζ2, but for the examples below it is more convenient to set

ζ1 =M−1
X MYζ2 . (5.29)

In summary, (5.23) and (5.25) represent three restrictions on the parameter values of (1.1)
for which the map has infinitely many admissible, stable S[k]-cycles, where ω12 and ω21 are the
off-diagonal elements of Ω (5.24), and ζ1 and ζ2 are given by (5.28) and (5.29). We now find
solutions to (5.23) and (5.25) for three different combinations of X and Y .
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An example with nX = 3

Suppose
X = RLR , Y = LR , (5.30)

as in Fig. 1. Here X has one L and three symbols total, i.e. lX = 1 and nX = 3. Thus by (5.23),
δL = 1

δ2
R

.

Also α = 1 (because XY = RLRLR and YX = LRRLR, thus (XY)i 6= (YX )i only for
i = 0 and i = 1). Hence we require that ϕ0 = (0, ŷ) maps to the switching manifold under
a single iteration of (1.1). This implies ŷ = −1, when µ = 1, with which (5.28) gives ζ2 =

[−τR − 1, δR − 1]T, and (5.29) gives ζ1 = A−1
R ζ2 =

[

1
δR

− 1, − τR
δR

− 1
]T

. By substituting these

into (5.24) we obtain

ω12 =
1

δR (δ2R + τRδR − δR + τ 2R + τR + 1)

(

− τLδ
3
R + τRδ

3
R − τLτ

2
Rδ

3
R + τ 2Rδ

3
R + τR − τ 2RδR

− τRδR − 2δR + τ 2R + 1− τLτRδ
2
R + τLδ

4
R + τRδ

4
R + δ4R − τLτ

2
Rδ

2
R − τLτ

3
Rδ

2
R + δ2R

)

, (5.31)

ω21 =
1

δ2R (δ2R + τRδR − δR + τ 2R + τR + 1)

(

− τLδ
3
R + 2δ4R + τRδ

3
R + τLδ

4
R − τRδ

4
R + τLτ

2
Rδ

3
R − δ5R

− τ 2Rδ
3
R − τRδR − δR + τLτ

2
Rδ

2
R + τLτ

3
Rδ

2
R + τ 2Rδ

2
R − τ 2R − τR + τLτRδ

4
R − δ3R

)

. (5.32)

We wish to solve ω12 = ω21 = 0. To this end we notice that the sum of (5.31) and (5.32) factors
conveniently:

ω12 + ω21 =
(δR − 1) (τRδ

3
R + τLδ

3
R − τLτ

2
Rδ

2
R + τR + 2δ2R) (δR + τR + 1)

δ2R (δ2R + τRδR − δR + τ 2R + τR + 1)
. (5.33)

The first factor in the numerator of (5.33) is zero when δR = 1. For any τR < −1, this
combination of parameter values gives infinitely many admissible, stable S[k]-cycles, but the
S[k]-cycles are not asymptotically stable because the eigenvalues of MS[k] lie on the unit circle.
In this case (1.1) is area-preserving and the S[k]-cycles are elliptic.

The second factor in the numerator of (5.33) is zero when τL =
τRδ3R+τR+2δ2R
δ2
R(τ2R−δR)

. However, we

then have ω12 =
det(Q)δR
τ2
R
−δR

, which cannot be zero because Q must be non-singular.

Finally, the third factor in the numerator of (5.33) is zero when τR = −1− δR. Then ω12 = 0
when τL = −1 + 1

δR
− 1

δ2
R(δ2R+1)

. Therefore, δR is undetermined and

τL = −1 +
1

δR
−

1

δ2R(δ
2
R + 1)

, δL =
1

δ2R
, τR = −1− δR . (5.34)

With (5.34), δR > 1 and µ = 1, (1.1) indeed has infinitely many admissible, attracting S[k]-
cycles. This is proved in §6. Fig. 1 illustrates this scenario with δR = 3

2
. For different values of

δR > 1 the primary features of the phase portrait are unchanged.
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Figure 4: A phase portrait of (1.1) with µ = 1 and (5.36). These are approximate parameter
values for the infinite coexistence of admissible, attracting S[k]-cycles, where S[k] = X kY , and
X = RLLR and Y = LLR (5.35). The X -cycle is of saddle-type and its stable and unstable
manifolds are indicated. As in Fig. 1, S[k]-cycles are indicated by small circles for k = 1 to k = 8,
and S ′[k]-cycles (where S ′[k] = X kY0) are indicated by small triangles for the same values of k.

An example with nX = 4

Suppose
X = RLLR , Y = LLR . (5.35)

Then (5.23) gives δL = 1
δR
. Also α = 2, which implies ŷ = −1 − 1

τL
, when µ = 1. By continuing

with the above method we find that expressions for ω12 and ω21 are too complicated to include
here – and the author has been unable to solve (5.23) and (5.25) analytically for this example –
but with τL = 0.5, (5.23) and (5.25) admit the following approximate numerical solution

τL = 0.5 , δL =
1

δR
, τR = −1.139755486 , δR = 1.378851759 . (5.36)

A phase portrait of (1.1) with µ = 1 and (5.36) is shown in Fig. 4. Here at least eight S[k]-cycles
are admissible and attracting, which suggests that with the exact solution to (5.23) and (5.25)
infinitely many S[k]-cycles are admissible and attracting.

An example with nX = 5

Suppose
X = RLRLR , Y = LR . (5.37)

Here (5.23) gives δL = δ
−

3
2

R . Also α = 1, thus ŷ = −1 when µ = 1. As with the previous example,
it does not appear to be possible to solve (5.23) and (5.25) analytically. An approximate numerical
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Figure 5: A phase portrait of (1.1) with µ = 1 and (5.38), using the same conventions as Figs. 1
and 4. The parameter values approximate those admitting infinite coexistence, with X and Y
given by (5.37). S[k] and S ′[k]-cycles are plotted for k = 1 to k = 8. For the given parameters,
the map (1.1) also has an unstable fixed point (the isolated triangle), an attracting RL-cycle (the
two isolated circles near the middle of the figure), and an attracting RLRLL-cycle (two points
of this periodic solution are visible in the figure).

solution to (5.23) and (5.25) is

τL = −0.7 , δL = δ
−

3
2

R , τR = −3.308423793 , δR = 1.659870677 , (5.38)

which is illustrated in Fig. 5. As with the previous example, from Fig. 5 we infer that with the
exact solution to (5.23) and (5.25), (1.1) has infinitely many admissible, attracting S[k]-cycles.

6 Verification of infinite coexistence

We have shown that if the map (1.1) with µ = 1 has infinitely many admissible, attracting
S[k]-cycles with X = RLR and Y = LR, then, with reasonable assumptions given in sections 3
and 4, the parameter values must satisfy (5.34). In this section it is shown that the additional
restriction, δR > 1, is sufficient for (1.1) to exhibit such infinite coexistence, as indicated in the
following theorem.

Theorem 6.1. Let S[k] = (RLR)k LR, and S ′[k] = (RLR)k RR. Let µ = 1, δR > 1, and suppose
that the remaining parameter values of (1.1) are given by (5.34). Then for all k ≥ 1, (1.1) has a
unique, admissible, asymptotically stable S[k]-cycle, and a unique, admissible, saddle-type S ′[k]-
cycle.

The theorem is proved below by directly verifying asymptotic stability of the S[k]-cycles, and
admissibility of the S[k] and S ′[k]-cycles. By the results of §2, this may be done by calculating
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the determinant and trace of MS[k] and MS′[k], and the determinant of each PS[k](i) and PS′[k](i).
Since the details of these calculations are relatively lengthy and involve significant repetition, for
brevity the majority of the calculations for the S ′[k]-cycles are omitted. We begin by computing
the determinant and trace of MS[k].

Lemma 6.2. Let S[k] = (RLR)k LR, suppose δR 6= 0 and that the parameter values of (1.1)
satisfy (5.34). Then for all k ≥ 1,

det
(

MS[k]

)

=
1

δR
, (6.39)

trace
(

MS[k]

)

=
−(δR + 1)λk1

δ2R + 1
, (6.40)

where

λ1 =
δR

δ2R + 1
. (6.41)

Proof. Here MS[k] is the product of k + 1 instances of AL, and 2k + 1 instances of AR, therefore
det
(

MS[k]

)

= δk+1
L δ2k+1

R . By substituting δL = 1
δ2
R

into this expression we obtain (6.39).

More effort is required to compute trace
(

MS[k]

)

. By the definitions of S[k] and MS (2.7),
we can write MS[k] = ARALM

k
RLR. An evaluation of MRLR = ARALAR using (1.1) and (5.34)

produces

MRLR =
1

δ2R + 1

[

(δR + 1)2 δ3R − 1
δ2R − 1

δR
(δ2R + 1)(δR − 1) + 1

δR

]

. (6.42)

The matrix MRLR has eigenvalues λ1 (6.41) and λ2 = 1
λ1
. To take powers of MRLR we let

Q =

[

1 δR
δR−1

−1
δR−1

1

]

, as the columns of this matrix are eigenvectors of MRLR. Then Mk
RLR =

Q−1

[

λk1 0
0 1

λk
1

]

Q, and consequently

Mk
RLR =

1

1 + δR
(δR−1)2

[

λk1 +
δR

(δR−1)2
λ−k
1

−δR
δR−1

(

λk1 − λ−k
1

)

−1
δR−1

(

λk1 − λ−k
1

)

δR
(δR−1)2

λk1 + λ−k
1

]

. (6.43)

An evaluation of trace
(

ARALM
k
RLR

)

using (6.43) produces (6.40).

Next we derive expressions for the determinant of each PS[k](i). Since S[k] has period 3k + 2,

we require det
(

PS[k](i)

)

for each i = 0, . . . , 3k + 1.

Lemma 6.3. Let S[k] = (RLR)k LR, suppose δR 6= 0 and that the parameter values of (1.1)
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satisfy (5.34). Then for all j = 0, . . . , k − 1,

det
(

PS[k](3j)

)

=
1

δ2R − δR + 1

(

δR(δR + 1) +
δ2R(δR + 1)

δ2R + 1
λk1 − (δ2R + δR + 1)λk−j

1 −
δ3R − 1

δ2R + 1
λ
j
1

)

,

(6.44)

det
(

PS[k](3j+1)

)

= −
1

δ2R − δR + 1

(

(δR + 1)(δ2R + 1) + δR(δR + 1)λk1

−
(δ2R + 1)(δ2R + δR + 1)

δR
λ
k−j
1 −

δ2R(δ
2
R + δR + 1)

δ2R + 1
λ
j
1

)

, (6.45)

det
(

PS[k](3j+2)

)

=
1

δ2R − δR + 1

(

δR + 1

δ2R
+

δR + 1

δR(δ2R + 1)
λk1

+
(δR − 1)(δ2R + δR + 1)(δ2R + 1)

δ3R
λ
k−j
1 −

δ2R + δR + 1

(δ2R + 1)2
λ
j
1

)

, (6.46)

det
(

PS[k](3k)

)

= −
1− λk1

δ2R − δR + 1
, (6.47)

det
(

PS[k](3k+1)

)

=
(δ5R + δ3R + δR − 1)λk1 + 1

δ2R(δ
2
R + 1)(δ2R − δR + 1)

, (6.48)

where λ1 is given by (6.41).

Proof. Here we derive only (6.44). Derivations of (6.45) and (6.46) are similar; derivations of
(6.47) and (6.48) are simpler.

Taking the left shift permutation of S[k] a total of 3j places yields

S[k](3j) = (RLR)k−j
LR (RLR)j .

Careful use of (2.7) produces

PS[k](3j) =

(

j−1
∑

p=0

M
p
RLR

)

(I + AR + ARAL)

+M
j
RLR

(

I + AR + ARAL

(

k−j−1
∑

p=0

M
p
RLR

)

(I + AR + ARAL)

)

. (6.49)

Powers of MRLR are given by (6.43). To obtain explicit expressions for the two finite series that
appear in (6.49), we use the following formulas for the partial sum of a geometric series:

j−1
∑

p=0

λ
p
1 =

1− λ
j
1

1− λ1
,

j−1
∑

p=0

λ
−p
1 =

λ1(λ
−j
1 − 1)

1− λ1
.

This gives

j−1
∑

p=0

M
p
RLR =

1
(

1 + δR
(δR−1)2

)

(1− λ1)

[

1− λ
j
1 +

δR
(δR−1)2

λ1(λ
−j
1 − 1) −δR

δR−1

(

1− λ
j
1 − λ1(λ

−j
1 − 1)

)

−1
δR−1

(

1− λ
j
1 − λ1(λ

−j
1 − 1)

)

δR
(δR−1)2

(1− λ
j
1) + λ1(λ

−j
1 − 1)

]

.

(6.50)
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Then (6.44) results by directly evaluating the determinant of (6.49) via the use of (1.1), (5.34),
(6.43) and (6.50). (For simplicity the author achieved this using symbolic computations in
matlab.)

Proof of Theorem 6.1. By Lemma 6.2, we have 0 < det
(

MS[k]

)

< 1 and trace
(

MS[k]

)

< 0. Thus
for all k ≥ 1, det

(

I −MS[k]

)

6= 0, therefore by Lemma 2.1, S[k]-cycles are unique. Furthermore,
we immediately see that the inequalities (2.9) and (2.11) hold for all k ≥ 1. The inequality (2.10)
also holds for all k ≥ 1 because by Lemma 6.2 we have

det
(

MS[k]

)

+ trace
(

MS[k]

)

+ 1 =
(δR + 1)

(

(δ2R + 1)
k+1

− δk+1
R

)

δR (δ2R + 1)
k+1

,

which is positive. Thus by Lemma 2.3 the S[k]-cycles are asymptotically stable (assuming
det
(

PS[k](i)

)

6= 0 for all i, which is demonstrated below).
By Lemma 2.2, for admissibility we require

det
(

PS[k](3j)

)

> 0 , for j = 0, . . . , k − 1 ,

det
(

PS[k](3j+1)

)

< 0 , for j = 0, . . . , k − 1 ,

det
(

PS[k](3j+2)

)

> 0 , for j = 0, . . . , k − 1 ,

det
(

PS[k](3k)

)

< 0 ,

det
(

PS[k](3k+1)

)

> 0 .

(6.51)

From (6.44) we can see that, as a function of j, det
(

PS[k](3j)

)

has a single turning point (at j ≈ k
2
)

that corresponds to a maximum. Therefore, given δR and k, over the range j = 0, . . . , k − 1,
det
(

PS[k](3j)

)

achieves its minimum at either j = 0 or j = k − 1. By (6.44), for j = 0:

det
(

PS[k]

)

=
δ4R + δ3R + δR + 1− (δ4R + δ2R + δR + 1) λk1

(δ2R − δR + 1) (δ2R + 1)

≥
δ2R (δR − 1)

(δ2R − δR + 1) (δ2R + 1)
> 0 ,

where we have substituted k = 0 to produce the inequality. Similarly for j = k − 1:

det
(

PS[k](3(k−1))

)

=
δ4R + δ2R (δR + 1)λk1 − (δ3R − 1)λk−1

(δ2R − δR + 1) (δ2R + 1)

≥
δ4R − δ3R + 1

(δ2R − δR + 1) (δ2R + 1)
> 0 .

Therefore det
(

PS[k](3j)

)

is positive for all δR > 1, k ≥ 1 and j = 0, . . . , k − 1. The remaining in-
equalities in (6.51) may be verified in the same fashion; these calculations are omitted for brevity.
We then conclude that, for each k ≥ 1, the unique S[k]-cycle is admissible and asymptotically
stable.

Computations for S ′[k]-cycles are analogous. The key formulas are

det
(

MS′[k]

)

= δ2R ,

trace
(

MS′[k]

)

= −δRλ
k
1 +

(

δ2R + δR + 1
)

λ−k
1 ,
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and

det
(

PS′[k](3j)

)

= −
1

δ2R − δR + 1

(

δ2R
(

δ2R + δR + 1
)

(

λ−k
1 − λ

−j
1 + λ

k−j
1

)

− δ2R
(

δ2R + 1
)

−
(

δ3R − 1
)

λ
j
1

(

λ−k
1 − 1

)

− δ3Rλ
k
1

)

,

det
(

PS′[k](3j+1)

)

=
δR

δ2R − δR + 1

(

(

δ2R + δR + 1
) (

δ2R + 1
)

(

λ−k
1 − λ

−j
1 + λ

k−j
1

)

−
(

δ2R + 1
)2

− δR
(

δ2R + δR + 1
)

λ
j
1

(

λ−k
1 − 1

)

− δR
(

δ2R + 1
)

λk1

)

,

det
(

PS′[k](3j+2)

)

= −
1

δR (δ2R − δR + 1)

(

(

δ2R + δR + 1
)

λ−k
1 −

δR (δ2R + δR + 1)

δ2R + 1
λ
j
1

(

λ−k
1 − 1

)

−
(

δ2R + 1
) (

δ3R − 1
)

λ
−j
1

(

λk1 − 1
)

−
(

δ2R + 1
)

− δRλ
k
1

)

,

det
(

PS′[k](3k)

)

= −
1− λk1

δ2R − δR + 1
,

det
(

PS′[k](3k+1)

)

= −
δ3R
(

1− λk1
)

δ2R − δR + 1
,

where λ1 is given by (6.41). From these formulas, uniqueness and admissibility of S ′[k]-cycles for
k ≥ 1 follows in the same fashion as for S[k]-cycles.

7 Conclusions

In this paper it is shown for the first time that the two-dimensional border-collision normal form
(1.1) may have infinitely many coexisting attractors. Theorem 6.1 states that with µ = 1, δR > 1
and (5.34), (1.1) has an attracting periodic solution with symbol sequence S[k] = (RLR)k LR,
for all k ≥ 1. Theorem 6.1 was proved by explicitly verifying all admissibility and stability
conditions of the S[k]-cycles.

Fig. 1 shows a plot of the S[k]-cycles with δR = 3
2
. As k increases the S[k]-cycles approach an

orbit that is homoclinic to an RLR-cycle. Furthermore, the branches of the stable and unstable
manifolds of the RLR-cycle that intersect are coincident. In sections 3 and 4 it was shown that in
general such coincidence is to be expected. Given X and Y , if the X -cycle is of saddle-type and
(1.1) has infinitely many admissible, stable X kY-cycles, then, with some additional assumptions,
(1.1) must display several important features. Parts (i) and (ii) of Theorem 3.1 give three
consequences that imply that such coexistence is at least a codimension-three phenomenon. In
view of Theorem 6.1, we conclude that the scenario is generically codimension-three. By part
(iii) of Theorem 3.1, the stable and unstable manifolds of the X -cycle intersect. By Theorem
4.1, this intersection is non-transversal.

The results of §4 included the assumption that (XY)i 6= (YX )i for i = 0 and only one other
index, call it α. It was shown that we expect the unstable manifold of the X -cycle to intersect
the switching manifold at two points, and for one of these points to map to the other under α
iterations of (1.1). By Theorem 4.2, X kY0-cycles limit to the homoclinic orbit of the X -cycle
that includes these two points of intersection, as k → ∞.
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In §5, parameter values for which (1.1) exhibits infinite coexistence were identified for three
different combinations of X and Y . These three examples each satisfy all the assumptions given
in sections 3 and 4, and the consequences listed above may be verified directly for these examples.

There are many avenues for future work. It remains to remove some of the assumptions made
in sections 3 and 4, if possible, and identify other mechanisms, if any exist, by which (1.1) may
have infinitely many attractors. As parameters are varied from a point at which there exist
infinitely many attractors, we would like to determine the rate at which the number of coexisting
attractors decreases. We would also like to understand exactly for which combinations of X and
Y (1.1) can exhibit infinitely many admissible, attracting X kY-cycles.

Perhaps the most important problem that stems from this work is a generalization to the N -
dimensional border-collision normal form. In more than two dimensions calculations of periodic
solutions can be performed in the same manner, but stable and unstable manifolds of saddle-
type periodic solutions may have a dimension greater than one, which presents more possibilities
and difficulties. Also, as noted in [10, 30], it is not known how many attractors may be born
simultaneously in grazing-sliding bifurcations. The return map for grazing-sliding may be put in
the border-collision normal form, but it remains to demonstrate that parameter values that give
rise to infinitely many coexisting attractors are viable for grazing-sliding, and study the influence
of higher-order terms.
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