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introduced by [Letellier & Gouesbet, 1996; Letellier et al., 1996] and later well justified in the context of
bounding tori [Tsankov & Gilmore, 2003, 2004]. We will thus show that there is, in fact, one linking matrix
per component in the Poincaré section.

The subsequent part of this paper is organized as follows. Section 2 is devoted to the topology of the
spiral attractor solution to the Rössler system. This section is the opportunity to introduce many concepts
whose few are new and required for attractors characterized by multiple component Poincaré section.
Section 3 discusses the case of the Lorenz attractor which is associated with a two-components Poincaré
section. This latter case is a useful example to allow us to detail, in a still simple case, the necessity to
enrich the concept of linking matrix. Section 4 is devoted to the example of a multispiral attractor bounded
by a genus-5 torus and thus characterized by a four-components Poincaré section. Section 5 sums up our
procedure and gives some conclusions.

2. The genus-1 spiral attractor

2.1. The Rössler system

There are three levels to describe the topology of an attractor: i) the bounding torus, ii) the template and
iii) the unstable periodic orbits. We will introduce these concepts in the case of the spiral attractor solution
to the Rössler system [Rössler, 1976b]. The Rössler equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

(1)

produce a chaotic attractor (Fig. 1) for parameter values a = 0.43293, b = 2, and c = 4. This system has two
singular points

S± =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

x± = c ±√c2 − 4ab
2

y± = −c ∓
√
c2 − 4ab
2a

z± = c ±√c2 − 4ab
2a

.

(2)

There are both saddle-focus points. Point S− has a two-dimensional unstable manifold and is surrounded
by the attractor. Point S+ has a two-dimensional stable manifold which is associated with the boundary
of the attraction basin.

2.2. Bounding torus and Poincaré section

The spiral attractor can be bounded by a semi-permeable surface which is a genus-one torus [Tsankov &
Gilmore, 2003]. There is a canonical form to represent this bounding torus.

Definition 2.1. [Tsankov & Gilmore, 2003] A bounding torus can be projected onto a two-dimensional
planar surface in such a way that the projection is a disk with g interior holes and that the flow on the
exterior boundary and on these interior holes is in the same direction. By convention, the flow is clockwise.
This is the canonical form of a bounding torus.

Any canonical form with g ≥ 3 of a bounding torus is defined by m circles and n polygons, with m + n = g
and m > n ≥ 1. The main departure between circles and polygons is that the latter can tear a branch
into two sub-branches, an action that the formers cannot, as we will discuss later. The combination (m,n)
specifies the canonical in an unique way when g < 7; for larger genus g, degeneracies occur [Tsankov &
Gilmore, 2004].

The spiral attractor is bounded by a genus-one torus whose canonical form is shown in Fig. 2. To
have the spiral attractor visited clockwise, we applied a rotation Ry(π), that is, (x, y, z) ↦ (−x, y,−z)
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Fig. 1. Chaotic spiral attractor solution to the Rössler system (1). Parameter values a = 0.43293, b = 2, and c = 4.

which does not modify the topology of the attractor. The interior circle of the bounding torus surrounds
the saddle-focus point S−. Note that there is not always a singular point associated with each hole of the
bounding torus since, for instance, there are chaotic attractors bounded by genus-one torus and which are
solution to systems without any singular point [Jafari et al., 2013].

Fig. 2. Canonical form of the bounding torus associated with the spiral attractor Fig. 1. The Poincaré section is made of a
single component.

The first information provided by the canonical form of bounding torus is the number of components
the Poincaré section must have: an attractor bounded by a genus-g (g ≥ 3) torus is characterized by a
Poincaré section with g − 1 components. To genus-one bounding torus corresponds a single component
Poincaré section. Components of the Poincaré section link the interior circles and the exterior boundary.
Consequently, the spiral attractor can be studied using a single component Poincaré section defined as

P ≡ {(yn,−zn) ∈ R2 ∣ − xn = −x−, −ẋn < 0} , (3)

where x− is the x-coordinate of the singular point S−.
As introduced in [Gilmore & Letellier, 2007], it is possible to introduce a normalized coordinate ρn

corresponding to the nth intersection with the Poincaré section: ρn is normalized to the unit interval, and
oriented from the interior circles to the exterior boundary. The first-return map of a genus-one attractor
is thus within the unit square (Fig. 3). As introduced by Poincaré, a first-return map allows to link the
nth intersection to the (n + 1)th intersection. For chaotic attractors, the first-return map allows to define
a partition between topologically inequivalent sub-spaces. In the case of a smooth unimodal first-return
map as obtained for the spiral attractor, the increasing (decreasing) monotonic branch is order preserving
(reversing) and, consequently, is associated with a branch presenting an even (odd) number of half-turns
(π-twists) [Letellier et al., 1995]. Let us label these two monotonic branches by “0” and “1”, respectively,
the parity of these symbols being related to the parity of the number of half-turns the corresponding
branches present [Letellier et al., 1995].
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Fig. 3. First-return map to a one-component Poincaré section of the chaotic spiral attractor solution to the Rössler equations
(1). Parameter values are those used for Fig. 1.

2.3. Symbolic dynamics

It is thus possible to convert any trajectory into a sequence of symbols according to

an = ∣0 if ρn < ρc
1 if ρn > ρc (4)

where ρc = 0.54 is the ordinate of the critical point (the ordinate of the smooth maximum) of the first-return
map shown in Fig. 3. The sequence of symbols thus obtained defines a symbolic dynamics, that is, infinite
or bi-infinite sequences defined by a shift-invariant constant on the finite-length sub-sequences [Hao, 1989].

Definition 2.2. [Ghrist et al., 1997] Let α = {a1, ..., aN } be a set of N symbols. Denote by

ΣN = {...a−2 a−1 a0 a1 a2.... ∶ ai ∈ α,∀i ∈ Z} = αZ

the space of bi-infinite symbol sequences in α. Points in ΣN are called trajectories. The shift map σ ∶ ΣN ↦
ΣN acts as

σ(...a−2 a−1 a0 a1 a2....) = (...a−1 a0 a1 a2 a3....) .
Any period-p orbit embedded within the attractor is thus encoded by a periodic sequence of p symbols, p
being the topological period of the orbit. For instance, orbit (1011) — parenthesis meaning that this is a
periodic sequence infinitely repeated — is a period-4 orbit with three (one) intersections with the Poincaré
section located in the decreasing (increasing) monotonic branch of the first-return map.

It is possible to defined a transition matrix.

Definition 2.3. [Ghrist et al., 1997] Given Tσ an N ×N matrix in zeros and ones, the subshift of finite type
associated with Tσ in the dynamical system (ΣT ,σ) where ΣT ⊂ ΣN is the set of admissible trajectories
and σ is the shift map. The matrix Tσ is known as the transition matrix for ΣT , since it specifies those
transitions between symbols that are possible within a sequence.

In the case of the spiral attractor, as shown by the first-return map, the transition matrix is

Tσ = [1 1
1 1
] . (5)
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2.4. Template

The topological properties of the attractor are synthesized by a branched manifold, named template.

Definition 2.4. (Adapted from [Ghrist et al., 1997]) A template is a compact branched two-manifold with
boundary and smooth expansive semiflow built locally from three types of charts: splitting, tearing, merging
and joining. Each chart (Figs. 4) carries a semiflow, endowing the template with an expanding semiflow,
and gluing maps between charts must respect the semiflow and act linearly on the edges.

(a) Splitting chart (b) Tearing chart (c) Joining chart (d) Merging chart

Fig. 4. The different charts that can be used to draw a template.

A branch can virtually be split in two topologically inequivalent sub-branches to improve the readability
of the template: it is virtual in the sense that the corresponding flow does not present such a split between
the sub-branches. This process is represented by a “splitting chart”. The edge of the splitting chart is
associated with the critical point of the first-return map. A branch can be actually teared into two sub-
branches in the neighborhood of an interior polygon. Such a tearing can be indeed observed in the flow.
This process is represented by a “tearing” chart (Fig. 4b). Sub-branches can be unified into a single branch
according to a “joining” chart (Fig. 4c) which necessarily requires a stretching and squeezing mechanisms.
To represent the joining chart, we use the standard joining convention introduced by [Tufillaro et al., 1992],
and named by them standard insertion convention.

Definition 2.5. The standard convention to represent a joining chart is to squeeze the N branches from
back (left) to front (right).

An example of non-standard and standard joining convention is shown in Fig. 5. It should be noted that
switching from a non-standard to a standard convention may induce supplementary permutations.

(a) Non-standard (b) Standard

Fig. 5. Examples of non-standard and standard joining chart [Tufillaro et al., 1992].

Rather than joined, one can also imagine that the N branches are merged (Fig. 4d) as introduced in
[Rosalie & Letellier, 2013]. In this case, there is no mixing property as induced by the joining chart. Joining
chart is therefore a required ingredient to produce chaotic behaviors. The main interest of the merging
chart is that it helps us to understand that the mechanism responsible for the chaotic nature of a trajectory
is encoded, from the template point of view, in the joining chart.

The template for the spiral attractor (Fig. 1) is made of one splitting chart, torsions and permutations
applied to the N = 2 branches, and one joining chart (Fig. 6).
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Splitting chart

Torsions

Permutations

Joining chart

Fig. 6. Template of the spiral attractor (Fig. 1) solution to the Rössler system.

2.5. Linker and linking matrix

Definition 2.6. A linker is a sub-template at least describing torsions and permutations between the N

branches of the template, and possibly including splitting chart and tearing charts, and one merging or
joining chart.

The linker must be represented with the branches ordered according to the order they appear in the
first-return map built on variable ρn, that is, from the interior circle (left) to the exterior boundary (right).

Definition 2.7. A linker is said to be closed when it starts with a splitting or tearing chart and ends with
one joining or merging chart. It is said inward (outward) open when there is no splitting nor tearing (no
merging nor joining) chart. It is open when there is no chart, but only torsions and permutations between
the N branches (Figs. 7).

Proposition 1. Representing the attractor in a such a manner that the flow is clockwise as used for the
canonical form of bounding torus, ordering the branches according to the first-return map and using the
standard joining convention, the topology of a genus-one chaotic attractor is described by an unique closed
mixer.

(a) Closed (b) Inward open (c) Outward open (d) Open

Fig. 7. Examples of close, semi-open and open linkers.
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Torsions and permutations applied to the N branches of a linker are described by a linking matrix L.

Definition 2.8. A linking matrix L is a N × N matrix of integers such as Lii is the signed number of
half-turns applied to the ith branch and Lij the signed number of permutations between the ith and the
jth branches. Sign convention for torsions and permutations is shown in Fig. 8.

(a) Negative crossings (b) Positive crossings

Fig. 8. Sign convention for torsions, permutations and crossings.

The linkers shown in Figs. 7 are described by the linking matrices as follows.

(1) Closed linker (Fig. 7a): L∩∣ = [−1 0−1 −1⟧ where the left bracket designates the splitting (or tearing) chart

and the double right bracket the joining chart. When the joining chart is replaced with a merging chart,

the linking matrix is thus L∩∪ = [−1 0−1 −1], the right double bracket being replaced with the simple right

bracket.

(2) Inward open linker (Fig. 7b): L∣ = ∣−1 0−1 −1⟧, the left bar meaning that there is no splitting nor tearing

chart.

(3) Outward open linker (Fig. 7c): L∩ = [−1 0−1 −1 ∣, the right bar meaning that there is no joining nor merging

chart.

(4) Open linker (Fig. 7d): L = ∣−1 0−1 −1 ∣.
Definition 2.9. A mixer is a closed linker L∩∣ or an inward open linker L∣ ended by a joining chart.

Corollary 2.1. According to proposition 1, a genus-one chaotic attractor is described by a unique closed
mixer, that is, by a unique closed linking matrix L∩∣.

The template for the spiral attractor is thus described by the linking matrix

R = [ 0 −1−1 −1⟧ . (6)

2.6. Linking numbers

Linking numbers are topological invariants which can be counted in a regular plane projection of two peri-
odic orbits O and O′ (here considered as knots): they are equal to the half-sum of the oriented “crossings”,
signed according to the convention shown in Fig. 8 [Tufillaro et al., 1992; Letellier et al., 1995]. From a
linking matrix L∩∣, it is possible to predict the linking number between two periodic orbits O and O′ [Le
Sceller et al., 1994]. Let O and O′ be a period-p and a period-p′ orbits associated with the orbital sequences

α = a1 a2 ...ap
and

α′ = a′1 a′2 ...a′p′ ,
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respectively. The linking number between these two periodic orbits is

Lk(O,O′) = p∑
i=1

p′∑
j=1

Lai a
′

j
+Njoining(O,O′) (7)

where Njoining(O,O′) counts the number of oriented crossings occurring in the joining chart. It can be
determined from α, α′ and L∩∣ according to a procedure detailed in [Le Sceller et al., 1994] and whose
details are out of the scope of this paper. In [Le Sceller et al., 1994], Njoining was designated as Nramification

but, since it is necessarily related to the joining chart, it turns to be better named by Njoining.
A template is validated when the linking numbers it predicts between pairs of periodic orbits are

equal to those between the corresponding periodic orbits numerically extracted from the chaotic attractors
[Tufillaro et al., 1992; Letellier et al., 1995; Gilmore & Lefranc, 2002]. The specific case of the spiral Rössler
attractor is detailed in [Letellier et al., 1995].

3. The genus-3 Lorenz attractor

Templates for some attractors bounded by genus-3 torus had already been established [Birman & Williams,
1983; Kocarev et al., 1994; Letellier & Gilmore, 2013]. They are much more difficult to handle than
templates for genus-one attractor. In particular, their descriptions by linking matrices are not yet well-
developed. Consequently, we will detail this aspect in the subsequent part of this paper, first with the help
of the genus-3 Lorenz attractor.

The Lorenz differential equations [Lorenz, 1963]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = σ(y − x)
ẏ = Rx − y − xz
ż = −βz + xy , (8)

produce a so-called Lorenz attractor (Fig. 9a) for parameter values R = 28, β = 8
3
and σ = 10. This attractor

is projected in the x-y plane where the flow is clockwise. It is bounded by a genus-3 torus, two interior
circles — which can be associated with the two saddle-focus points

S± =
RRRRRRRRRRRRRR
x± = ±√b(R − 1)
y± = ±√b(R − 1)
z± = R − 1

(9)

and one interior polygon surrounding the saddle singular point located at the origin of the phase space
(Fig. 9b).

The Lorenz equations are equivariant under a rotation symmetry Rz(π) which maps the left wing
into the right wing, and vice versa. It was shown that the Poincaré section must have two components to
properly compute the Lorenz map [Letellier et al., 1994], a property now well-explained by bounding tori
[Tsankov & Gilmore, 2004]. We will use in this work the two components defined as [Letellier et al., 1994]

P ≡ CA ∪ CB ≡ {(yn, zn) ∈ R2 ∣xn = x+, ẋn < 0} ∪ {(yn, zn) ∈ R2 ∣xn = x−, ẋn > 0} . (10)

where x± are the x-coordinates of the two symmetry related singular points S±. When the first-return map
to the Poincaré section is computed with ρn left in the unit interval ]0; 1[, the Lorenz map is obtained
[Letellier & Gouesbet, 1996]. In order to develop a general method for characterizing attractors with mul-
tiple component Poincaré section, it is useful to distinguish the contribution of these different components.
We thus used

ρn = IA ⋅ ρA,n + IB ⋅ (1 + ρB,n) (11)

where ρA,n and ρB,n are the ρ-coordinate of the nth intersection with the Poincaré section located in
component CA and CB, respectively, and where IC is the indicator function where

IC = ∣0 if x ∉ C
1 if x ∈ C. (12)
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(a) The Lorenz attractor (b) Canonical genus-3 bounding torus

Fig. 9. Chaotic attractor solution to the Lorenz equations (8) and its singular points (⊙ for saddle-focus points and ⊡ for the
saddle point). The canonical form of the corresponding bounding torus is also shown with the two components CA and CB of
the Poincaré section. Parameter values R = 28, β = 8

3
and σ = 10.

This was implicitly used by [Byrne et al., 2004]. Variable ρn is thus in the range ]0; 1[∪]1; 2[. The cor-
responding first-return map is shown in Fig. 10: this is a four branch map. We labelled these branches
according to their slope, “0” (“0”) and “1” (“1”) for the increasing (decreasing) branches. “0” (“1”) des-
ignates the branch which is obtained by applying the rotation Rz(π) to branch “0” (“1”). The symbol
transition matrix is

Ta =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

0 1 2
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1

2

ρ
n
+
1

ρn

0

1 0

1

D|A D|B

DA|

DB|

Fig. 10. First-return map to a two-component Poincaré section of the chaotic attractor solution to the Lorenz equations (8).
Parameter values are those used for Fig. 9.

From the bounding torus (Fig. 9b), it is seen that the trajectory from CA can go to CA or CB , and
from CB to CB with itself and CA. A transition matrix TC between the components of the Poincaré section
is thus

TC = [1 1
1 1
] . (14)



May 28, 2013 11:46 Topog5

10 Martin Rosalie & Christophe Letellier

It is possible to consider the Lorenz attractor from two points of view. The first one considers the attractor
as made of two parts, one being associated with the branches “0” and “1” issued from component CA, the
second part being the symmetric of the first and is made of branches “0” and “1” arising from component
CB . Let us designate these two parts as the two domains D∣A = {0,1} and D∣B = {0,1} where the subscript∣A (∣B) means that the branches are coming from component CA (CB). The second point of view is to
consider the branches joined at a given component: we have thus DA∣ = {0,1} and DB∣ = {1,0} where A∣
(B∣) means that the branches are joined at component A (B). Since the mixing properties are induced by
the joining chart, there is no other choice than using the second point of view to describe the attractor in
terms of linkers (mixers).

Our objective is now to describe the topology of the Lorenz attractor by two mixers, each of them
being associated with the domains DA∣ = {0,1} and DB∣ = {1,0}, respectively. A template proposed for the
Lorenz attractor is shown in Fig. 11 [Letellier and Gilmore, 2001]. From that template, we can see that
there is one inward open mixer associated with each component of the Poincaré section. MixerMA∣ (MB∣)

corresponds to domain DA∣ = {0,1} (DB∣ = {1,0}). These mixers are described by the linking matrices

MA∣ = ∣0 0
0 1
⟧ and MB∣ = ∣0 0

0 1
⟧ , (15)

respectively. Matrices MA∣ and MB∣ describe torsions and permutations between branches “0” and “1” of

domain DA∣ and, branches “0” and “1” of domain DB∣, respectively. Branches are ordered in the “natural”
order they occurs in each of the components CA and CB . Note that these two “natural” orders are the order
that, for instance, branches “0” and “1” would have when they are drawn in the unit square using ρA,n

and ρB,n (and not ρn). We have thus the natural order 01 (0 1) in domain DA∣ = {0,1} (DB∣).

CB

CA

0

1

1

0

Tearing chart

Tearing chartInward open mixer MB|

Inward open mixer MA|

Fig. 11. Template that describes the Lorenz attractor shown in Fig. 9.

4. The genus-5 multispiral attractor

To show that our procedure is quite general, we will investigate now a genus-5 multispiral attractor produced
by a set of differential equations proposed by [Aziz-Alaoui, 1999]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = α [y − x − f3(x)]
ẏ = x − y + z
ż = −βx − γy (16)

where

f3(x) =
RRRRRRRRRRRRR
m0x + sgn(x)ξ0 ∣x∣ ⩽ s0
m1x + sgn(x)(m0 −m1)s0 if s0 ⩽ ∣x∣ ⩽ s1
m2x + sgn(x) [(m1 −m2)s1 + (m0 −m1)s0] s1 ≤ ∣x∣ (17)
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is a piecewise linear function. With parameter values α = 14.6, β = 12, γ = 0.9, ξ0 = 0, s0 = 1, s1 = 3,
m0 = −5/7, m1 = −8/7 and m2 = −0.7, the chaotic attractor obtained is projected in the x-y plane (Fig. 12).
The system (16) has three saddle-focus singular points and two saddle singular points (also shown in Fig.
12). This system is equivariant under an inversion symmetry.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-4 -2 0 2 4

y

x

Fig. 12. Chaotic multispiral attractor solution to the equation (16). Parameter values α = 14.6, β = 12, γ = 0.9, ξ0 = 0, s0 = 1,
s1 = 3, m0 = −5/7, m1 = −8/7 and m2 = −0.7.

This attractor is bounded by a genus-5 torus with three interior circles and two interior polygons. The
Poincaré section is made of four components CA, CB, CC , and CD. The component transition matrix is

TC =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Under the inversion symmetry, component CA (CB) is mapped into CC (CD), and vice versa.

F1 F1F0S1 S1

CA

CC

CB

CD

Fig. 13. Canonical form A3 with the four-component Poincaré section CA, CB, CC and CD.

The first-return map is built on variable

ρn = IA ⋅ ρA,n + IB ⋅ (1 + ρB,n) + IC ⋅ (2 + ρC,n) + ID ⋅ (3 + ρD,n) , (19)

leading to a map plotted in a square whose side have four units in length (Fig. 14). We will distinguish
twelve monotonic branches in this map, encoded according to their slope by 0, 1, 3, 4, 5, 7, 0, 1, 3, 4,
5, and 7. Symbols a are symmetry related to symbols a. Obtained from the first-return map, the symbol
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transition matrix

Ta =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

We have four domains in the multispiral attractors defined as

DA∣ = {0,1,7} ,
DB∣ = {4,5,3} ,
DC∣ = {0,1,7} ,
DD∣ = {4,5,3} ,

where the branches are ordered according to the order they appear in each domain or, equivalently, in a
single unit square using, for instance, variables ρA,n for branch “3” and ρB,n for branches “4” and “5” to
order these three branches in the domain DB∣. To be more explicit, let be the nth intersection in branch
“3” and the mth intersection in branch “4”. We have thus ρA,n > ρB,m, meaning that, when joined in
component CB, branch 3 is closer to the exterior boundary than branch 4. The orders specified for each
domain are the “natural” orders to be used to order the periodic points in the corresponding component
of the Poincaré section (see [Hao, 1989; Letellier et al., 1995] for details). The linking matrices must be
written using these orders. From our symbol notations, it clearly appears that domain DA∣ (DB∣) is the
symmetric of domain DC∣ (DD∣), and vice versa.

0 1 2 3 4
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1

ρn

0 1

3
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4
5

7

D|A D|B D|C D|D

DA|

DB|

DC|

DD|

Fig. 14. First-return map to a four-component Poincaré section of the chaotic attractor solution to the equations (16).
Parameter values are those of Fig. 12.
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In order to extract our template, we proceeded as follows. We constructed each inward open linking
matrix independently. Let us start for instance with the domain DA∣ = {0,1,7}. In this domain, we first

determined torsions and permutations between branches “0” and “1” which are both coming from com-
ponent CC . Then, we determined torsions and permutations between branch 7 and the first two, “0” and
“1”. We proceeded in a similar way for domain DB∣ = {4,5,3}. Linking matrices MC∣ and MD∣ are then
obtained by applying the procedure to get the image of a linking matrix L∣ under an inversion symmetry
[Rosalie & Letellier, 2013], that is,

L∣ = −L −
RRRRRRRRRRRRRRR

0 +1 +1

+1 0 +1

+1 +1 0

M
Q
Q
Q
Q
Q
Q
O

(21)

where L∣ is the symmetric of matrix L∣ and L is the corresponding open linking matrix [Rosalie & Letellier,
2013]. We thus proposed the inward open linking matrices

MA∣ =
RRRRRRRRRRRRR

0 −1 −1
−1 −1 −2
−1 −2 −1

M
Q
Q
Q
Q
Q
O

, MB∣ =
RRRRRRRRRRRRR

0 −1 −1
−1 −1 −2
−1 −2 −1

M
Q
Q
Q
Q
Q
O

,MC∣ =
RRRRRRRRRRRRR

0 0 0
0 1 1
0 1 1

M
Q
Q
Q
Q
Q
O

and MD∣ =
RRRRRRRRRRRRR

0 0 0
0 1 1
0 1 1

M
Q
Q
Q
Q
Q
O

, (22)

where branches are ordered according the natural order in each domain. Matrix MA∣ (MB∣) is the symmetric
matrix of MC∣ (MD∣) under an inversion symmetry as detailed in [Rosalie & Letellier, 2013]. These four
inward open mixers combined with the bounding torus induce a unique template (Fig. 15) and describe
completely the topology of the multispiral attractor.

The template is then validated using linking numbers as for instance

lk(7 0 0 0 1 3 4 4 4 4 4 4 7 0 0 0 0 0 0 3 4 4 5,
7 0 0 0 0 0 1 3 4 4 4 4 4 5 4 4 7 0 0 0 0 3 4 4 4) = 1

2
(−41 + 11 + 3 + 9 + 6) = −6 (23)

for which the oriented crossings were predicted using linking matrices (22). The orbits are segmented
according to which domain the orbit visit. The oriented crossings between segments of different orbits
are counted independently in each domain, and then summed. In each domain, the usual procedure as
described by [Le Sceller et al., 1994] is applied using the “natural” order defined in each domain. From the
elements of the linking matrices, we obtained a balance of 41 negative crossings and 11, 3, 9, and 6 positive
crossings were induced by the joining charts of components CA, CB, CC , and CD, respectively. These two
orbits were numerically extracted (Fig. 16) and the oriented crossings counted in the x-y plane projection:
we got −6 as predicted by our template.

5. Summary and conclusions

The topological analysis of attractors bounded by genus-g bounding torus An whose holes (n being interior
circles) are aligned, is as follows. First, for these tori, the genus is necessarily odd since n = m + 1. There
are g − 1 components in the Poincaré section. The first-return map is computed from variable

ρn = g−1∑
i=1

ICi(i − 1 + ρi,n) (24)

where i designates the ith component. From the map, the N ×N transition matrix Ta is built, N being
the number of monotonic branches in the first-return map. The (g − 1) domains are thus determined with
their natural orders. Inward open linking matrix are then determined and the template is drawn.

We thus proposed a general procedure to construct a template for attractors bounded by a bounding
torus An, A meaning that the interior holes are aligned, and n being the number of interior circles which
can be arbitrarily large. In order to do that, we enriched the concept of linking matrix to have an adequate
description by (g−1) linking matrices. By introducing a convention for representing clockwise the attractors,
ordering the branches from the interior circles to the exterior boundary, and using the standard joining
convention, the linking matrices induce an unique template. The case of attractors bounded by other types
of torus (not necessarily aligned) is currently under considerations.
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Fig. 15. Template that describes the attractor shown in Fig. 12.
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