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Time-periodic perturbations of an asymmetric Duffing–Van-der-Pol equation close to an
integrable equation with a homoclinic “figure-eight” of a saddle are considered. The behavior of
solutions outside the neighborhood of “figure-eight” is studied analytically. The problem of limit
cycles for an autonomous equation is solved and resonance zones for a nonautonomous equation
are analyzed. The behavior of the separatrices of a fixed saddle point of the Poincaré map in
the small neighborhood of the unperturbed “figure-eight” is ascertained. The results obtained
are illustrated by numerical computations.
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1. Introduction

The theory of time-periodic systems close to two-dimensional nonlinear Hamiltonian systems has been
greatly advanced by now (see, e.g., [Guckenheimer & Holmes, 1983], [Morozov & Shil’nikov, 1983], [Wiggins,
1990], [Morozov, 1998]). However, many problems remain unsolved, and new examples should be addressed.
In this paper, we will consider one such example – an asymmetric variant of the classical Duffing–Van-der-
Pol equation:

ẍ+ αx+ βx3 = ε[(γ1 + γ2x+ γ3x
2)ẋ+ γ4 sin γ5t], (1)

where α, β, γ1 ÷ γ5 are parameters, and ε is a small positive parameter. It is always possible to set α =
±1, β = ±1 in Eq. (1). Naturally, the case α = β = −1 is of no interest to us. In the cases α = 1, β = ±1,
the asymmetric perturbation term γ2xẋ does not play a significant role, it is essential only in the case
α = −1, β = 1. Equation (1) for α = 1, β = ±1 was studied in ample detail (see, e.g., [Morozov, 1973],
[Morozov & Shil’nikov, 1975], [Morozov, 1976], [Morozov, 1993], [Morozov, 1998]). Therefore, we will address
the case α = −1, β = 1. The phase plane of an unperturbed equation has two saddle separatrix loops O(0, 0)
forming “figure-eight” (Fig. 1). Of the three parameters γ1, γ2, γ3 one may be excluded to yield the following
equation

ẍ− x+ x3 = ε[(p1 + p2x− x2)ẋ+ p3 sin p4t], (2)

where p1÷ p4 are parameters1. An analysis of Eq. (2) implies the solution of the following tasks: 1) for the
autonomous equation (p3 = 0) – partition the plane of the parameters (p1, p2) into regions with different
topological structures and specify the structures; 2) for the nonautonomous equation (p3 6= 0) – determine
possible structures of resonance zones outside the neighborhood of “figure-eight” and the conditions of

1The equation with parametric perturbation was considered in [Litvak-Hinenzon & Rom-Kedar, 1997].
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existence of structurally stable and unstable homoclinic Poincaré structures in the neighborhood of “figure-
eight”. The existence of a homoclinic structure specifies complicated behavior of solutions, in other words,
it leads to chaos. Bifurcations in the neighborhood of “figure-eight” at a nonzero saddle value of the
unperturbed autonomous system were recently considered in [Gonchenko et al., 2013].

The Duffing–Van-der-Pol equation is widely used in the theory of oscillations (see, e.g., [Morozov,
1973], [Guckenheimer & Holmes, 1983], [Morozov, 1998]). Along with numerous applied problems in which
there arises Eq. (2), we can mention a purely mathematical problem of vector field bifurcations on a plane
that are invariant to the turn of angle π [Arnold, 1978]. In this problem, in Eq. (1) we have γ2 = γ4 = 0
and the coefficients of the linear terms αx+ εγ1ẋ, unlike our case, are the parameters of deformation. Note
also the work [Bautin, 1975] (as well as [Bautin & Leontovich, 1976]) where an autonomous system with
cubic nonlinearity without small parameter describing an electric circuit with tunnel diode was considered.
Possible local bifurcations were determined and phase portraits were constructed to an accuracy of an even
number of limit cycles.

The presence of the term p2xẋ in Eq. (2) greatly complicates the problem: there may exist in the
autonomous equation (p3 = 0) two limit cycles enclosing any of the equilibrium states O±(±1, 0), or a
“big” separatrix loop enclosing the equilibrium states O±(±1, 0) that is absent in the unperturbed equation
[Morozov & Fedorov, 1976], [Kostromina & Morozov, 2012].

Fig. 1. Phase portrait of unperturbed equation.

Solution of problems 2) and 3) rests upon the solution of problem 1). Therefore, we will start with the
first problem.

2. Investigation of an autonomous equation

2.1. Poincaré–Pontryagin generating functions

The first integral of the unperturbed equation is H(x, y) ≡ y2/2−x2/2+x4/4 = h. The values h ∈ (−0.25, 0)
correspond to the domains G±1 inside “figure-eight”, and h > 0 to the domain G2 outside “figure-eight”
(Fig. 1). The value h = 0 corresponds to two symmetric saddle loops (“figure-eight”).

The main problem in studying Eq. (2) for p3 = 0 is limit cycles. Its solution results in finding real
zeros of the Poincaré–Pontryagin generating functions B(h) [Morozov, 1998].
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According to [Kostromina & Morozov, 2012], we have

B1 = B±1 (ρ(h)) =
4

30π(2− ρ)5/2
{2(5p1 − 1)(ρ− 1)(2− ρ)K(k)+

+
[
5p1(2− ρ)2 − 4(ρ2 − ρ+ 1)

]
E(k)± 15p2

√
2

16
πρ2
√

2− ρ} ≡

≡ 4

30π(2− ρ)5/2
B±10(ρ)

(3)

for the domains G±1 and

B2 = B2(ρ(h)) =
8

30π(2ρ− 1)5/2
{[5p1(2ρ− 1)(1− ρ)− 2(ρ− 1)(2− ρ)] K(k)+

+
[
5p1(2ρ− 1)2 − 4(ρ2 − ρ+ 1)

]
E(k)

}
≡ 8

30π(2ρ− 1)5/2
B20(ρ)

(4)

for the domain G2. Here, K(k),E(k) are complete elliptic integrals and ρ = k2. Note that ρ is a more
convenient variable than h. In the formula (3) we have ρ(h) = 2

√
1 + 4h/(1 +

√
1 + 4h) (ρ ∈ (0, 1)), and in

(4) we have ρ(h) = (1 +
√

1 + 4h)/2
√

1 + 4h (ρ ∈ (1/2, 1)); ρ = 1 corresponds to “figure-eight”. Note that
the function B2(ρ) does not depend on the parameter p2.

2.2. Limit cycles

Investigation of the functions B±1 (ρ), B2(ρ) gives the following results [Kostromina & Morozov, 2012].

Theorem 1. For sufficiently small ε, the number of limit cycles in each domain G±1 and G2 of Eq. (2)
does not exceed two.

Theorem 2. For sufficiently small ε, the number of limit cycles of Eq. (2) does not exceed three.

The authors of [Kostromina & Morozov, 2012] partitioned the parameter plane into 22 domains Dm,
m = 1, . . . , 22, gave the basic phase portraits at different values of parameters from those domains and
found all bifurcations.

By virtue of the invariance of Eq. (2) to the change (p2, x, y)→ (−p2,−x,−y) the partitioning of the
plane of the parameters (p1, p2) is symmetric to the p1 axis. Therefore, only the upper half plane p2 ≥ 0
containing 13 domains Dm, m = 1, . . . , 13 is shown in Fig. 2. A magnified fragment of Fig. 2 is presented
schematically in Fig. 3. By virtue of the symmetry, the phase portraits for the domain p2 < 0 are obtained
by the turn of angle π of the corresponding phase portrait from the domain p2 > 0.

Let us introduce the notation (i, j, k) that means the existence of i limit cycles inside the right loop,
j inside the left loop, and k outside “figure-eight”. It was proved that D1 is of the type (0, 0, 0);D2 −
(0, 0, 2), D3−(0, 0, 1);D4−(0, 1, 1);D5−(0, 0, 1);D6−(1, 1, 1);D7−(1, 0, 1);D8−(1, 0, 2);D9−(0, 0, 2);D10−
(0, 0, 0);D11 − (1, 0, 0);D12 − (2, 0, 0);D13 − (1, 0, 0).

The notation of the bifurcation lines in Fig. 2:
L±1 : p1 ± p2 − 1 = 0 – straight lines at which the autonomous equation has structurally unstable foci

O±(±1, 0) in domains G±1 , respectively.
A+(−1

3 ,
4
3) – the point on the straight line L+

1 from which the double cycle line originates. The double

cycle line is plotted using the system B+
10(ρ, p1, p2) = 0, [dB+

10(ρ, p1, p2)/dρ] = 0, ρ ∈ (0, 1); the point A+

corresponds to ρ = 0. This point is readily found by the power series expansion of the function B+
10(ρ) in

the neighborhood of ρ = 0 in the case of a structurally unstable focus and zero first Lyapunov exponent
(with the second Lyapunov exponent being nonzero). The extreme point As+(0, 0.96) of the double cycle
line corresponds to ρ = 1 (see Fig. 3). When the saddle value σc = εp1 vanishes to zero at p1 = 0 the
double cycle merges with the separatrix2.

2In the lower half plane we have the points A−(− 1
3 ,−

4
3 ) and As−(0,−0.96), respectively.
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Fig. 2. Partition of the plane of parameters (p1, p2) into domains with different phase portrait topology.

Fig. 3. Magnified fragment of Fig. 2.

L±2 : 5p1 ± 15
√
2π

16 p2 − 4 = 0 – straight lines on which the autonomous equation has separatrix loops

(right, left) of saddle O(0, 0) in domains G±1 . These straight lines are given by the Melnikov formula for
autonomous systems.

L3 – double cycle line in domain G2 corresponding to the bifurcation value p1 ≈ 0.7523.
L4 – line of the “big” loop of the separatrix of saddle O(0, 0). This line was plotted numerically using

the WInSet software [Morozov & Dragunov, 2003].
Basic phase portraits of a perturbed autonomous equation for the parameter values from 13 domains

on the (p1, p2) plane are presented in Fig. 4. The dots show the equilibrium states ((0, 0) saddle point
and (±1, 0) focus), the arrows indicate directions of motion on the separatrices. Note also that the limit
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Fig. 4. Basic phase portraits of perturbed autonomous equation in domains D1 (a); D2 (b); D3 (c); D4 (d); D5 (e); D6 (f);
D7 (g); D8 (h); D9 (i); D10 (j); D11 (k); D12 (l); D13 (m).

cycle near “figure-eight” is unstable. The other phase portraits for symmetric domains may be obtained
by rotation of angle π. The simplest phase portraits are obtained for the dissipation domain D10.
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3. Analysis of resonance zones topology

In the domains filled with closed phase curves of the unperturbed equation (ε = 0) and separated from
the unperturbed separatrices, we will pass in Eq. (2) to the “I action–θ angle ” variables by the following
formulas

I(h) =
1

2π

∮
y(x, h)dx,

θ =
∂S(x, I)

∂I
, S =

∫ x

x0

y(x, h(I))dx,

(5)

where S(x, I) is the generating function of this canonical transformation. The resulting system will be
written in the form

İ = ε[(p1 + p2x− x2)y + p3 sinϕ]x′θ ≡ εF1(I, θ, ϕ),

θ̇ = ω(I) + ε[(p1 + p2x− x2)y + p3 sinϕ]x′I ≡ ω(I) + εF2(I, θ, ϕ),

ϕ̇ = p4,

(6)

where ω is the frequency of self-excited oscillations. Consider the resonance case when

ω(Ipq) = (q/p)p4, (7)

where p, q are coprime integer numbers. The level I = Ipq (closed phase curve H(x, y) = hpq of the
unperturbed system) will be referred to as the resonance level. The neighborhood U√ε = {(I, θ) : Ipq −
C
√
ε < I < Ipq + C

√
ε, 0 ≤ θ < 2π, C = const > 0} will be called the resonance zone.

By the substitution

θ = ψ + (q/p)ϕ, I = Ipq + µη, µ =
√
ε, (8)

in (6), by averaging the obtained system over the fast variable ϕ and neglecting the terms O(µ3), we obtain
the system [Morozov, 1998]

u̇ = µA0(v, Ipq) + µ2P0(v, Ipq)u,

v̇ = µbu+ µ2(b1u
2 +Q0(v, Ipq)),

(9)

where u = η +O(µ), v = ψ +O(µ2), b = dω(Ipq)/dI, b1 = d2ω(Ipq)/2dI
2,

A0(v, Ipq) =
1

2πp

∫ 2πp

0
F1(Ipq, v + qϕ/p, ϕ)dϕ, (10)

P0(v, Ipq) =
1

2πp

∫ 2πp

0
[∂F1(Ipq, v + qϕ/p, ϕ)/∂I]dϕ, (11)

Q0(v, Ipq) =
1

2πp

∫ 2πp

0
F2(Ipq, v + qϕ/p, ϕ)dϕ. (12)

The substitution u→ u− µQ0(v, Ipq)/b and the transition to “slow time” τ = µt reduces Eqs. (9) to
a pendulum equation [Morozov, 1998]

d2v

dτ2
− bA0(v, Ipq) = µσ(v, Ipq)

dv

dτ
, (13)

where

σ(v, Ipq) =
1

2πp

∫ 2πp

0
(p1 + p2x− x2)∣∣∣∣∣x = x(Ipq, v + qϕ/p)

y = y(Ipq, v + qϕ/p)

dϕ. (14)

Apparently, σ = const.
The topology of individual resonance zones may be found from Eq. (13) to an accuracy of terms of

order µ2.
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In calculations of the function A0(v, Ipq) and quantities b and σ we distinguish the following cases.
Case 1 : (x, y) ∈ G±1 = {(x, y) : y2/2− x2/2 + x4/4 = h, h ∈ (−0.25, 0)};
Case 2 : (x, y) ∈ G2 = {(x, y) : y2/2− x2/2 + x4/4 = h, h > 0}.
The unperturbed solution in (6) is different in each case [Kostromina & Morozov, 2012].

We represent the function A0(v, Ipq) in the form A0j(v, Ipq) = Ã0j(v, Ipq) + Bj(Ipq) and designate
b = bj , σ = σj , j = 1, 2, where B1, B2 are the Poincaré–Pontryagin generating functions (3) and (4),
respectively.

Following [Morozov, 1998], we refer to the resonance level I = Ipq as splittable if the equation
A0j(v; Ipq) = 0 has simple roots. The nonsplittable resonance level I = Ipq for which |A0j(v; Ipq)| > 0
is called passable. The splittable resonance level I = Ipq is called partially passable, if Bj(Ipq) 6= 0 and
impassable, if Bj(Ipq) = 0.

Note that the behavior of solutions of the initial equation (2) in the neighborhood of passable, partially
passable and impassable resonance levels is defined by the theorems from [Morozov, 1998].

3.1. Case 1

Using the unperturbed solutions at the resonance level and formulas (10), (14), we find for q = 1

d2v

dτ2
− b1(p3A1 cos pv +B1) = µσ1

dv

dτ
, (15)

where

b1 =
π

2

(2− ρ)3/2[2(1− ρ)K(ρ)− (2− ρ)E(ρ)]

ρ2(1− ρ)K2(ρ)
, (16)

σ1 = p1 −
2

(2− ρ)K(ρ)
E(ρ), (17)

A1 = −
√

2p4
ap

1 + a2p
, a = exp

(
−πK(

√
1− ρ)

K(ρ)

)
. (18)

For q > 1 we obtain the equation

d2v

dτ2
− b1B1 = µσ1

dv

dτ
. (19)

Thus, for q = 1 the topology of resonance zones is described by Eq. (15). The phase portraits of this
equation are well known [Morozov, 1998] (Fig. 5). At B1(Ipq) = 0, we have by definition an impassable
resonance (Fig. 5(c)). In this case, the resonance level I = Ipq coincides with the level I = I0 in the
neighborhood of which the autonomous equation has a limit cycle. A partially passable resonance is
presented in Fig. 5(b), and a passable resonance in Fig. 5(a). According to (19), at q > 1 and B1(Ipq) 6= 0
we have a passable resonance.

Consider briefly the bifurcations of the transition from the impassable to the partially passable
resonance. Let us set in Eq. (15) B1 = µγ, where γ defines the deviation of the resonance level I = Ipq
from I = I0. We denote by γ± the bifurcation values of γ at which Eq. (15) has, respectively, the upper
or lower loop enclosing a phase cylinder. As γ deviates from the bifurcation value, the loop gives birth
to a limit cycle enclosing a phase cylinder, and the resonance level becomes partially passable. The limit
cycle corresponds to the two-dimensional torus in the initial equation (for the Poincaré map it is a closed
invariant curve shown in Fig. 6). More details about these bifurcations can be found in [Morozov, 1998].

The frequency ω(I) of the self-excited oscillations in domains G±1 meets the condition ω(I) ∈ (0,
√

2)

and is a monotonic function. Then from the resonance condition (7) follows p > p4/
√

2. Therefore, only
the resonance levels H(x, y) = y2/2 − x2/2 + x4/4 = hp1, for which p > p4/

√
2, are split. Note that the

resonance levels with larger values of p are closer to the unperturbed separatrix.
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-p/p p/p0

0

v

u

-p/p p/p0

0

vv -p/p p/p0

0

v

0

(a) (b) (c)

Fig. 5. Phase portraits for Eq. (15).

3.2. Case 2

Analogously to Case 1, we find the equation

d2v

dτ2
− b2(p3A2 cos pv +B2) = µσ2

dv

dτ
, (20)

that defines the topology of the resonance zones at odd p and q = 1. Otherwise, the resonance zones
topology is defined by the equation

d2v

dτ2
− b2B2 = µσ2

dv

dτ
. (21)

In (20) and (21) we have

b2 =
π

4

(2ρ− 1)3/2[(1− ρ)K(ρ) + (2ρ− 1)E(ρ)]

ρ(1− ρ)K2(ρ)
, (22)

σ2 = p1 −
2

(2ρ− 1)K(ρ)
(E(ρ) + (ρ− 1)K(ρ)), (23)

A2 = −2
√

2p4
ap/2

1 + ap
. (24)

For even p and/or q > 1, the resonance is passable if B2(Ipq) 6= 0.
The Poincaré map for Eq. (2) at different parameter values was constructed using the WInSet software

[Morozov & Dragunov, 2003]3. It was found that at small values of ε numerical results are in a good
agreement with the theoretical study. Figure 6 illustrates the structure of the neighborhood of the splittable
levels I = I21, I = I31. The impassable resonance zones are shown in Figs. 6(a) and 6(c), and the partially
passable zones in Figs. 6(b) and 6(d). The dots in Fig. 6 correspond to points of period-2, as well as to
the fixed points of the Poincaré map in domain G+

1 (Figs. 6(a) and 6(b)) and periodic points of period-3
in domain G2 (Figs. 6(c) and 6(d)). Besides, a closed invariant curve of the Poincaré map in domain G+

1 is
shown in Fig. 6(b) and in domain G2 in Fig. 6(d). The stable separatrices are plotted by the blue curves,
the unstable separatrices by the red ones.

Note that the fixed and periodic points in resonance zones correspond to resonance periodic solutions
of period 2πp/p4 in the initial equation, and the closed invariant curves to quasiperiodic (double-frequency)
solutions (two-dimensional tori).

3The first version of the software was described in [Morozov et al., 1999].
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(a) (b)

(c) (d)

Fig. 6. Behavior of invariant curves of the Poincaré map for Eq. (2) at ε = 0.1 and p1 = 1, p2 = −0.1, p3 = 0.5, p4 = 2.5 (a);
p1 = 1, p2 = −0.02, p3 = 0.5, p4 = 2.5 (b); p1 = 1, p2 = 0.03, p3 = 1, p4 = 3.36 (c); p1 = 1, p2 = 0.03, p3 = 1, p4 = 3 (d).

4. On global behavior of solutions outside the neighborhood of “figure-eight”

The resonance levels corresponding to the limit cycles in the autonomous equation (p3 = 0 in Eq. (2)) are
splittable as Bj(Ipq) = 0, j = 1, 2 for these levels. According to Sec. 2, the number of such levels in each
domain G±1 , G2 is no more than two. Let us remove from these domains the neighborhoods of such levels
and designate the remaining domains without the neighborhood of “figure-eight” by V . Using the results
obtained in [Morozov, 1998] and Eqs. (15), (18), (20) and (24), we obtain the following theorem.

Theorem 3. There are only finitely many splittable resonance levels in V .

It follows from this theorem that for relatively small ε > 0 the neighborhoods of splittable resonance
levels do not intersect. This allows us to speak about the global behavior of solutions in the considered cells.
According to [Morozov, 1998], the separatrices of saddle periodic solutions lying at different resonance levels
intersect, causing the formation of heteroclinic structures and a complicated geometry of the attraction
domains of stable periodic solutions.

Consider as an example of the illustration of global behavior of solutions, a cell inside the right loop.
Let the perturbed autonomous equation have two limit cycles in this cell (domain D12 in the bifurcation
diagram) and ρ = ρ(1), ρ = ρ(2) be simple roots of the Poincaré–Pontryagin function B+

1 (ρ) in domain G+
1 .

Let us fix the parameter p2 = 1.22 and find the values of the parameters p1, p4 at which the cycle
ρ = ρ(1) coincides with the resonance level I = I21, and the cycle ρ = ρ(2) with the level I = I31. From
the resonance condition (7) we have p4 = 2ω(ρ(1), p1) = 3ω(ρ(2), p1). From this relation and the equations
defining the limit cycles B+

1 (ρ(1), p1) = 0, B+
1 (ρ(2), p1) = 0, we find p1 ≈ −0.221, ρ(1) ≈ 0.45, ρ(2) ≈ 0.98.
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x
0.4 0.8 1.2

-0.4

0.0

0.4

y

x
0.965 0.970 0.975 0.980

-0.03

0.00

0.03

(a) (b)

Fig. 7. Behavior of the trajectories of the Poincaré map for Eq. (2) in the case of two impassable resonances with p = 2 and
p = 3 in domain G+

1 (a), and a fragment of this domain (b). Here, ε = 0.01, p1 = −0.221, p2 = 1.22, p3 = 1, p4 = 2.782.

Then, at p4 ≈ 2.782 we will have impassable resonance zones. There exists in the initial equation a stable
periodic solution of period 6π/p4 (stable periodic points of period-3 in the red zone in Fig. 7(a)) and
an unstable periodic solution of period 4π/p4 (unstable periodic points of period-2 in the white zone in
Fig. 7(a)). All the other resonance levels between the above ones will be passable. Between the resonance
zones, trajectories fill the cell under consideration (see Fig. 7(a); actually, these trajectories are slowly
spiraling and tend to stable periodic points of period-3 as t → ∞). A higher-order partially passable
resonance can be seen near the unperturbed separatrix loop in Fig. 7(a). A magnified fragment with a
trajectory inside the resonance zone with p = 2 is presented in Fig. 7(b), where one can see passable
resonances. Passable resonances were also observed between the resonance zones with p = 2 and p = 3.

The behavior of the invariant curves of the Poincaré map in the neighborhood of the impassable
resonance zone with p = 2 is shown in more detail in Fig. 6(a).

5. Analysis of the behavior of solutions in the small neighborhood of
“figure-eight”

The unperturbed equation ẍ − x + x3 = 0 has a right loop Γr = Γrs
⋃

Γru of saddle separatrix O(0, 0) and
the left loop Γl = Γls

⋃
Γlu (Fig. 1).

It is known that under the action of perturbations, the separatrices of the fixed saddle point of the
Poincaré map may intersect forming homoclinic structures of two types: 1) Γrs

⋂
Γru 6= � and/or Γls

⋂
Γlu 6=

�; 2) Γru
⋂

Γls 6= � or Γrs
⋂

Γlu 6= �, when p2 6= 0.
Existence of a homoclinic structure results in complicated behavior of solutions in its neighborhood

or, in other words, in a nontrivial hyperbolic set [Shil’nikov, 1967]. The problem of the existence of type
1) homoclinic structure is solved using the Melnikov formula [Mel’nikov, 1963] ∆(t0) = ε∆1(t0) + O(ε2),
where ∆(t0) is the distance between the related branches of the separatrix into which the unperturbed
separatrix splits. The substitution of x = ξ + εx1(t) +O(ε2), where

x1(t) = − p3
1 + p42

sin (p4t), (25)

in (2) yields the following equation

ξ̈ − ξ + ξ3 = ε

[
(p1 + p2ξ − ξ2)ξ̇ +

3p3
1 + p42

ξ2 sin (p4t)

]
. (26)
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Applying the Melnikov formula to this equation, we find

∆1(t0) = 2

(
2

3
p1 ±

π

8

√
2p2 −

8

15

)
+

3πp4
2cosh(πp4/2)

p3 cos (p4t0). (27)

If ∆1(t0) is an alternating function, which holds under the condition

|p3| > p∗3 =
4

3

∣∣∣∣(2

3
p1 ±

π

8

√
2p2 −

8

15

)
cosh(πp4/2)

πp4

∣∣∣∣ , (28)

then there occurs transversal intersection of the stable and unstable manifolds of the fixed point.
If ∆1(t0) is a constant-sign function, then the corresponding separatrix manifolds of the saddle fixed

point do not intersect. However, if the value of |p3− p∗3| is small enough, then, as follows from [Gavrilov &
Shil’nikov, 1972], [Morozov, 1976], a nontrivial hyperbolic set exists in the neighborhood of “figure-eight”.

Under the condition

|p3| =
4

3

∣∣∣∣(2

3
p1 ±

π

8

√
2p2 −

8

15

)
cosh(πp4/2)

πp4

∣∣∣∣ (29)

the corresponding separatrices of the fixed point (0, 0) are tangent to each other (to an accuracy of terms
of order ε2).

Making use of the Melnikov formula, it is easy to represent all possible cases of relative position of
the separatrices as a result of splitting of the left or right separatrix loop. For example, for p3 = 0, the
condition

2

3
p1 +

π

8

√
2p2 −

8

15
= 0

specifies the existence of the right separatrix loop. With allowance for external force, the outgoing and
incoming separatrices intersect transversally, forming a homoclinic Poincaré structure. In this case, for the
left separatrix loop we have

∆1(t0) = −π
2

√
2p2 +

3πp4
2cosh(πp4/2)

p3 cos (p4t0). (30)
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0.6

(a) (b) (c)

Fig. 8. Behavior of separatrices of the fixed point (0, 0) for Eq. (26) on the (ξ = x, ξ̇ = y) plane at ε = 0.3, p1 = 0.7551195621,
p2 = 0.053875454, p4 = 4 and p3 = 1.13 (a), p3 = 1.7 (b), p3 = 2.83 (c).

The separatrices of the fixed point (0, 0) of the Poincaré map on the (ξ = x, ξ̇ = y) plane are shown
in Fig. 8 for ε = 0.3, p1 = 0.7551195621, p2 = 0.053875454, p4 = 4 and p3 = 1.13 (a), p3 = 1.7 (b), and
p3 = 2.83 (c).

Note that for p1 = 0.8, p2 = 0, p3 = 0 the unstable limit cycle in Eq. (2) coincides with “figure-eight”.
Then, for small enough p3 6= 0, the inverse Poincaré map has a quasiattractor.

When a perturbed autonomous equation has a “big” separatrix loop, the Melnikov formula does not
hold for a nonautonomous equation. For this case, the separatrices of a fixed saddle point of the Poincaré
map for Eq. (26) on the (ξ = x, ξ̇ = y) plane are shown in Fig. 9 for ε = 0.1, p1 = 0.78549, p3 = 1.02, p4 = 4
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Fig. 9. Behavior of separatrices of the fixed point (0, 0) for Eq. (26) at ε = 0.1, p1 = 0.78549, p3 = 1.02, p4 = 4 and (a)
p2 = 1.6, (b) p2 = −1.6.

x-0.9 0.9

y

-0.6

0.6

x-0.9 0.9

y

-0.6

0.6

(a) (b)

x-0.9 0.9

y

-0.6

0.6

x-0.9 0.9

y

-0.6

0.6

(c) (d)

Fig. 10. Behavior of separatrices of the fixed point (0, 0) for Eq. (26) at ε = 0.175, p1 = 0.78549, p3 = 1.02, p4 = 4 and (a)
p2 = 1.6, (b) p2 = −1.6; ε = 0.175, p1 = 0.7850145, p3 = 0.57, p4 = 4, (c) p2 = 0.5, (d) p2 = −0.5.

and (a) p2 = 1.6, (b) p2 = −1.6. There occurs transversal intersection of the corresponding separatrices
(Γru

⋂
Γls 6= � in Fig. 9(a) and Γrs

⋂
Γlu 6= � in Fig. 9(b)). Also, homoclinic structures with tangency

(Fig. 10) are possible at different values of the parameters.
Figure 11 illustrates other homoclinic structures with tangency of stable and unstable separatrices of

the fixed point (0, 0) for Eq. (26) at ε = 0.12, p4 = 4 for the following values of the parameters p1, p2, p3:
(a) p1 = 0.7, p2 = 0.3, p3 = 3; (b) p1 = 0.86, p2 = 0.2, p3 = 4.55; (c) p1 = 0.6, p2 = 0.1, p3 = 2.34; (d)
p1 = 0.86, p2 = 0.25, p3 = 2.96; (e) p1 = 1, p2 = 0.1, p3 = 2.32; (f) p1 = 0.7, p2 = 0, p3 = 2; (g) p1 = 0.8,
p2 = 0.2, p3 = 3.34; (h) p1 = 0.9, p2 = 0, p3 = 1.98; (i) p1 = 0.65, p2 = 0.35, p3 = 2.82; (j) p1 = 0.9,
p2 = 0.3, p3 = 2.97.

6. Bifurcation diagrams

Using the WInSet and Maple 13 software, we constructed three bifurcation diagrams of the Poincaré map
for Eq. (26) on the (p2, p3) plane for fixed values of the parameters ε, p1, and p4. In the bifurcation curves,
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Fig. 11. Other homoclinic structures with tangency of stable and unstable separatrices of the fixed point (0, 0) for Eq. (26).

the corresponding separatrices of the fixed point (0,0) are tangent to each other. These curves separate
domains with homoclinic structure on the plane of parameters (p2, p3) (the stable and unstable separatrices
of the saddle point (0,0) intersect transversally). The three bifurcation diagrams describe all possible cases
of the relative position of separatrices of the fixed saddle point (0,0) for the Poincaré map.

The obtained bifurcation diagrams are symmetric to the p3 axis. Let us set p2 > 0 and consider in
more detail each of the three bifurcation diagrams. By fixing ε = 0.12, p1 = 0.78, p4 = 4, we obtain six
bifurcation curves. Equations for the straight lines M1, M2, M3 are found from (29). The other bifurcation
curves M4, M5, M6 are obtained numerically by means of the WInSet software. Each pair of lines M2 and
M3, M4 and M5, M5 and M6 have exactly one common point on the p2 axis. The first point (p2 ≈ 0.024)
corresponds to the right separatrix loop in the autonomous equation; the next two points (p2 ≈ 0.25838
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and p2 ≈ 1.0983) correspond to the “big” separatrix loop in the autonomous equation. The intersection
points of the lines M2 and M4, as well as of the lines M1, M3 and M4 correspond to double homoclinic
tangency. The obtained bifurcation curves are presented in Fig. 12.

Fig. 12. Bifurcation diagram for the Poincaré map on the (p2, p3) plane at p1 = 0.78.

Setting ε = 0.12, p1 = 0.8, p4 = 4, we obtain three bifurcation curves shown in Fig. 13. As the
parameter p1 changes from 0.78 to 0.8 the straight lines M1 and M2 in Fig. 12 approach each other
and coincide at p1 = 0.8. As a result we obtain a straight line N1 with a new type of tangency – double
homoclinic tangency. An equation for N1 is found from (29). The lines N2 and N3 obtained numerically
have one common point (p2 ≈ 1.788, p3 = 0) corresponding to the “big” separatrix loop in the autonomous
equation.

Fig. 13. Bifurcation diagram for the Poincaré map on the (p2, p3) plane at p1 = 0.8.

Setting ε = 0.12, p1 = 0.82, p4 = 4, we obtain five bifurcation curves plotted in Fig. 14. Equations
for the straight lines R1, R2, R3 are found from (29). The other bifurcation lines R4, R5 are obtained
numerically using the WInSet software. The intersection point of the curves R4 and R5 (p2 ≈ 2.28515,
p3 = 0) corresponds to the “big” separatrix loop in the autonomous equation. The intersection points of
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R2 and R4 and of R1, R3 and R4 give double homoclinic tangencies.

Fig. 14. Bifurcation diagram for the Poincaré map on the (p2, p3) plane at p1 = 0.82.

Each of the three bifurcation diagrams has domains with homoclinic structure and a nonsmooth
boundary. This phenomenon was explained in ample detail in the work [Gonchenko et al., 2013].

7. Conclusion

The problem of time-periodic perturbations of two-dimensional Hamiltonian systems with a saddle and
two separatrix loops in the form of “figure-eight” is a challenging problem for the theory of bifurcations.
Bifurcations in the neighborhood of “figure-eight” for the case of an unperturbed autonomous system with
a nonzero saddle value were recently considered in [Gonchenko et al., 2013]. This problem for the case of
a zero saddle value has not been fully understood yet. The asymmetric Duffing–Van-der-Pol equation (2)
studied in the present work is a good model for solution of this problem.

Despite its fundamental role in the theory of differential equations, the theory of bifurcations, and the
theory of oscillations, Eq. (2) has not been studied thus far for the case when p2 6= 0. We have solved the
problem of limit cycles in the autonomous case. For the nonautonomous case, we have found resonance zone
structures and global behavior of solutions in the cells separated from unperturbed separatrices. Different
resonance periodic solutions and two-dimensional invariant tori have also been found. The problem of the
existence of homoclinic structures in the neighborhood of unperturbed separatrices (in the neighborhood
of “figure-eight”) has been solved. All possible cases of relative position of the separatrices of a trivial fixed
saddle point for the Poincaré map have been revealed. Three bifurcation diagrams for the Poincaré map on
the (p2, p3) plane separating domains of existence of different homoclinic structures have been constructed.
The results obtained for the separatrix tangency illustrate many specific features found in [Gonchenko et
al., 2013] for two-parametric families of maps in the neighborhood of “figure-eight” with nonzero saddle
value.

Note that some of the problems associated with the presence of homoclinic structures remain open. For
example, one such problem is to study fractal properties of attraction basin boundaries for stable periodic
regimes in the considered equation.
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