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Planar quadratic differential systems occur in many areas of applied mathematics. Although
more than one thousand papers have been written on these systems, a complete understanding
of this family is still missing. Classical problems, and in particular, Hilbert’s 16th problem
[Hilbert, 1900, Hilbert, 1902], are still open for this family. Our goal is to make a global study
of the family QsnSNN of all real quadratic polynomial differential systems which have a finite
semi—elemental saddle-node and an infinite saddle—node formed by the collision of two infinite
singular points. This family can be divided into three different subfamilies, all of them with
the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the
eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite
saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and
(C) with the infinite saddle-node in the bisector of the first and third quadrants. These three
subfamilies modulo the action of the affine group and time homotheties are three—dimensional
and we give the bifurcation diagram of their closure with respect to specific normal forms, in the
three—dimensional real projective space. The subfamilies (A) and (B) have already been studied
[Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the
last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct
phase portraits with and without limit cycles for systems in the closure QsnSN(C) within the
representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to
construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The
bifurcation set of QsnSN(C) is not only algebraic due to the presence of some surfaces found
numerically. All points in these surfaces correspond to either connections of separatrices, or the
presence of a double limit cycle. Keywords: Quadratic differential systems; finite saddle-node;

infinite saddle—node; phase portraits; bifurcation diagram; algebraic invariants. AMS Subject

classification: Primary: 34C40, 51F14; Secondary: 14D05, 14D25.
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1. Introduction, brief review of the litera-
ture and statement of results

Here we call quadratic differential systems, or sim-
ply quadratic systems, differential systems of the
form

T =

p(z,9),
gy = (1)

q(z,y),

where p and ¢ are polynomials over R in = and y
such that the max(deg(p),deg(q)) = 2. To such
a system one can always associate the quadratic
vector field

0 0
= e e 2

as well as the differential equation
qgdx —pdy = 0. (3)

The class of all quadratic differential systems (or
quadratic vector fields) will be denoted by QS.
We can also write system (1) as

T :po—l—pl(:c,y)—i—pg(:v,y):p(:v,y), (4)
¥y =q0+aq(z,y) + ey =qz,y),

where p; and ¢; are homogeneous polynomials of de-
gree ¢ in the variables x and y with real coefficients
and p3 + ¢35 # 0.

Even after hundreds of studies on the topology
of real planar quadratic vector fields, it is kind of
impossible to outline a complete characterization
of their phase portraits, and attempting to topo-
logically classify them, which occur rather often in
applications, is quite a complex task. This family
of systems depends on twelve parameters, but due
to the action of the group Aff(2,R) of real affine
transformations and time homotheties, the class ul-
timately depends on five parameters, but this is still
a large number.

The main goal of this paper is to complete the
study of the class QsnSN of all quadratic systems
possessing a finite saddle-node sn(y) and an infinite

saddle—node of type (g) SN. We recall that a fi-
nite saddle—node is a semi—elemental singular point
whose neighborhood is formed by the union of two
hyperbolic sectors and one parabolic sector. By a
semi—elemental point we mean a point with zero de-
terminant of its Jacobian with only one eigenvalue
equal to zero. These points are known in classical
literature as semi—elementary, but we use the term

semi—elemental introduced in [Artés et al., 2013a)
as part of a set of new definitions more deeply re-
lated to singularities, their multiplicities and, es-
pecially, their Jacobian matrices. In addition, an
infinite saddle—node of type (g) SN is obtained by
the collision of an infinite saddle with an infinite
node. There are two types of infinite saddle-nodes

and the second one is denoted by (})S N which is ob-
tained by the collision of a finite node (respectively,
finite saddle) with an infinite saddle (respectively,
infinite node) and which will appear in some of the
phase portraits.

If we have a finite saddle-node sm ), the pos-
sibility of having two other finite singular points is
present. Indeed, in case the remaining singularities
did not go to infinity, then there are two other sin-
gularities in the finite plane, either real, or complex,
or the origin may have higher multiplicity.

The class QsnSN is divided into three sub-
families according to the position of the infinite
saddle-node, namely QsnSN(A), QsnSN(B) and
QsnSN(C). In [Artés et al., 2014] the authors
gave a partition of the closure of the first two
subfamilies and this paper presents a continuation
in the study of this subclass QsnSN presenting
the analysis of the closure of the last subfamily
QsnSN(C).

For this analysis we follow the pattern set out
in [Artés et al., 2006] and, in order to avoid repeat-
ing technical sections which are the same for both
papers, we refer to the paper mentioned for more
complete information.

We now give the notion of graphics, which play
an important role in obtaining limit cycles when
they are due to connection of separatrices, for ex-
ample.

A (non-degenerate) graphic as defined in
[Dumortier et al., 1994] is formed by a finite se-
quence of singular points rq,72,...,r, (with pos-
sible repetitions) and non-trivial connecting orbits
~; for i = 1,...,n such that v; has r; as a—limit
set and 7;4+1 as w-limit set for ¢« < n and =, has
r, as a-limit set and r; as w-limit set. Also nor-
mal orientations n; of the non-trivial orbits must
be coherent in the sense that if v;_; has left-hand
orientation then so does v;. A polycycle is a graphic
which has a Poincaré return map.

A degenerate graphic is formed by a finite se-
quence of singular points ri,79,...,7, (with pos-
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sible repetitions) and non-trivial connecting orbits
and/or segments of curves of singular points ~; for
1 =1,...,n such that ; has r; as a—limit set and
ri+1 as w-limit set for ¢ < n and ~, has r, as a—
limit set and 71 as w-limit set. Also normal ori-
entations n; of the non-trivial orbits must be co-
herent in the sense that if v;_; has left-hand ori-
entation then so does 7;. For more details, see
[Dumortier et al., 1994].

In [Artés et al., 1998] the authors proved the
existence of 44 topologically different phase por-
traits for the structurally stable quadratic pla-
nar systems modulo limit cycles, also known as
the codimension—zero quadratic systems. Roughly
speaking, these systems are characterized by hav-
ing all singularities, finite and infinite, simple, no
separatrix connection, and where any nest of limit
cycles is considered as a single point with the sta-
bility of the outer limit cycle. The next step is the
classification of the structurally unstable quadratic
systems of codimension-one which have one and
only one of the simplest structurally unstable ob-
jects: a saddle-node of multiplicity two (finite or
infinite), a separatrix from one saddle point to an-
other, and a separatrix forming a loop for a saddle
point with its divergence nonzero. All the phase
portraits of codimension one are split into four
groups according to the possession of a structurally
unstable element: (A) possessing a finite semi-
elemental saddlenode, (B) possessing an infinite

semi-elemental saddle-node (g) SN, (C) possessing

an infinite semi—elemental saddle-node G)SN , and
(D) possessing saddle connection.

The study of the codimension—one systems is
already in progress [Artés & Llibre, 2014], all topo-
logical possibilities have already been found, some
of them have already been proved impossible and
many representatives have been found, but some
cases without candidate still remain. One of the
ways to obtain codimension—one phase portraits is
considering a perturbation of known phase portraits
of quadratic systems of higher codimension. This
perturbation would decrease the codimension of the
system and a representative for a topological equiv-
alence class in the family of the codimension—one
systems may be found and added to the existing
classification.

In order to contribute to this classification,
some families of quadratic systems of codimen-

sion greater than one have been studied, e.g.
systems with a weak focus of second order (see
[Artés et al., 2006]), with a finite semi-elemental
triple node (see [Artés et al., 2013b]) and the
two first subfamilies possessing saddle-nodes (see
[Artés et al., 2014]). It is worth mentioning that in
[Artés et al., 2013b], the authors show that, after a
quadratic perturbation of one of the phase portraits
of that family, a new phase portrait of codimension
one is proved being realizable.

The present study is part of this attempt of
classifying all the codimension—one quadratic sys-
tems. Although the phase portraits from subfam-
ilies QsnSN(A) and QsnSN(B) could not con-
tribute in this goal, subfamily QsnSIN(C) yields
all of the phase portraits of group (A), and some of
group (B), of codimension-one quadratic systems,
including missing cases, as stated in Corollary 1.4.

In the normal form (5), the class QsnSN(C)
is partitioned into 1034 parts: 199 three-dimen-
sional ones, 448 two—dimensional ones, 319 one—
dimensional ones and 68 points. This partition is
obtained by considering all the bifurcation surfaces
of singularities, one related to the presence of in-
variant straight lines, one related to connections of
separatrices, one related to the presence of invari-
ant parabola and one related to the presence of a
double limit cycle, modulo “islands”.

Theorem 1.1. There exist 371 topologically dis-
tinct phase portraits for the closure of the family of
quadratic vector fields having a finite saddle-node
sn() and an infinite saddle-node of type (g) SN
located in the bisector of the first and third quad-
rants and given by the normal form (5) (class
QsnSN(C)). The bifurcation diagram for this class
is the projective tridimensional space RP3. All these
phase portraits are shown in Figs. 1 to 11. More-
over, the following statements hold:

(a) There exist 259 topologically distinct phase por-
traits in QsnSN(C);

(b) There exist 49 phase portraits possessing at
least one simple limit cycle (or an odd number
of them taking into account their multiplicity),
and they are in the parts Vs, Viz, Var, Vas, Va4,
Vso, Vs, Voo, Vaa, Voo, Vico, Viiz, Viis, Visa,
Vigz, Vies, Vire, Virs, Virg, Viso, Viss, Vioa,
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1572, 2549, 2554, 2561, 4525, 4526, 555, 5522,
7S97, TS28, 7S53, 7S56, 7S74, 7581, 7583, 1.4L3,
1.5L¢, 1.7L4 and 2.5L13;

(¢) There exists one phase portrait with at least one
double limit cycle (or an odd number of them
taking into account their multiplicity), and it is
in the part 1051 ;

(d) There exist two phase portraits with at least two
limit cycles (or an even number of them taking
into account their multiplicity), and they are in
the parts Vgg and Vigo;

(e) There exist 107 phase portraits with nondegen-
erate graphics (located in only one place in the
phase portrait), and they are in the parts Vg,
Vs3, Vioz, Vior, Viiz, Viss, Vies, Vies, Vire,
Virs, Vira, Vire, Viss, Visg, 1S5, 156, 1514,
1515, 1521, 1595, 1596, 1528, 1530, 1533, 1536,
1537, 1S40, 1543, 1544, 1545, 1555, 1559, 1560,
1565, 1566, 1571, 2562, 4513, 4536, 4551, 5523,
5533, 751, 759, 757, 7S19, 7S17, 7S, 7So7,
7S29, 7531, 7532, 7533, 7S41, 7S42, 7Ss52, 7S57,
7558, 7570, 7S71, 7S72, TS74, TS77, 7578, 7S79,
7Ss1, TSss, TSss, 1.1La, 1103, 1.1L4, 1.4L,,
14Ls, 1.4L;, 1.4Lg, 1.4L15, 1.4Ly3, 1.5L4,
1.5L5, 1.7Lq, 1.7Lo, 1.7Ls, 1.7Ls, 1.7Lg,
1.701g, 1.7Loy, 1.7Log, 1.7Log, 1.7L35, 1.7L33,
9.7, 2.7, 2.7Lao, 2.8L1, 2.8Ly, A.7Ly,
5.7L1, 5.7Lo, 5.7Lw, T.7L4, T.7Ls, Py, Pis,
Pso, Ps2, Pso and Pes;

(f) There exist 14 phase portraits with two dis-
joint graphics, and they are in the parts Vigg,
Virr, 1853, 1556, 1Ss7, 7S67, 7575, TS76, TSs82,
1.7L27, 1.7L30, 1.7L31, 77L6 and 7.7L7,‘

(9) There exist 7 phase portraits with degenerate
graphics, and they are in the parts 1.2Lg, 1.3 Lo,
Ps3, Ps7, Psg, Psa and Fs.

In Table 2 we compare the number of phase
portraits possessing some geometrical features such
as for instance limit cycles or graphics between the
class QsnSN(C) and its border.

Corollary 1.2. There exist 14 topologically dis-
tinct phase portraits which appear simultaneously
in at least two of the three families QsnSN(A),
QsnSN(B) and QsnSN(C). The correspondences

are indicated in Table 1 and the phase portraits in
each row are topologically equivalent.

Table 1. Topological equivalence among phase portraits
from families QsnSN(A), QsnSN(B) and QsnSN(C)

QsnSN(A) QsnSN(B) QsnSN(C)
Vis 4513
35, 94Lg
359 2414
353 2.4L3
354 2.4L5
3.414 Py
589 553

Ve 4515
\% 4544
95, 2511

5.9L, 25010

1.2L5 1.414 1.3L5
Py Py Py
Ps P Psy

Corollary 1.3. There exist 417 topologically dis-
tinct phase portraits in QsnSN.

Corollary 1.4. After applying a perturbation,
some chosen phase portraits in Figs. 1 to 11
yield all the topologically possible phase portrait of
codimension—one from group (A) expected to ex-
ist. So, the seven codimension—one phase por-
traits from group (A) whose realizability was miss-
ing can be constructed after perturbations of some
chosen phase portraits from QsnSN(C); and three
codimension—one phase portraits from group (B)
whose realizability was missing can be constructed
after perturbations of some chosen phase portraits
from QsnSN(C).
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Fig. 1. Phase portraits for quadratic vector fields with a finite saddle-node 375y and an infinite saddle-node of type

(g) SN in the bisector of first and third quadrants
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Table 2. Comparison between the set QsnSN(C) and its border

QsnSN(C) border of QsnSN(C)

Distinct phase portraits 259 112
Phase portraits with exactly one limit cycle 39 10
Phase portraits with two/double limit cycles 2/1 0
Phase portraits with a finite
: 72 14
number of nondegenerate graphics
Phase portraits with an infinite 0 35

number of nondegenerate graphics

Phase portraits with degenerate graphics 0 7
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(@)

Fig. 12. (a) This phase portrait is topologically equiva-
lent to 557 from QsnSN(A) and 553 from QsnSN(B).
(b) This phase portrait is topologically equivalent to Py
from QsnSN(A) and 553 from QsnSN(B)

Remark 1.5. Phase portrait Pgs; belongs to two dif-
ferent categories in Theorem 1.1 since some of its
graphics are nondegenerate.

Remark 1.6 (Corrigendum). (1) In
[Artés et al., 2014] the phase portraits 595
from QsnSN(A) and 553 from QsnSN(B)
are wrong. The correct picture is given in
Fig. 12(a). Moreover, they are equivalent
which was not noticed then.

(2) In [Artés et al., 2014] the phase portraits P
from QsnSN(A) and P; from QsnSN(B)
are wrong. The correct picture is given in

Fig. 12(b).

For the class QsnSN(C), from its 259 topolog-
ically different phase portraits, 94 occur in three—
dimensional parts, 119 in two-dimensional parts,
42 in one—-dimensional parts and 4 occur in a single
zero—dimensional part.

In Figs. 1 to 11 we have denoted all the singular
points with a small disk. We have plotted with wide
curves the separatrices and we have added some
orbits drawn on the picture with thinner lines to
avoid confusion in some required cases.

Remark 1.7. We label the phase portraits accord-
ing to the parts of the bifurcation diagram where
they occur. These labels could be different for two
topologically equivalent phase portraits occurring
in distinct parts. Some of the phase portraits in 3—
dimensional parts also occur in some lower dimen-
sional parts bordering these 3—-dimensional parts.

An example occurs when a node turns into a focus.
An analogous situation happens for phase portraits
in 2-dimensional or 1-dimensional parts, coinciding
with a phase portrait situated on their border.

The work is organized as follows. In Sec. 2
we describe the normal form for the subfamily of
systems having a finite saddle-node and an infinite

saddle-node of type (g) SN in the bisector of the
first and the third quadrant.

For the study of real planar polynomial vector
fields two compactifications are used. In Sec. 3 we
describe very briefly the Poincaré compactification
on the 2—-dimensional sphere.

In Sec. 4 we list some very basic properties of
general quadratic systems needed in this study.

In Sec. 5 we mention some algebraic
and geometric concepts that were introduced in
[Schlomiuk et al., 2001, Llibre et al., 2004] involv-
ing intersection numbers, zero—cycles, divisors, and
T—comitants and invariants for quadratic systems
as used by the Sibirskii school. We refer the reader
directly to [Artés et al., 2006] where these concepts
are widely explained.

In Sec. 6, using algebraic invariants and T—
comitants, we construct the bifurcation surfaces for
the class QsnSN(C) and in Sec. 7 we comment
about the possible existence of “islands” in the bi-
furcation diagram.

In Sec. 8 we introduce a global invariant de-
noted by Z, which classifies completely, up to topo-
logical equivalence, the phase portraits we have
obtained for the systems in the class QsnSN(C).
Theorem 8.21 shows clearly that they are uniquely
determined (up to topological equivalence) by the
values of the invariant Z.

2. Quadratic vector fields with a finite
saddle—node 57 () and an infinite saddle—

node of type (g) SN

In [Artés et al., 2014] we have constructed the nor-
mal forms for the subfamilies QsnSN(A) and
QsnSN(B) from the normal form for semi-
elemental singularity using [Andronov et al., 1973].
It remains to construct the normal form for sub-
family QsnSN(C). Its construction will follow the
same steps of the previous two subfamilies and it is
given in the next result.
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Proposition 2.1. Every system with a finite
semi—elemental double saddle-node Snq) with its
etgenvectors in the direction of the azxes, with the
ergenvector associated with the zero eigenvalue on
the horizontal axis, and an infinite saddle—node of

type (g) SN located in the endpoints of the bisec-
tor of the first and third quadrants can be brought
via affine transformations and time rescaling to the
following normal form

&= gz’ 4 2hay + (n — g — 2h)y?,
§ =y +Lx? + (29 + 2h — 20 — n)zy (5)
+ (2h + £ +2(n — g — 2h))y?,

where g, h, ¢ and n are real parameters and g # 0.

Proof. By Andronov et al. [Andronov et al., 1973],
if a quadratic system has a semi—elemental singular
point at the origin, it can always be written into
the form

& = gz + 2hay + ky?,

6
§ =y + 0z + 2may + ny>. (6)

Moreover, if g # 0, then we have a double saddle—
node sn(y) with its eigenvectors in the direction of

the axes. The next step is to place the point (g) SN
at [1:1:0] of the local chart U; with coordinates
(w, z). For that, we must guarantee that the point
[1:1:0] is a singularity of the flow in Uy,

W= {4 (—g +2m)w + (—2h + n)w?* — kw?® + wz,
3= (—g — 2hw — kw?)z.

Then, we set n = g + 2h + k — ¢ — 2m and, by
analyzing the Jacobian of the former system after
the substitution in n, we set m = (g — k — 2¢)/2
in order to have the eigenvalue associated to the
eigenvector on z = 0 being null. Finally, we apply
the rotation k = n — g — 2h in the parameter space
and obtain the normal form (5). We note that this

rotation is just to simplify the bifurcation diagram.
|

To study the closure of the family QsnSN(C)
within the set of representatives of QsnSN(C) in
the parameter space of the normal form (5) it is
necessary to consider the case g = 0.

The next result assures the existence of invari-
ant straight lines under certain conditions for sys-
tems (5).

Lemma 2.2. For all g € R, systems (5) possess
the following invariant straight lines under the spe-
cific condition:

(i) {z =0}, if h=(n—g)/2;
(it) {y =0}, if £ =0;
(i) {y =x —1/n}, if ¢ =g and n # 0.

Proof. We consider the algebraic curves

fl(xuy) EQL’:O,
fa(z,y) =y =0,
f3(z,y) =ny —nz+1=0,

are the cofactors of fj = 0, fo = 0 and f3 = 0,
respectively, after restricting systems (5) to the re-
spective conditions. [ |

Systems (5) depend on the parameter A\ =
(g,h,,n) € R We consider systems (5) which
are nonlinear, i.e. A\ = (g,h,¢,n) # 0. Applying
the affine transformation X = ax, Y = ay, with
a # 0, we obtain

X =a'gX? +20/hXY + ' (n— g —2n)Y?,
Y = y+4a'la? + o/ (29 + 2h — 20 —n)XY
+ o/ (2h 4+ £ +2(n — g —2h))Y?,

for o/ =1/a, a # 0.

Then, this transformation takes the system
with parameters (g, h, £,n) to a system with param-
eters (o/g,a’h,a’l,a/n). Hence, instead of consid-
ering as parameter space R*, we may consider RP3.

But, since for o/ = —1 all the signs change,
we may consider ¢ > 0 in [g : h : k : n]. Since
G?+h?+k*+n? =1, then g = /1 — (k%2 + k2 + n2),
where 0 < h2 + k2 +n? < 1.

We can therefore view the parameter space as
aball B={(h,¢,n) € R3 h?+ (> +n? < 1}, where
on the equator two opposite points are identified.
When n = 0, we identify the point [g : h : £ :
0] € RP? with [g : h : £] € RP?. So, this subset
{n = 0} C B can be identified with RP?, which can
be viewed as a disk with two opposite points on the
circumference (the equator) identified (see Fig. 13).
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Fig. 13. The parameter space

For g # 0, we get the affine chart:
RP?\ {g =0} < R?

[g:h:l:n]— (ﬁ,g,ﬁ) = (h,{,n)
[1:h:0:m)— (h,{,7).

The plane ¢ = 0 in RP? corresponds to the
equation h?4¢2+4n? = 1 (the full sphere S?) and the
line g = n = 0 in RP? corresponds to the equation
h% + %2 = 1 (the equator n = 0 of S?).

We now consider planes in R? of the form
m = ng, where ng is a constant. The projective
completion of such a plane in RP? has the equation
n —ngg = 0. So, we see how the slices m = ng need
to be completed in the ball (see Fig. 14). We note
that when g = 0 necessarily we must have n = 0 on
such a slice, and thus the completion of the image
of the plane @ = ng, when visualized in S?, must
include the equator.

The specific equations of the correspondence of
the points in the plane @ = ng of R? (ng a constant)
onto points in the interior of §? (B = {(h,¢,n) €
R3; h% + (2 + n% < 1}) follows from the bijection:

R? < B

with ¢ = \/E2 + 7 +n2 + 1. That is, for each plane
7 = constant in R? | there corresponds a half ellip-

Fig. 14. Correspondence between planes and ellipsoides

soid h? + 02 + n%(1 +n3)/n3 = 1, n > 0 (see Fig.
14).

3. The Poincaré compactification and the
complex (real) foliation with singulari-
ties on CP? (RP?)

A real planar polynomial vector field £ can be com-
pactified on the sphere as follows. We identify the
xy—plane with the plane Z = 1 in the space R?
with coordinates X, Y, Z. The central projec-
tion of the vector field £ on the sphere of radius
one yields a diffeomorphic vector field on the up-
per hemisphere and also another vector field on
the lower hemisphere. There exists (for a proof
see [Gonzales, 1969]) an analytic extension cp(€) of
the vector field £ on the whole sphere having the
same phase curves as the one constructed above
from the polynomial vector field. The projection of
the closed northern hemisphere H+ of S on Z =0
under (X,Y,Z) — (X,Y) is called the Poincaré
disc. A singular point r of ¢p(§) is called an infinite
(respectively, finite) singular point if r € S!, the
equator (respectively, r € §?\ S'). The vector field
ep(€) restricted to the upper hemisphere completed
with the equator is called the Poincaré compactifi-
cation of a polynomial vector field &.
For every vector field

0 0

— — 7
where p(x,y) and ¢(x,y) are polynomials with real
coefficients, or equivalently for every differential
system

& =p(x,y), v =q(x,y), (8)

we consider the associated differential 1—form wy =
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q(z,y)dx — p(x,y)dy, and the differential equation
w1 = 0) (9)

which defines a foliation with singularities on C2.
The affine plane C? is compactified on the com-
plex projective space CP? = (C3 \ {0})/ ~, where
(X,Y,Z) ~ (X', Y', Z") if, and only if, (X,Y,Z) =
MNX',Y', Z") for some complex A # 0. The equiva-
lence class of (X,Y, Z) will be denoted by [X : Y :
Z.

The foliation with singularities defined by equa-
tion (9) on C? can be extended to a foliation with
singularities on CP? and the 1—form w can be ex-
tended to a meromorphic 1—form w on CP? which
yields an equation w = 0, i.e.

A(X)Y,Z)dX + B(X,Y, Z)dY 10)
+C(X,Y,2)dZ =0,

whose coefficients A, B, C' are homogeneous poly-
nomials of the same degree and satisfy the relation:

A(X,Y,Z2)X + B(X,Y, Z)Y )
Y OX,Y,2)Z =0,

Indeed, consider the map i : C3\ {Z = 0} — C2,
given by (XY, Z) = (X/Z,Y/Z) = (x,y) and sup-
pose that max{deg(p),deg(q)} = m > 0. Since
x=X/Z and y =Y /Z we have:

_ZdX - Xdz . ZdY —YdZ

dz o ="

the pull-back form ¢*(w;) has poles at Z = 0 and
yields the equation

" )—q(X Y) ZdX — XdZ

77 72
X Y\ zdy -vdZ _
P\7'7 72 -

Then, the 1—form w = Z™*2i*(wy) in C*\ {Z # 0}
has homogeneous polynomial coefficients of degree
m + 1, and for Z = 0 the equations w = 0 and
i*(w1) = 0 have the same solutions. Therefore, the
differential equation w = 0 can be written as (10),

where

AX,Y, 2) = ZQ(X,Y, Z)

—zmiq (2,2,
77

Xy
=z (==
p(z’z)’

C(X,Y,Z)=YP(X,Y,2)
- XQ(X,Y,2).
Clearly A, B and C' are homogeneous polyno-
mials of degree m + 1 satisfying (11).

In particular, for our quadratic systems (5), A4,
B and C take the following forms:

AX,Y,Z) =(tX* + (29 + 2h — 20 —n) XY
+(2n—29g—2h+0OY? +YZ)Z
B(X,Y,Z) =— (gX? +2hXY + (n— g — 20)Y?)Z,
O(X,Y,Z) =X’ + (n— g —2h +20)X?Y
+ (29 + 4h — 0 — 2n)XY?
—(g+2h—n)Y? - XY Z

(12)

(13)
We note that the straight line Z = 0 is always
an algebraic invariant curve of this foliation and
that its singular points are the solutions of the sys-
tem: A(X,Y,Z) = B(X,Y,Z) = C(X,Y,Z) = 0.
We note also that C(X,Y,Z) does not depend on
b.
To study the foliation with singularities defined
by the differential equation (10) subject to (11)
with A, B, C satisfying the above conditions in the
neighborhood of the line Z = 0, we consider the
two charts of CP?: (u,2) = (Y/X,Z/X), X # 0,
and (v,w) = (X/Y,Z/Y), Y # 0, covering this
line. We note that in the intersection of the charts
(x,y) = (X/Z,Y/Z) and (u, z) (respectively, (v, w))
we have the change of coordinates . = 1/z, y = u/z
(respectively, x = v/w, y = 1/w). Except for the
point [0 : 1 : 0] or the point [1: 0 : 0], the foliation
defined by equations (10),(11) with A, B, C as in
(12) yields in the neighborhood of the line Z = 0
the foliations associated with the systems
uw=uP(l,u,z) — Q(1,u,z) = C(1,u,z), "
z=2P(1,u,z), (14)
or
0 =vQ(v,1,w) — P(v,1,w) = —C(v,1,w),

w =wP(v,1,w). (15)
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In a similar way we can associate a real foliation
with singularities on RP? to a real planar polyno-
mial vector field.

4. A few basic properties of quadratic sys-
tems relevant for this study

The following results hold for any quadratic system:

(i) A straight line either has at most two (finite)
contact points with a quadratic system (which
include the singular points), or it is formed by
trajectories of the system; see Lemma 11.1 of
[Ye et al., 1986]. We recall that by definition
a contact point of a straight line L is a point of
L where the vector field has the same direction
as L, or it is zero.

(ii) If a straight line passing through two real fi-
nite singular points r; and o of a quadratic
system is not formed by trajectories, then it is
divided by these two singular points in three
segments 001y, 7173 and 7300 such that the
trajectories cross oory and 7300 in one direc-
tion, and they cross 773 in the opposite di-
rection; see Lemma 11.4 of [Ye et al., 1986].

(iii) If a quadratic system has a limit cycle, then
it surrounds a unique singular point, and this
point is a focus; see [Coppel, 1966].

(iv) A quadratic system with an invariant straight
line has at most one limit cycle; see
[Coll & Llibre, 1988].

(v) A quadratic system with more than one in-
variant straight line has no limit cycle; see
[Bautin, 1954].

The proof of the next result can be found in
[Artés et al., 1998].

Proposition 4.1. Any graphic or degenerate
graphic in a real planar polynomial differential
system must either

1) surround a singular point of index greater than
or equal to +1, or

2) contain a singular point having an elliptic sector
situated in the region delimited by the graphic, or

3) contain an infinite number of singular points.

5. Some algebraic and geometric concepts

In this article we use the concept of intersection
number for curves (see [Fulton, 1969]). For a quick
summary see Sec. 5 of [Artés et al., 2006].

We shall also use the concepts of zero—
cycle and divisor (see [Hartshorne, 1977])
as specified for quadratic vector fields in
[Schlomiuk et al., 2001]. For a quick summary see
Sec. 6 of [Artés et al., 2006].

We shall also use the concepts of algebraic in-
variant and T-comitant as used by the Sibirskii
school for differential equations. For a quick sum-
mary see Sec. 7 of [Artés et al., 2006].

In the next section we describe the algebraic
invariants and T-comitants which are relevant in
the study of family (5), see Sec. 6.

6. The bifurcation diagram of the systems
in QsnSN(C)

6.1. Bifurcation surfaces due to the
changes in the nature of singularities

From Sec. 7 of [Artés et al., 2008] and
[Vulpe, 2011] we get the formulas which give
the bifurcation surfaces of singularities in R'2, pro-
duced by changes that may occur in the local nature
of finite singularities. From [Schlomiuk et al., 2005]
we get equivalent formulas for the infinite singular
points. These bifurcation surfaces are all algebraic
and they are the following:

Bifurcation surfaces in RP? due to multiplic-
ities of singularities

(S1) This is the bifurcation surface due to multi-
plicity of infinite singularities involved with finite
singular points. This occurs when at least one fi-
nite singular point collides with at least one infinite
singular point. This is a quartic whose equation is

p=n%(—g? — 2gh 4+ 2hL + (> + gn) = 0.

(S2) Since this family already has a saddle-node at
the origin, the invariant D) is always zero. The next
T—comitant related to finite singularities is T. If
this T'—comitant vanishes, it may mean either the
existence of another finite semi—elemental singular
point, or the origin being a singular point of higher
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multiplicity, or the system being degenerate. The
equation of this surface is

T = —124¢°% (¢® + 2gh + h? — gn) = 0.

(S5) Since this family already has a saddle-node at
infinity formed by the collision of two infinite sin-
gularities, the invariant n is always zero. In this
sense, we have to consider a bifurcation related to
the existence of either the double infinite singular-

ity (g) SN plus a simple one, or a triple one. This

phenomenon is ruled by the T'—comitant M. The
equation of this surface is

M = (g+2h+{—n)*=0.

The surface of C'°° bifurcation points due to
a strong saddle or a strong focus changing
the sign of their traces (weak saddle or weak
focus)

(S3) This is the bifurcation surface due to weak
finite singularities, which occurs when the trace of
a finite singular point is zero. The equation of this
surface is given by

Ta = n(—4g® — 8¢°h — 4g*0 — 4ght — 8h*¢
— 4h* + 4g®n + 4gln + ’n) = 0.

We note that this bifurcation surface can either pro-
duce a topological change, if the weak point is a
focus, or just a C'*® change, if it is a saddle. How-
ever, in the case this bifurcation coincides with a
loop bifurcation associated with the same saddle,
the change is also topological, as we can see later
in the analysis of systems (5) (see page 55).

The surface of C* bifurcation due to a node
becoming a focus

(Sg) This surface will contain the points of the pa-
rameter space where a finite node of the system
turns into a focus. This surface is a C'*° but not
a topological bifurcation surface. In fact, when we
only cross the surface (Sg) in the bifurcation dia-
gram, the phase portraits do not change topologi-
cally. However, this surface is relevant for isolating
the parts where a limit cycle surrounding an anti-
saddle cannot exist. The equation of this surface is

given by Wy = 0, where

Wy = n?(1645 + 64¢°h + 64¢g*h? — 32¢°¢
—160g*he — 192¢°h%0 — 16¢* (% + 324> he?
+ 1122 h%0% — 32gh3 0% + 32603 + 646° h(3
+ 320303 4+ 16h20* — 32¢°n — 64¢*hn
+ 64g*0n + 160¢°htn + 8¢>¢*n — 80¢*h*n
+ 16gh%0*n — 409 03n — 8ght3n — 16h*3n
— 8hl*n + 16¢*n? — 32¢30n? + 8¢ (*n?
+ 8g3n? + £'n?).

Bifurcation surface in RP? due to the pres-
ence of invariant straight lines

(S4) This surface will contain the points of the pa-
rameter space where an invariant straight line ap-
pears (see Lemma 2.2). This surface is split in some
parts. Depending on these parts, the straight line
may contain connections of separatrices from differ-
ent points or not. So, in some cases, it may imply
a topological bifurcation and, in others, just a C*°
bifurcation. The equation of this surface is given
by
Inv=4({—g)(g+2h—n)=0.

These bifurcation surfaces are all algebraic and
they, except (Si), are the bifurcation surfaces of
singularities of systems (5) in the parameter space.
We shall discover other two bifurcation surfaces not
necessarily algebraic. On one of them the systems
have global connection of separatrices different from
that given by (S4) and on the other the systems
possess double limit cycle. The equations of these
bifurcation surfaces can only be determined approx-
imately by means of numerical tools. Using argu-
ments of continuity in the phase portraits we can
prove the existence of these components not nec-
essarily algebraic in the part where they appear,
and we can check them numerically. We shall name
them surfaces (S7) (connection of separatrices) and
(S10) (double limit cycles).

Remark 6.1. On surface (Syp), the respective sys-
tems have at least one double limit cycle. Although
this surface is obtained numerically, we can predict
in which portion of the bifurcation diagram it can
be placed. It must be in the neighborhood of the
points of the bifurcation diagram corresponding to
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a weak focus £ or a weak saddle s/) which forms
a loop. So, according to [Vulpe, 2011; Main The-
orem, item (by)], the necessary condition for the
existence of weak points of order two or higher is
governed by 7y = F1 = 0. The expression of Fi is
given by Fy = —2¢? — 4gh + 4g{ + 6h{ + 2gn — 3(n.

We shall foliate the 3—dimensional bifurcation
diagram in RP? by the planes n = ng, ng con-
stant, plus the open half sphere g = 0 and we shall
give pictures of the resulting bifurcation diagram
on these planar sections on a disk or in an affine
chart of R2.

In what follows we work in the chart of RP3
corresponding to g # 0, and we take ¢ = 1. To do
the study, we shall use pictures which are drawn on
planes n = ng of RP3, having coordinates [1 : h :
¢ : ngl. In these planes the coordinates are (h,{)
where the horizontal line is the h—axis.

As the final bifurcation diagram is quite com-
plex, it is useful to introduce colors for each one of
the bifurcation surfaces. They are:

(a) the curve obtained from the surface (Sp) is
drawn in blue (a finite singular point collides
with an infinite one);

(b) the curve obtained from the surface (S2) is
drawn in green (two finite singular points dif-
ferent from the saddle-—node collide);

(c) the curve obtained from the surface (S3) is
drawn in yellow (when the trace of a singular
point becomes zero);

(d) the curve obtained from the surface (S;) is
drawn in purple (the presence of invariant
straight lines);

(e) the curve obtained from the surface (Ss) is
drawn in red (three infinite singular points col-
lide);

(f) the curve obtained from the surface (Sg) is
drawn in black (an antisaddle is on the edge of
turning from a node to a focus or vice versa);

(g) the curve obtained from the surface (S7) is
drawn in purple (the connection of separatri-
ces); and

(h) the curve obtained from the surface (Sig) is
drawn in gray (presence of a double limit cy-
cle).

The following lemmas of this section study the
geometrical behavior of the surfaces for g # 0 (the
case ¢ = 0 will be considered separately), that
is, their singularities, their intersection points and
their extrema (maxima and minima) with respect
to the coordinate n. We will not provide the com-
plete proof of all the following lemmas since many
of them are similar one of the other. Their complete
proofs can be found in [Rezende, 2014].

Lemma 6.2. For gn # 0, surface (S1) has no sin-
gularities and, for g #= 0 and n = 0, it has two
straight lines of singularities given by [1 : h: 1 : 0]
and [1:h:—=1—2h:0].

Proof. As surface (S7) is the union of a double plane
and a conic with no singularities, its singularities
will be the intersection between these two compo-
nents. In this sense, we set n = 0 and, solving the
expression of the conic with respect to ¢, we find the
straight lines [1: h:1:0Jand [1: h: —1-2h,0]. W

Lemma 6.3. For g # 0, surface (S2) has no sin-
gularities. Moreover, this surface assumes its min-
imum (with respect to the coordinate n) at h = —1.

Proof. Setting g # 0, it follows straightforwardly
from the expression of T = —12(1 + 2h + h? — n)
and parameterizing this surface, we obtain [1 : h :
¢ : (14h)?] which clearly has a minimum at h = —1,
which corresponds to n = 0. [ |

Lemma 6.4. For gn # 0, surface (S3) has a
straight line of singularities given by [1 : 1/2 :
—2 : n|. Moreover, in this surface there exist
two distinguished points: [1 : 1/2 : =2 : 2] and
1:1/2: —=2:9/4. Forg # 0 and n = 0,
surface (S3) has two curves of singularities: the
straight line [1 : h : —1 — 2h : 0] and the hyper-
bola [1 : h : —1/h : 0], and they intersect at the
points [1:—=1:1:0] and [1:1/2:—=2:0].

Proof. For gn # 0, surface (S3) is the union of the
plane {n = 0} and the cubic C' = 4n—8h—4+ (4n—
4h — 8h%? — 4)¢ + (n — 4h)¢? = 0. Computing the
derivatives of C' and solving them (for g # 0) we get
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the straight line [1 : 1/2 : —2 : n] of singularities.
We verify that the determinant of the Hessian of
C restricted to this straight line is identically zero.
In addition, calculating the discriminant of C' with
respect to h and ¢, we obtain, respectively,

Discrimy, (C') =16(2 + £)*(1 — 2¢ 4 £ + 2¢n),
Discrimg(C) =16(2h — 1)%(1 + 2h + h? —n).

So, the resultant of both discriminants with re-
spect to h vanishes if, and only if, / = —2 or
n = (—1+ 20— ¢%)/(20), implying that n = 9/4
(which is obtained by evaluating the resultant on
the line of singularities) is a distinguished point.

Now, we want to investigate the existence of a
value of the parameter n = ng at which the cubic C'
factorizes, i.e. we want to rewrite C' as one of the
following forms:

C(h,f,no) :(h— ho) Dg(h,g) or
C(h,t,ng) =(¢ — Lo) Da(h, 0),

where Dy (h,{) is a polynomial of degree 2 in the
variables h and ¢. For this, we rewrite the cubic C
in the forms:

C1(h,l,n0) =(ng — 4h)0? — 4(1 + h + 2h* — ng)¢
—4(1 + 2h — ng),

Cy(h,l,ng) = — 8h? —4(2+ £ + (*)h
— 4 — 40 + 4ng + 4lng + Pny.

As we are interested in the set of zeroes of C', we
equalize to zero the coefficients of C; and C in the
variables ¢ and h, respectively, and we conclude that
only possible solution comes from the zeroes of C
which is h = 1/2,n9 = 2. Thus, we can factorize the
cubic C as C(h,£,2) = —2(2h—1)(2+20+2h{+(?),
implying that n = 2 is also a distinguished value of
the parameter n.

In the case g # 0 and n = 0, we have T4 = 0.
Denoting by F the derivative of T4 with respect to
n, we obtain F' = —4(1 + 2h + £)(1 + h{), implying
that 14+ 2h + ¢ =0 and 1+ hf = 0 are the singular
curves of (S3) with n = 0, which correspond to the
projective curves [1 : h : =1 —2h : 0] and [1 : A :
—1/h : 0]. In addition, it is easy to see that both
curves intersect at the points [1 : —1 : 1 : 0] and
1:1/2:-2:0]. [ |

Lemma 6.5. For g # 0, surface (S4) has two
straight lines of singularities given by [1: (n—1)/2:
O:njand[l1:(n—1)/2:1:n).

Lemma 6.6. For g # 0, surface (S5) has no sin-
gularities.

Lemma 6.7. For gn # 0, surface (Sg) has two
curves of singularities: [1 : (n —1)/2 : 0 : n]
(a straight line) and [1 : (£ —2)/0 : £ : 4(4 —
70+ 202 + 03)/(0(—4 + 40 + £2))].  Moreover, the
curve [1 (€ —2)/0 : € : 44 — 70 + 202 +
03))(0(—4+40+0%))] assumes its extrema (with re-
lation to the coordinate n) in the values { = —A4,
(=1,0=(-3++41)/4 and { = f~(ng), where
f =44 — 70+ 202 + 3)/(0(—4 + 4¢ + (?)) and
no = (3 — (1548 — 83v/249)'/3 /32/3 — 61/(3(1548 —
831/249))1/3)/2. For g # 0 and n = 0, its singu-
larities lie on the two straight lines [1 : h : 1 : 0]
and [1 : h : =1 —2h : 0] and on the two curves
[1:(1—20+£+1—40+502—-203)/0%:70:0].

Proof. For the computation of the singular curves
of (Sg) we refer to [Rezende, 2014]. To compute
the extrema of the curve [1 : (¢ —2)/0: ( : 4(4 —
70+ 202 + 03)/(£(—4 + 40 + £?))], we equalize the
last coordinate to n and obtain the polynomial p =
—4(0 = 1)%(4+ ) + £(—4+ 40+ ¢*)n. Computing its
discriminant with respect to ¢, we have:

Discrimy(p) = 256n(125 — 17n — 9n? + 2n3),

whose solutions are n = 0 and n = (3 — (1548 —
831/249)1/3/3%/3 — 61/(3(1548 — 83+/249))'/3)/2 ~
—3.40133804 .... Besides, we consider the lead-
ing coefficient of p in ¢ and solve it with respect
to m, obtaining n = 4. This proves that p has

degree 3 for every n, except when n = 4. Fi-
nally, solving the equation p = 0 by substituting
n by the singular values of n, we obtain £ = —4,

(=1,¢=(-3++41)/4 and £ = f~1(ng), where
[ =44 — 70+ 202 + 03)/(6(—4 + 40 + ¢?)) and
no = (3 — (1548 — 831/249)'/3/32/3 — 61/(3(1548 —
831/249))'/3) /2, which are the critical values of the
curve with respect to n. [ |

Lemma 6.8. For g # 0, the invariant F, defined
in Remark 6.1 has a straight line of singularities
given by [1: (3n—4)/6 : 2/3 : n].

Lemma 6.9. For g # 0, surfaces (S1) and (S2)
intersect along the straight line [1 : —1 : ¢ : 0] and
the parabola [1 : h : —h : (1 + h)?]. Moreover, the
curve [1 : h : —h : (1 + h)?] assumes its extremum
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(with relation to the coordinate n) in the value h =
—1 and, in addition, the contact along this curve is
even.

Proof. Solving the system of equations

(S1) : n?(—=1 —2h +2ht + 0> +n) =0,
(S) : — 12(1 + 2k + h* —n) =0,

we obtain the two solutions h = —1,n = 0 and
¢ = —h,n = (1 + h)?, which correspond to the
curves [l : =1 :¢:0] and [1: h: —h: (1+ h)?],
respectively.

It is easy to see that the extremum of the co-
ordinate n of the curve [1 : h : —h : (1 4+ h)?] is
reached at h = —1 and its minimum value is n = 0.

To prove the contact between both surfaces
along the curve v = [1 : h : —h : (1 + h)?],
we apply the affine change of coordinates given by
n=1+2h+h?>—v, v eR. Under this trans-
formation, the gradient vector of (Sz) along the
curve v is VT(y) = [1 : 0 : 0 : —12], whereas
the gradient vector of (&) along the curve 7 is
Vu(y) =1 :0:0: —1], whose last coordinate
is always negative. As Vyu(v) does not change its
sign, this vector will always point to the same di-
rection in relation to (Sz) restricted to the previous
change of coordinates. Then, the surface (S;) re-
mains only on one of the two topological subspaces
delimited by the surface (Sz). [ |

Lemma 6.10. For g # 0, surfaces (S1) and (S3)
has the plane {n = 0} as a common component.
Besides, the surfaces intersect along the straight
lines[1 : h:1:0],[1:h:—1-=2h:0] and
[1:h:0:1+2h], the hyperbola [1 : h: —1/h : 0]
and the curve [1: —0(0+3)/4: 0 : (2 — 30+ £3)/2].
Moreover, this last curve assumes its extrema (with
relation to the coordinate n) in the values ¢ = +1
and £ = £2.

Lemma 6.11. For g # 0, surfaces (S1) and (Si)
intersect along the straight lines [1 : —1/2 : £ : 0],
[1:h:0:0],[1:h:1:0,[1:h:0:1+2h] and
[1:—0/2:0:1—1{].

Lemma 6.12. For g # 0, surfaces (S1) and (Ss)
intersect along the straight lines [1 : h: —1—2h: 0]
and [1:(n—1)/2:0:n].

Lemma 6.13. For g # 0, surfaces (S1) and (Sg)
has the plane {n = 0} as a common component.
Besides, the surfaces intersect along the straight
lines 1 : h : 1 :0], [1:h: —=1-=2h: 0
and [1 : —(( +1)/2 : £ : 0] and the curves
[1:h:—(1+42h+ (1+h)\/(1+2h))/h?:0] and
[1:—L(t+7)/8:0: (£ —1)%(¢+4)/4]. Moreover,
this last curve assumes its extrema (with relation to
the coordinate n) in the values ¢ = —4, { = —7/3,
¢=1 and ¢ =8/3.

Lemma 6.14. For g # 0, surfaces (S2) and (S3)
intersect along the straight line [1 : —1 : ¢ : 0] and
the curve [1 : h: 2h/(h — 1) : (1 + h)?]. Moreover,
they have a contact of order two along the curve
[1:h:2h/(h—1):(1+h)?], and this curve has the
straight line {h = 1} as an asymptote.

Lemma 6.15. For g # 0, surfaces (S2) and (Sa)
intersect along the parabolas [1 : h : 0 : (1 + h)?]
and [1:h:1: (14 h)?] and the straight line [1: 0 :
¢:1]. Moreover, the curves [1 : h:0: (1+h)?] and
[1:h:1:(1+h)? assume their extremum (with
relation to the coordinate n) in the value h = —1.

Lemma 6.16. For g # 0, surfaces (S2) and (Ss)
intersect along the curve [1 : h : h? : (1 + h)?].
Moreover, the curve [1 : h: h? : (1 + h)?] assumes

its extrema (with relation to the coordinate n) in
the value h = —1.

Lemma 6.17. For g # 0, surfaces (S2) and (Sg)
intersect along the straight line [1 : —1 : ¢ : 0] and
the curve [1 : h: 2h/(h — 1) : (1 + h)?]. Moreover,
they have a contact of order two along the curve
[1:h:2h/(h—1):(1+ h)?*] and this curve has the
straight line {h = 1} as an asymptote.

Lemma 6.18. For g # 0, surfaces (S3) and (Sy)
intersect along the straight lines [1 : —1/2 : £ : 0],
l:h:0:0,[1:h:1:0,[1:1/2:¢:2],
[1:h:0:142h] and [1:—€/4:0:(2—1)/2] and
the parabola [1: h :1:8(1+ h)%/9]. Moreover, this
parabola assumes its extremum (with relation to the
coordinate n) in the value h = —1.

Lemma 6.19. For g # 0, surfaces (S3) and (Ss)
intersect along the straight lines [1 : h: —1—2h : 0],
[1:(n—1)/2:0:n]and[1:(34+n)/6:2(n—3)/3:
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Lemma 6.20. For g # 0, surfaces (S3) and (Se)
has the plane {n = 0} as a common component.
Besides, the surfaces intersect along the curves [1 :
h:=1—=2h:0], [1:=1/€:£:0],[1:h:1:0],
[1:h:—(1+2h+(1+h)V1+2h)/R?:0],[1:h:
0:1+4+2h], [1:€/(£—2):0:4(0—1)2/(f - 2)?
and [1: (=2 + 20+ 02)/(—4 + 20+ £?) - 0 : 40 —
1)2(24+6)(4+€) / (—4+420+02)2]. Moreover, the curve
[1:0/(6—2):0:4(—1)?/(¢ —2)?] has the straight
line {¢ = 2} as an asymptote and corresponds to
a even contact between the surfaces, and the curve
[1:(=2420402)/(=4+20+0%) : 0:4(0—1)%(2+
O)(4+0)/(—4+20+02)?] assumes its extrema (with
relation to the coordinate n) in the values ¢ = —4,

0=-2,0=1,0=-34+17, 1 = -54++/21 and
£:3—\/ﬁi4\/2(13—2\/ﬁ)/17.

Lemma 6.21. For g # 0, surface (S3) and surface
(Sr,) given by {F1 = 0} intersect along the curves
1:(1—-20)/(3¢—2):£:0],[1:h:0:1+2h] and
[1:(4—80+302£/3/(2+ 0)3(30 — 2)) /(16 —24¢) :
0 (12—240+302+/3./(2 + €)3(3¢ — 2)) /(8—12¢)].
Moreover, this last curves assume their extrema
(with relation to the coordinate n) in the values

(=-2,0="7/10,¢=1 and { = (=7 +55)/6.

Lemma 6.22. For g # 0, surfaces (S4) and (Ss)
intersect along the curves [1: (n—1)/2:0:n] and
[1:n/2—1:1:n].

Lemma 6.23. For g # 0, surfaces (S4) and (Sp)
intersect along the curves [1 : —=1/2 : £ : 0], [1 :
h:1:0,[1:(mnm—-1)/2:0:n]and [l : (n—
1)/2: —4(n—1)/(n —2)? : n]. Moreover, the curve
[1:(n—1)/2: —4(n—1)/(n —2)? : n] assumes its
extrema (with relation to the coordinate n) in the
value { = 1.

Lemma 6.24. For g # 0, surfaces (S5) and (Sg)
intersect along the curves [1 : h : —1 — 2h : 0],
[1:—(+1)/2:€:0] and [1 : —(16 — 240 + 9¢% +
03)/(80—602) : £ : 4(£—1)%(4+L)/(£(30—4))]. More-
over, the curve [1 : —(16—240+902+¢3) /(8¢ —6(2) :
0040 — 1)%(4 + 0)/(£(3¢ — 4))] assumes its ex-
trema (with relation to the coordinate n) in the
values { = —4, £ = 1 and ¢ = f~(ng), where
fO0) = 4 — 1)*(4 + O)/(((3L — 4)) and ny =
(130 — 4511/(208855 + 169561/471)'/3 + (208855 +
16956/471)1/3) /27,

The purpose now is to find the slices in which
the intersection among at least three surfaces
or other equivalent phenomena happen. Since
there exist 25 distinct curves of intersections
or contacts between two any surfaces, we need
to study 325 different possible intersections of
these surfaces. As the relation is very long, we
will reproduce only a few of them deploying the
different algebraic techniques used to solve them.
The full set of proves can be found on the web page
http://mat.uab.es/~artes/articles/qvisn2SN02/
qvfsn2SN02.html.

Remark 6.25. In the next four lemmas we use the
following notation. A curve of intersection or
contact between two surfaces will be denoted by
solAByC, where A < B are the numbers of the
surfaces involved in the intersection or contact and
(' is a cardinal. Moreover, these four lemmas illus-
trate the different techniques we use to solve the
intersection among at least three surfaces or other
equivalent phenomena.

Lemma 6.26. Surfaces (S1), (S2) and (S3) inter-
sect in slices when n =0 and n = 1.

Proof. By Lemmas 6.9 and 6.10, we have the curves
soll2yl = [1:h:—h:(1+4h)?] and soll3y2 =
[1:—0(83+1()/4:€:(2—30+(3/2]. By equalizing
each corresponding coordinate and solving the ob-
tained system, we have the solutions h = -1,/ =1
and h = ¢ = 0. Since the curves are parametrized
by h and ¢, we must substitute the solutions of the
system in the expressions of the curves and consider
the value of the coordinate n. Then, the values of
n where the three surfaces intersect are n = 0 and
n=1. [ |

Lemma 6.27. Surfaces (S3), (S5) and (Sg) inter-
sect in slices when n =6 and n = 9.

Proof. By Lemmas 6.19 and 6.24, we have the

curves sol35y2 = [1: (34 n)/6 : 2(n — 3)/3 : n] and

sol56y1 = [1: (16 — 24¢ + 902 + £%)/20(30 — 4) : £
400 —1)%(4+0)/e(3 — 4)] .

By equalizing each corresponding coordinate and

solving the obtained system, we get the solutions
{=2n=06and{=4,n=9. Then, the values of
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n where the three surfaces intersect are n = 6 and
n=29. [ |

Lemma 6.28. Surfaces (S1), (S3) and (Ss) inter-
sect in slice when n = 3.

Proof. By Lemmas 6.10 and 6.19, we have the
curves sol13yl = [1: h:0: 1+ 2h] and sol35y2 =
[1:(34+n)/6:2(n—3)/3:n]. By equalizing each
corresponding coordinate and solving the obtained
system, we have the solution h = 1,n = 3. Then,
the value of n where the three surfaces intersect is
n=3. [ |

Lemma 6.29. Surfaces (S1), (S4), (S5) and (Se)

intersect in slice when n = 1.

Proof. By Lemmas 6.12 and 6.23, we have
the curves soll5yl = [l:(n—1)/2:0:n] and
sol46y2 = [1:(n—1)/2: —4(n—1)/(n —2)% : n].
By equalizing each corresponding coordinate and
solving the obtained system, we get the solution
n = 1, which is the value of n where the four sur-
faces intersect is n = 1. [ |

The next result presents all the algebraic values
of n corresponding to singular slices in the bifurca-
tion diagram. Its proof follows from Lemmas 6.26
to 6.29 and by computing all the remaining 321
different possible intersections or contacts among
three or more surfaces.

Lemma 6.30. The full set of needed algebraic sin-
gular slices in the bifurcation diagram of family
QsnSN(C) is formed by 20 elements which corre-
spond to the values of n in (16).

The numeration in (16) is not consecutive since
we reserve numbers for other slices not algebraically
determined and for generic slices.

Now we sum up the content of the previous
lemmas. In (16) we list all the algebraic values of
n where significant phenomena occur for the bifur-
cation diagram generated by singularities. We first
have the two extreme values for n, i.e. n = —o0
(corresponding to g = 0) and n = 9. We remark
that to perform the bifurcation diagram of all sin-
gularities for n = —oo we set ¢ = 0 and, in the re-
maining three variables (h, ¢, n), yielding the point
[h: £ :n] in RP?, we take the chart n # 0 in which

we may assume n = —1.

n1 =9, nis =06,

1 4511

mr = o <130 A + {”/5) , o = 208855 4 16956471,
nos = 4, nio = 125/27, no1 = 9/2, nas = 13—0(102 +7v21),
No7 = (B=8)B=2B+D> o4, 3/7, /75 561 0/39,

o (Y2s2r0s %gwwe)z VE
Nog = 2—|—\/§, n31 = 3, N3z = 8/3, na7 = 9/47
na = 12—0(102 —7V21), nais =2, mnss =1,
nst=2—V2, nso=1/2, ns3 =0,

1/3-¢p 61 B

ngs = 5( s \3/%) , p= 1548 — 83v/249
ngy = —O0O.

(16)

In order to determine all the parts generated by
the bifurcation surfaces from (S;1) to (S1g), we first
draw the horizontal slices of the three-dimensional
parameter space which correspond to the explicit
values of n obtained in Lemma 6.30. However, as it
will be discussed later, the presence of nonalgebraic
bifurcation surfaces will be detected and the singu-
lar slices corresponding to their singular behavior
as we move from slice to slice will be approximately
determined. We add to each interval of singular
values of n an intermediate value for which we rep-
resent the bifurcation diagram of singularities. The
diagram will remain essentially unchanged in these
open intervals except the parts affected by the bi-
furcation. All the sufficient values of n are shown
in (17).

The values indexed by positive odd indices in
(17) correspond to explicit values of n for which
there exists a bifurcation in the behavior of the sys-
tems on the slices. Those indexed by even values
are just intermediate points which are necessary to
the coherence of the bifurcation diagram.

Due to the presence of many branches of non-
algebraic bifurcation surfaces, we cannot point out
exactly neither predict the concrete value of n
where the changes in the parameter space happen.
Thus, with the purpose to set an order for these
changes in the parameter space, we introduce the
following notation. If the bifurcation happens be-
tween two concrete values of n, then we add or
subtract a sufficiently small positive value ¢; or 5;
to/from a concrete value of n; this concrete value
of n (which is a reference value) can be any of the
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two values that define the range where the non—
concrete values of n are inserted. The representa-
tion &; means that the n; refers to a generic slice,
whereas ¢} means that the n; refers to a singular
slice. Moreover, considering the values €;, €7, €41
and €7 |, it means that ; < &] < ;41 < &j, | mean-
while they belong to the same interval determined
by algebraic bifurcations.

We now begin the analysis of the bifurcation
diagram by studying completely one generic slice
and after by moving from slice to slice and explain-
ing all the changes that occur. As an exact drawing
of the curves produced by intersecting the surfaces
with the slices gives us very small parts which are
difficult to distinguish, and points of tangency are
almost impossible to recognize, we have produced
topologically equivalent figures where parts are en-
larged and tangencies are easy to observe.

The reader may find the exact pictures as well
as most of the proves of this chapter in the web page
http://mat.uab.es/~artes/articles/qvfsn2SN02/
qvfsn2SN02.html.

Notation. We now describe the labels used for each
part of the bifurcation space. The subsets of dimen-
sions 3, 2, 1 and 0, of the partition of the parameter
space will be denoted respectively by V', S, L and P
for Volume, Surface, Line and Point, respectively.
The surfaces are named using a number which cor-
responds to each bifurcation surface which is placed
on the left side of the letter S. To describe the por-
tion of the surface we place an index. The curves
that are intersection of surfaces are named by us-
ing their corresponding numbers on the left side of
the letter L, separated by a point. To describe the
segment of the curve we place an index. Volumes
and Points are simply indexed (since three or more
surfaces may be involved in such an intersection).

We consider an example: the surface (S) splits
into 5 different two—dimensional parts labeled from
151 to 1S5, plus some one—dimensional arcs labeled
as 1.iL; (where i denotes the other surface inter-
sected by (S1) and j is a number), and some zero—
dimensional parts. In order to simplify the labels in
all figures we see V1 which stands for the TEX no-
tation V7. Analogously, 1S1 (respectively, 1.2L1)
stands for 15 (respectively, 1.2L;). And the same
happens with many other pictures.

n0:10
711:9
712:9—51
n3=9—€*1‘

n4:9—52
n5:9—€§
716:9—53
’I’L7=9—z’:‘§
n8:9—54

n9:9—€j
n10:9—55
7111:9—6?)
ni2 =9 —¢q
n13:9—5§
niy=9—er

nis = 6

Nie = 119/20
niy ~ 5.89088. ..
nig = 21/4

Nnig = 125/27
Nopg = 114/25
Nno1 = 9/2

Moo = 108/25

nas = 755(102 + 7v/21)
Nog = 401/100

Nos = 4

nag = 2304/625

No7 ~ 3.63495. ..

Nas = 2+ €12

Mgy = 2

Ny = 19/10

Ny7 = 19/10 — ET3
n4gg = 17/10

Nag = 17/10 — 5{4
nso = 17/10 — €14
ns1 :41/254-6{5

Ny :41/25
ns3 = 8/5 + €3¢
n54:8/5

Nss = 1

Nnse :81/100
ngr =2—/2
nss :9/16

N9 = 1/2

neo :9/25

ne1 :9/25—617*
Nne2 :81/40

Nes — 81/40 — ETS
Neqs — 81/40 — €18
Negs = 81/40 — 6{9
Nee = 81/40 — €19
Ne7r — 81/40 — 5;0
nes — 81/40 — €20
Nnegg = 81/40 — 6;1
n7o = 4/25

nry = 4/25 — 6;2

Nog — 7/2 N7y = 4/25 — £922
n29=2+\/§ 7173:4/25—633
nso = 16/5 N7y = 4/25 — €33
ns3i1 =3 nrs :4/25—634
Nnzg = 14/5 Nreg = 4/25 — €24
n33 :8/3 TL77:4/25—5;5
N34 :8/3—58 nrs :9/100

nss :8/3—5§ n79 :9/100_636
7136:8/3—89 n80=9/100—€26
7’L37:9/4 ng1 :9/1007837
7’L38:11/5 7’L82:1/25

ngo = 11/5 — ng3 =0

N4 = 11/5 — €10 ngs = -1

na = 755(102 — 7/21) ngs ~ —3.40133. ..
Nag = %(102 — 7\/ﬁ) —e11 nge = —4

N4z =2+ €7y Ng7 = =0

(17)

In Fig. 15 we represent the generic slice of the
parameter space when n = ng = 10, showing only
the algebraic surfaces. We note that there are some
dashed branches of surface (S3) (in yellow) and (Sy)
(in purple). This means the existence of a weak sad-
dle, in the case of surface (S3), and the existence of
an invariant straight line without connecting sep-
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aratrices, in the case of surface (Sy); they do not
mean a topological change in the phase portraits
but a C* change. In the next figures we will use
the same representation for these characteristics of
these two surfaces.

With the purpose to explain all the changes in
the bifurcation diagram, we would have to present
two versions of the picture of each slice: one of them
without labels and the other with labels in each new
part (as we have done in [Artés et al., 2013b] and
[Artés et al., 2014]).

However, as the number of slices is considerably
large (see equation (17) — 88 slices to be more pre-
cise) we would have to present about 176 pictures,
which would occupy a large number of pages. Then,
we will present only the labeled drawings (just the
“important part” in each slice) containing the alge-
braic and nonalgebraic bifurcation surfaces. In the
next section, we prove the existence of such nonalge-
braic surfaces and their necessity for the coherence
of the bifurcation diagram.

Remark 6.31. Wherever two parts of equal dimen-
sion d are separated only by a part of dimension
d — 1 of the black bifurcation surface (Sg), their
respective phase portraits are topologically equiva-
lent since the only difference between them is that
a finite antisaddle has turned into a focus without
change of stability and without appearance of limit
cycles. We denote such parts with different labels,
but we do not give specific phase portraits in pic-
tures attached to Theorem 1.1 for the parts with
the focus. We only give portraits for the parts with
nodes, except in the case of existence of a limit cycle
or a graphic where the singular point inside them is
portrayed as a focus. Neither do we give specific in-
variant description in Sec. 8 distinguishing between
these nodes and foci.

6.2. Bifurcation surfaces due to connec-
tions

We start this section explaining the generic slice
when n = 10. In this slice we will make a complete
study of all its parts, whereas in the next slices
we will only describe the changes. Some singular
slices will produce only few changes which are easy
to describe, but others can produce simultaneously
many changes, even a complete change of all parts
and these will need a more detailed description.

As said in last section, in Fig. 15 we present
the slice when n = 10 with only the algebraic
We now place for each set of the par-
tition on this slice the local behavior of the flow
around all the singular points. For a specific value
of the parameters of each one of the sets in this
partition we compute the global phase portrait
with the numerical program P4 [Artés et al., 2005,
Dumortier et al., 2006]. In fact, all the phase por-
traits in this study can be obtained not only nu-
merically but also by means of perturbations of the
systems of codimension one.

In this slice we have a partition in
2—dimensional parts bordered by curved polygons,
some of them bounded, others bordered by infinity.
From now on, we use lower—case letters provision-
ally to describe the sets found algebraically so not
to interfere with the final partition described with
capital letters.

For each 2—dimensional part we obtain a phase
portrait which is coherent with those of all their
borders. Except eight parts, which are shown in
Fig. 15 and named as follows:

surfaces.

e v5: the curved triangle bordered by yellow
and blue curves and infinity;

e vg: the curved quadrilateral bordered by blue,
yellow and black curves and infinity;

e v1g: the curved triangle bordered by purple
and yellow curves and infinity;

e v19: the pentagon bordered by yellow, purple,
green and purple curves and infinity;

e v99: the quadrilateral bordered by two paral-
lel purple and two parallel green curves;

e vo7: the curved quadrilateral bordered by yel-
low, red and black curves and infinity;

e v33: the curved triangle bordered by yellow,
red and black curves;

e v54: the curved triangle bordered by purple
and yellow curves and infinity;
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V4
Vs
P\ Y16 3 V21
352 - ;
1o 2361
vs 353 § -
~ 12.305
654 Vg 453 i 25101
481 .\3 482 |
V10 E
3.1044
356 V12 2s5 1 V22
4s4 4s5
-
2814

Fig. 15. Slice of parameter space when n = 10 (only algebraic surfaces)
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We consider the segment 3s; in Fig. 15, which
is one of the borders of part vs. On this segment,
the corresponding phase portrait possesses a weak
focus (of order one) and, consequently, this branch
of surface (S3) corresponds to a Hopf bifurcation.
This means that either in v4 or in vs we must have
a limit cycle; in fact it is in v5. The same happens
on 3sg, one of the borders of part vg, implying the
existence of a limit cycle either in vg or in vyg; and
in fact it is in vs.

However, in case of part vs, when approaching
1s5 and with the help of the program P4, the limit
cycle has already been lost; and in case of part vg,
when approaching 3s3 and/or 6sy4, the limit cycle
has also disappeared. After these remarks, each
one of the parts vs and vg must be split into two
parts separated by a new surface (S7) having at
least two elements (curves 757 and 753 in Fig. 23)
such that one part has limit cycle and the other
does not, and the borders 757 and 753 correspond
to a connection between separatrices. In spite of the
necessity of these two branches of surface (S7), there
must exist at least one more element of this surface
to make this part of the diagram space coherent.
We talk about the element 7S5 (see Fig. 23) which
also corresponds to connection of separatrices but
different from that happening on 757 and 7553.

Numerically, it can be checked that part vs
splits into V5 with one limit cycle and Vg without
limit cycles, and part vg splits into V7 and Vg with-
out limit cycles and Vi7 with one limit cycle. Even
though parts V7 and V3 have no limit cycles, they
provide topologically distinct phase portraits since
the connection of separatrices on 753 (respectively,

on 757) is due to the saddlenode (g) SN and the fi-
nite saddle (respectively, is due to the saddle—node

(g) SN and an infinite saddle), i.e. connection of
separatrices from different points, whereas the con-
nection on 753 is due to a saddle itself (i.e. a loop—
type connection). We plot the complete bifurcation
diagram for these two parts in Fig. 23. We also
show the sequence of phase portraits along these
subsets in Fig. 16.

Now, we carry out the analysis of parts vig,
v12 and voo. We consider part vg. The respec-
tive phase portrait is topologically equivalent to
the one in Vg with the focus turned into a node.
On 4s1, the separatrix of the infinite saddle-node
connects with a separatrix of the finite saddle pro-

ducing an invariant straight line linking the pair of
infinite saddle-nodes. When entering part vyg, this
connection is broken and the position of the sep-
aratrices of the infinite saddle-node and the finite
saddle is changed in relation to the position repre-
sented in Vy. However, when we approach 4s,, the
phase portrait in a neighborhood of this segment
is topologically different from the one we described
just after entering part viy. Indeed, the phase por-
trait in vig near 4s; possesses a “basin” passing
through the saddle—node, i.e. two separatrices of
the saddlenode end at the same infinite singular
point, whereas the phase portrait in vy near 4s4
does not possess the “basin” and each one of the
same two separatrices of the saddle-node ends in
different infinite singular points.

As a result, there must exist at least one ele-
ment 754 of surface (S;) dividing part vig in two
“new” parts, Vg and Vi1, which represents a bifur-
cation due to the connection between a separatrix of
a finite saddle—node with a separatrix of a finite sad-
dle. It is worth mentioning that the segments 3ss
and 3sg and the point 3.10¢; refer to the presence
of weak saddle (of order one and two, respectively)
which implies that part vo is topologically equiv-
alent to v1p. Then, part vis must also be divided
in Vi and Vi3 by an element 7S5 of surface (S7)
with the same bifurcation as 754. Coupled with
this idea, we have parametrized the yellow surface,
“walked” on it and found that there exist a topo-
logical change in the phase portraits obtained.

In addition, we have done the same with the
green surface (i.e. we have parametrized it) and
found that segment 2s5 also presents two distinct
phase portraits and they are topologically equiv-
alent to the ones described above. This suggests
that an element 7Sg of surface (S7) divides part vao
in two “new” ones, Vo and Va3, where 7S¢ corre-
sponds to a bifurcation due to the connection be-
tween two separatrices from a finite and an infinite
saddle—nodes. Therefore, we know that 75g has one
of its endpoints on 2s5 (dividing it in 2S5 and 2S¢)
and Lemma 6.32 assures that the other endpoint is
2.4405.
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Vi
|

155
|

Vie

Fig. 16. Sequence of phase portraits in parts vs and vg of slice n = 10. We start from vy. We recall that the phase
portrait 357 is equivalent to the phase portrait V4 up to a weak focus (represented by a little black square) instead
of the focus. When crossing 3s1, we shall obtain the phase portrait V5 in subset v5. From this point we may choose
three different ways to reach the subset vg by crossing the blue curve: (1) from the phase portrait 1.3L; to the Vi7;
(2) from the phase portrait 154 to the Vi7; and (3) from the phase portrait 1.7L; to the V7, Vs, Vi7, 1S4, 753 and
753
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Lemma 6.32. The endpoint of 7Sg (rather than
the one which is on 2s5) is 2.405.

Proof. Numerical tools evidence that the endpoint
of 7S¢, rather than the one which is on 2ss, is 2.4/3.
In what follows, we prove that this endpoint cannot
be on segments 4s3 and 2s13.

If this endpoint were located on 4s3, there must
exist an invariant straight line linking the pair of
infinite saddlenodes producing a connection be-
tween their separatrices. On the other hand, we
would have two options. The first one would be
that this endpoint of 7S¢ should correspond to a
phase portrait in which the separatrices of the finite
saddlenode connects with the invariant straight
line, which is itself a connection of two separatrices
(see Fig. 17(a) to visualize the probable movement
of the separatrices in 4S3), producing a triple con-
nection of separatrices; in addition, the invariant
straight line should remain, what would be a con-
tradiction since we would have three non—collinear
infinite singular points involved in the “final” con-
nection. And the second option would be the birth
of another finite singular point on this straight line
which would make the “new” connection possible,
but in voo there exists only one finite singular point.

(@) (b)

Fig. 17. (a) The probable movement of the separatrices
to form another connection in phase portrait 455. The
straight line in red is produced by the connection of the
separatrices of the infinite saddle—nodes (the character-
istic of 453) and the separatrices in blue of the finite
saddle—node would tend to the straight line and provoke
a triple connection of separatrices having the invariant
straight line remained; (b) The probable movement of
the separatrices to form a connection in phase portrait
2S513. In order to have a phase portrait with character-
istics of curve 7S¢, it would be necessary that the sep-
aratrix in red of a finite saddle-node connects with the
separatrix of the infinite saddle—node in blue, but before
it is necessary that either the red or the blue separatrix
connects with the green one

Now, if the endpoint of 75 were located on
2s13, then another saddle-node should appear in
the finite part and it would send its separatrix as-
sociated to the null eigenvalue to an infinite node
and one of the other two separatrices would be re-
ceived by the nodal sector of the other finite saddle—
node and the other separatrix would be received by
the nodal part of an infinite saddle-node. If there
would exist an intersection between 7Sg and 2s13,
then a separatrix of a finite saddle-node would have
to connect with the separatrix of an infinite saddle—
node as sketched in Fig. 17(b). However, there ex-
ists a separatrix in the middle of these two that
prevents this connection before the connection be-
tween some of these two with the one from the mid-
dle. Then, it is impossible to have an intersection
between 7S and 2s13.

As shown above, the endpoint of 7Sg is not
on 4s3 nor in 2s13 and this confirms the evidence
pointed out by the numerical calculations that 7.5
ends at 2.4/3. [ |

We plot the complete bifurcation diagram for
these two parts in Fig. 23. We also show the se-
quence of phase portraits along these subsets in
Fig. 18.

We now perform the study of parts voy and vs3.
We consider the segment 3sg in Fig. 15, which is one
of the borders of part vo7. Analogously, on this seg-
ment, the corresponding phase portrait possesses a
weak focus (of order one) and, consequently, this
branch of surface (S3) corresponds to a Hopf bifur-
cation. This means that either in vog or in wvoy we
must have a limit cycle; in fact it is in wve7. The
same happens on 3sg, one of the borders of part
vs3, implying the existence of a limit cycle either in
v32 Or in wsz; and in fact it is in vs3.
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453

Vi @Ssﬁ 255/' Voo

TR T

754 3.7L1 755 2-7Ll 7S6 2.4L3
Vit 357 Vi3 256 Va3

2513

Fig. 18. Sequence of phase portraits in parts v1g, v12 and vae of slice n = 10. We start from v19. We recall that
the phase portraits Vig, 3Sg and Vi are topologically equivalent due to a weak saddle. The same happens to 75y,
3.7L1 and 7S5, and to Vi1, 357 and Vi3. From V3o, 7S5 and Vi3, we cross the segment 2s5, where the finite saddle
and finte node collide giving birth to a saddle-node, and we have three possibilites: 255, 2.7L; and 2516. Entering
part wves, this just—born saddle-node disappears; this part was divided in three and the respective phase portraits
Vaa, 7S¢ and Va3 are topologically distinct among them, and they tend to the phase portrait 2.4 L3 either directly or
passing through 4S5 and 2573
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However, approaching 6s11, the limit cycle has
been lost, which implies the existence of at least one
more element of surface (S7) (curve 757 in Fig. 24);
furthermore, the phase portrait in a small neigh-
borhood of 6517 is not coherent to that obtained
just after making disappear the limit cycle. If we
fix a value of the parameter ¢ in order to be in this
part and we make the parameter h increase from
3sg towards 6511, then we obtain four topologically
distinct phase portraits with no separatrix connec-
tion inside part we7, which implies the existence of
not only one but at least three elements of surface
(S7), the curves 757, 7Sg and 7Sy in Fig. 24; such
new phase portraits are Va7, with limit cycle, and
Vag, Vag and Vig, without limit cycles (see Fig. 19
for a sequence of phase portraits in these parts).
As the segment 5s5 corresponds to changes in the
infinite singular points, the finite part of the phase
portraits remain unchanged and these elements of
surface (S7) intersect 5s5. Consequently, vss is also
split into four parts having the same behavior in
the finite part with relation to the corresponding
“new” parts in wve7; such new phase portraits are
V33, with limit cycle, and V34, Va5 and Vig, without
limit cycles, and the branches of surface (S7) which
are the continuation of the segments 757, 7Sg and
7Sy are, respectively, 7579, 7511 and 7572.

Remark 6.33. One of the separatrices in the con-
nection on the curves 757, 7Ss, 759, 7519, 7511 and
7512 is always from a finite saddle.

Lemma 6.34. The curve 757 has one of its ends
at the point 2.30.

Proof. Numerical analysis suggests that the curve
757, which corresponds to a loop—type bifurcation,
has one of its ends at the point 2.3¢5. Indeed, if the
starting point of 757 were any point of segments 3sg
or 3s19, we would have the following incoherences.
Firstly, if this starting point were on 3sg, then a
portion of this subset must not refer to a Hopf bi-
furcation, which contradicts the fact that on 3sg
we have a weak focus of order one. Secondly, if the
starting point were on 3s1g, then a portion of this
segment must also refer to a Hopf bifurcation since
we a limit cycle in V33, which is also a contradic-
tion. |

ME

V26 358 V27

753 Vog 757
|

Vag 759 V3o

Fig. 19. Sequence of phase portraits in part ve7 of slice
n = 10. We start from vyg. We recall that the phase
portrait 3Sg is equivalent to the phase portrait Vog up
to a weak focus (represented by a little black square)
in place of the focus. When crossing 3sg, we shall ob-
tain the phase portrait Vo7 in subset vs7 possessing a
limit cycle. Then, on 757 two separatrices of the finite
saddle connect themselves producing a loop; this loop is
broken and one of the separatrices of the saddle goes to-
wards the focus and the other comes from the nodal part
of the saddle—node in Vbg; thus, that separatrix of the
saddle coming from the nodal sector of the saddle—node
connects with one of the separatrices of the saddle—node
producing another separatrices connection on 7.Sg; after
this connection is broken, the separatrix of the saddle—
node goes towards the focus and the separatrix of the
saddle comes from the infinite saddle-node, characteriz-
ing part Vag; then, on 759 one more connection of sepa-
ratrices is produced between the same separatrix of the
saddle and the separatrix of the infinite saddle-node;
and, finally, on V3¢ this separatrices connection is bro-
ken and the separatrix of the infinite saddle—node goes
towards the focus and the separatrix of the saddle comes
from the infinite node

Since the subsets 3s1¢9 and 6s7 correspond re-
spectively to the presence of a weak saddle and the
node—focus bifurcation, they do not imply a topo-
logical change in the phase portrait. Under these
circumstances, the segments 7511 and 7515 intersect
both subsets 3s1¢ and 6s7 causing only C'*° changes
in the phase portraits and they will end on segment
2s10 dividing it in three new parts: 2579, 2511 and
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2512. The reason why they do not cross 2spq is
that, if they did so, the connection of the separa-
trices would have to remain. However, in part wvo;
there exists only one finite singular point (namely,
37 (9)), i.e. the finite saddle and node that existed
on the right side of 2519 have collapsed on this seg-
ment and become a complex point after crossing it.
Following this idea, Remark 6.33 has no sense in
part vo. In Fig. 20 we show the sequence of phase
portraits from part 2.3Lo to 257,.

@.SL@510@7L2
|
@512@.7L@511

Fig. 20. Sequence of phase portraits in part 2s19 of slice
n = 10. We start from 2.3¢5. This part produces only
one phase portrait 2.3Ls which possesses finite saddle—
node and a cusp (we remark that this point is the in-
tersection of many surfaces, inducing a degeneracy —
the cusp point). On 2579 the cusp turns into a saddle—
node having two of its separatrices sent from the nodal
part of the remaining saddle—node. At 2.7L5, one sepa-
ratrix of one saddle-node connects with one separatrix
of the other saddle-node and, on 2571, this connection is
broken and we have the creation of two “basins” which
intersect at the two saddle-nodes. Then, on 2.7L3 a
connection of separatrices is produced between the sep-
aratrix of the infinite saddle—node and one separatrix of
one of the finite saddle—nodes and, finally, on 2515 this
connection is broken and we obtain the portrait above

Finally, we analyze part vss. We start in part
vs2. In this portion of the parameter space, the
corresponding phase portrait possesses the saddle—
node and two foci in the finite part and saddle—
nodes and saddles at infinity. When we cross the
curve 4s3, its phase portrait possesses {(x,0); x €
R} as an invariant straight line linking the infinite
saddles. The presence of this invariant straight line
produces a connection of separatrices between one
from a saddle and the other from the finite saddle—
node (the one associated to the null eigenvalue).

Entering part vsy, this invariant line disappears and
the separatrices in question change position, which
forces the separatrix of the saddle—node start from
its own nodal sector, forming a graphic.

On the other hand, we start from part vss.
There, the corresponding phase portrait also pos-
sesses the saddlenode and two foci in the finite
part and saddle-nodes and saddles at infinity. On
3516, which is a common border of parts vs4 and vss,
the corresponding phase portrait possesses a weak
focus (of order one) and, consequently, this branch
of surface (S3) corresponds to a Hopf bifurcation.
This means that either in vs4 or in vss we must have
a limit cycle; in fact it is in vsy.

After these remarks, we conclude that part vsy
must be split into two parts separated by a new
surface (S7) having at least one element 7517 (see
Fig. 24) such that one part has limit cycle and the
other does not, and the border 7517 corresponds to
a connection of two separatrices of the same saddle—
node in a loop, because the limit cycle disappears
and one of the phase portraits in vs4 possesses a
graphic attached to the saddle—node.

Lemma 6.35 assures that the segment 7577
starts from (or ends at) 1.3/2 and is not bounded.

Lemma 6.35. The segment 7S17 starts from (or
ends at) 1.302 and is not bounded.

Proof. If 7517 started on 3s14, there would exist a
portion of this segment without limit cycles, which
is a contradiction since it corresponds to a Hopf bi-
furcation. On the other hand, if 7517 started on
4s13, two types of connection of separatrices should
happen: the connection between the separatrix of
the infinite saddle with the separatrix of the finite
saddle-node associated to the null eigenvalue (cre-
ating an invariant straight line) and the loop—type
connection in the finite saddlenode. If both con-
nections happen, there must exist a degenerate por-
tion of 4s13 in which this segment would start. Us-
ing numerical tools, we verify that 7577 starts from
1.3¢5. Moreover, using the same arguments, the
segment 7577 can end neither on 3s1¢ nor on 4s3,
implying that it is unbounded. |

We can check numerically that part vsg splits
into Vs3, without limit cycles, and V54, with limit
cycle. We plot the complete bifurcation diagram
for these two parts in Fig. 24. We also show the
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sequence of phase portraits along these subsets in
Fig. 22.

Having analyzed all the parts pointed out on
page 29 and explained the existence of all possible
nonalgebraic surfaces in there (modulo islands), we
have finished the study of the generic slice n = 10
for the family QsnSN(C). However, we cannot
be sure that these are all the additional bifurca-
tion curves in this slice. There could exist others
which are closed curves small enough to escape our
numerical research. For all other two—dimensional
parts of the partition of this slice, whenever we join
two points which are close to different borders of
the part, the two phase portraits are topologically
equivalent. So, we do not encounter more situa-
tions than the ones mentioned above. In short, it
is expected that the complete bifurcation diagram
for n = 10 is the one shown in Figs. 23 and 24. In
these and the next figures, we have colored in light
yellow the parts with one limit cycle, in light green
the parts with two limit cycles, in black the labels
referring to new parts which are created in a slice
and in red the labels corresponding to parts which
has already appeared in previous slices.

The next step is to decrease the values of n,
according to equation (17), and make an analogous
study for each one of the slices that we need to
consider and also look for changes when going from
one slice to the next one.

For all values of n greater than zero, the sec-
ond and third quadrants of the bifurcation diagram
remain unchanged (i.e., for all n > 0, there exist
no topological bifurcations in the second and third
quadrants in the parameter space). So, as we move
from n > 9 towards infinity, all the slices are topo-
logically equivalent to slice n = 10 and, at the limit
to infinity, the bifurcation diagram tends to be the
one shown in Fig. 25.

We now start decreasing the values of n in order
to explain as much as we can the bifurcations in the
parameter space.

We consider the curved triangles in the first
quadrant of slice n = 10: V31, V39 and Vi3, all hav-
ing 2.3/ as a common vertex. As we move down
from n =10 to n = 9 (a singular slice), these three
triangles collapse in a single point (2.5Ls) and, for
values of n < 9, but very close to it, two triangles
Vs and Vg appear in the upper part limited by the
red curve. In addition, as we have already proved,

vas) V27
\ /

o

V25

Fig. 21.
Fig. 24)

Slice of parameter space when n = 9 (see

there exist some elements of surface (S7) near these
triangles and we either have the purple bifurcations
persisting next to the triangles, or not. The first
possibility is true, because after numerical analysis
for values of n less than 9, but very close to it, we
still verify the same changes in the phase portraits
as shown in the sequence in Fig. 19. As the end-
point of the curve 757 is 2.3/ (see Lemma 6.34)
and this point collapses and reappears in the part
over the red curve, it is natural that 757 follows
the same movement. However, the other elements
of surface (S7) in this part remain starting from the
segment 2s1g. These facts are illustrated in Figs. 21
to 38. For the transition of the slices drawn in these
figures, it is clear that we need at least 13 values
of n (apart from n = 9) to have coherence in the
bifurcation diagram. Those values of n cannot be
concretely determined, but we know they lie on the
open interval between n = 6 and n = 9.
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Fig. 22. Sequence of phase portraits in part vs4 of slice n = 10. We start in vss, whose corresponding phase portrait
is Vs5. On 3s16, one of the foci becomes weak (represented as a small square in 3516) and it gives birth to a limit cycle
when we enter part vs4; see phase portrait Vs4. Then, on 7517, two separatrices of the saddle—node connect forming
a loop, which “kills” the limit cycle. After that, we obtain the portrait V53 in which there exists no connection of
separatrices but only a graphic. A graphic remains when we lie on 4s;3, but the corresponding phase portrait 4,513
possesses an invariant straight line and connection of separatrices. Finally, in vso the graphic disappears and we
obtain the phase portrait Vss
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Fig. 23. Complete bifurcation diagram for slice n = 10 (second and third quadrants)




40 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

V25
v25]

Fig. 24. Complete bifurcation diagram for slice n = 10 (first and fourth quadrants)
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Fig. 25. The transition from n > 9 to infinity. The orange arrows show the movement the curves must do as n — oo
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V27

V28

V69

Fig. 26. Slice of parameter space when n =9 — &7 (see
Fig. 21)

Figs. 29 to 38 illustrate needed slices for the
coherence of the bifurcation diagram. The inter-
section points between the purple curves with the
green curve will “go up” in the sense of increasing
{ and cross the intersection point between the red
and green curves (this intersection is renamed as
different slices succeed). Consequently, the same
will happen to the entire purple segments. How-
ever, there exist other bifurcation curves intersect-
ing these purple curves. Then, the slices within
these figures show step by step the movement of
these purple curves until they are all in the upper
part limited by the red curve. KEach one of Ta-
bles 3 to 9 presents the “dead” and the “born” parts
(of higher dimension in that slice) in the transition
from one generic slice to another passing through a
singular slice in the middle of them from n = 10 to
n=9-— E7.

Table 3. Transition from slicen =10ton =9 — ¢,

Born parts
Ves, Voo

Dead parts | Parts in sing. slice
Va1, Vag, Vas Py

In Figs. 39 to 42 we still remain in the first

V68

V38

V39

/

Fig. 27. Slice of parameter space when n = 9 — e} (see
Fig. 26)

V68

/

Fig. 28. Slice of parameter space when n =9 — &5 (see
Fig. 27)
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V638
V69

N

V41

V69

Fig. 29. Slice of parameter space when n =9 — e (see Fig. 31. Slice of parameter space when n =9 — €} (see
Fig. 28) Fig. 30)

%

5.7L13
V41
Fig. 30. Slice of parameter space when n =9 — £3 (see Fig. 32. Slice of parameter space when n =9 — g4 (see

Fig. 29) Fig. 31)
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Fig. 33. Slice of parameter space when n =9 — ¢} (see Fig. 35. Slice of parameter space when n =9 — €} (see
Fig. 32) Fig. 34)

N

AN

Fig. 34. Slice of parameter space when n =9 — 5 (see Fig. 36. Slice of parameter space when n = 9 — g4 (see
Fig. 33) Fig. 35)
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Fig. 39. Slice of parameter space when n = 6 (see
Fig. 37. Slice of parameter space when n = 9 — &f (see Fig. 38)

Fig. 36)

/

Fig. 40. Slice of parameter space when n = 119/20 (see
Fig. 38. Slice of parameter space when n =9 — &7 (see Fig. 39)

Fig. 37)
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Q

Fig. 41. Slice of parameter space when n = njz
5.8908 ... (see Fig. 40)

(Gsth— N
e V47

@

Fig. 42. Slice of parameter space when n = 21/4 (see
Fig. 41)

Table 4. Transition from slicen =9 —e; ton =9 — 9

Dead parts

Parts in sing. slice

Born parts

Va4

Py

Vo

Table 5. Transition from slicen =9 —eg ton =9 — 3

Dead parts

Parts in sing. slice

Born parts

Vag

Py

Vi

Table 6. Transition from slicen =9 —ez3ton =9 —e4

Dead parts

Parts in sing. slice

Born parts

Vi

Py

2517

Table 7. Transition from slicen =9 —e4ton =9 — 5

Dead parts

Parts in sing. slice

Born parts

Vas

Ps

Vira

Table 8. Transition from slicen =9 —es ton =9 — ¢

Dead parts

Parts in sing. slice

Born parts

V39

P

Vs

Table 9. Transition from slicen =9 —egton =9 — ey

Dead parts

Parts in sing. slice

Born parts

Vi

Pr

2518

quadrant and they show the interaction among the
algebraic surfaces (S3), (S5) and (Sg), and it is not
necessary to consider nonalgebraic bifurcation sur-
faces to keep the coherence. Neither their existence
is needed in the fourth quadrant shown in Figs. 43
and 44. We observe that, even if n = 125/27 is a
critical value corresponding to a singular slice, the
intersection produced here is not labeled as a point
but a line due to the fact that it is a contact point
and, when we pass to the next (generic) slice, this
contact point becomes two transversal ones but its
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characteristic remains; so, there exists no sense in
changing its label. There will exist more situations
like this in what follows. Tables 10 to 12 show the
death and birth of parts from slice n = 9 — 7 to
n = 114/25.

Table 10. Transition from slice n = 9 —e7 to n =
119/20. The “born” part V4 is not new since it will join
later with V4 (see Fig. 42)

Dead parts | Parts in sing. slice | Born parts
Vao Py Via

Table 11. Transition from slice n = 119/20 to n = 21/4.
The symbol ‘()" means that no new part was “born”

Dead parts | Parts in sing. slice | Born parts
V36 5.6Lo 0

Table 12. Transition from slice n = 21/4ton = 114/25.
The symbol ‘()" means that no part was “dead”

Dead parts | Parts in sing. slice | Born parts
0 1.6L, Vag

Returning back to the first quadrant, the point
in gray corresponds to a weak saddle of second order
(see the point 3.10L9 in Fig. 24). When n = 9/2,
the curved triangle bordered by yellow (plus the
gray point), purple and red curves bordering V37
(3513, 457, 5S9 and 3.10L2) collapses and reappears
creating new parts, as seen in Figs. 45 and 46. Ta-
ble 13 shows the “dead” and “born” parts after this
bifurcation.

Moving back to the forth quadrant to the con-
tinuation of the movement shown in Figs. 43 and
44, the black curve produces the same movement
as before but now contacting the yellow curve, ac-
cording to Figs. 47 and 48, and Table 14 presents
the new parts.

In Fig. 49 we represent fourth quadrant of the
slice of the parameter space when n = 4. When
n > 4, there exists a point of intersection among
surfaces (S2), (S3) and (Sg); more precisely, the
point 2.3L3 in Fig. 26. According to Lemmas 6.14,

Fig. 43. Slice of parameter space when n = 125/27 (see
Fig. 24)

Fig. 44. Slice of parameter space when n = 114/25 (see
Fig. 43)
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\\

s
S

Fig. 47. Slice of parameter space when n = 3(102 +

Fig. 45. Slice of parameter space when n = 9/2 (see 7v/21)/100 (see Fig. 44)
Fig. 42)

\ V73]

V75

3.5L6 V438
15
Fig. 48. Slice of parameter space when n = 401/100

Fig. 46. Slice of parameter space when n = 108/25 (see (see Fig. 47)
Fig. 45)

4. 5L2

V46
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Table 13. Transition from slice n = 21/4 to n = 108/25

Dead parts | Parts in sing. slice | Born parts
Var Py Vis

Table 14. Transition from slice n = 114/25 to n =
401/100. The symbol ‘() means that no part was “dead”

Dead parts | Parts in sing. slice | Born parts
0 3.6L4 Vag

6.17 and 6.20, the expression of this point (or,
seen in the projective space, this curve) is [l :
h:2h/(h —1): (1+h)?. As h — 17, we have
n — 4% and 2.3L3 goes to oo (since the coor-
dinate ¢ goes to +00). An analogous argument is
applied to the point 3.6L4 in Fig. 48 (the one in
the left side) and we conclude it also goes to —oc.
Thus, we conclude that the segment 6594 in Fig. 48
breaks apart, obtaining the configuration shown in
Fig. 49. Moreover, there exist two portions of col-
lapsing of curves, forming the points Pjg and Pi;.
Considering the next slice when n = 2304/625, the
collapsed curves separate and form three curved tri-
angles: V77, Vg and Vgs. Furthermore, the expres-
sions for the points 2.3 L3 and 3.6 L4 now make sense
and the points coincide at infinity and appear as
2.3L4 in the lower part of the slice. Together with
them, four more elements of surface (S7) must ex-
ist in order to keep the coherence of the bifurca-
tion diagram. We plot a portion of the slice when
n = 2304/625 in Fig. 50. See in Table 15 the parts
which disappeared and were created when we pass
through slice n = 4.

Fig. 49. Slice of parameter space when n = 4 (see
Figs. 24, 45 and 48)

Table 15. Transition from slice n > 4 to n = 2304/645.
The notation Vi, means that only one of the two ap-
parently disconnected parts of Vgo in Fig. 48 has died.
Moreover, the point 2.7L5 in Fig. 38 tends to Py as
n — oo “killing” all the above volumes (and respective
borders) and 2.7Lg comes from Pgy (when n = —o0)
“bringing” a new set of volumes and borders

Dead parts | Parts in sing. slice | Born parts
Vo Py Var

Vag, Vor, Vg,

Vag, V3o, Ves, P Vzs, Vg, Vo,

Vo, Vo, Vi1, o4 Vg1, Va2, Va3
Vo

2.7Ls Py 2.7Lg

Vi3 Py Vg4, Vss
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V2
0 Va4

5s21

5714)
5520

V22

V24

5 _B0200
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V65

Fig. 50. Slice of parameter space when n = 2304/625 (see Fig. 49)
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V77

V74

=

V64

V76
‘
V67
Fig. 51. Slice of parameter space when n = noy =

3.6349.. .. (see Fig. 50)

In Figs. 51 to 54 we show the movement of the
gray point 3.10L3 and the purple straight line con-
taining segment 4S5, when n moves down from
n = noy ~ 3.6349... to n = ng; = 3. Tables 16
and 17 presents the death and birth of parts in this
transition.

Table 16. Transition from slice n = 2304/625 to n =
7/2

Dead parts | Parts in sing. slice | Born parts
3512 Py 3530

Table 17. Transition from slice n = 7/2 to n = 16/5.
The notation V), means that only one of the two appar-
ently disconnected parts of Vg4 in Fig. 52 has died

Dead parts | Parts in sing. slice | Born parts
Vei Pyg Vse

When n = 3, surfaces (S3) and (S5) do not in-
tersect transversally, possessing a point of contact,
as we can see in Fig. 55 and in Table 18. We note
that in the next slice when n = 14/5 there exists an-

V74

V67

Fig. 52. Slice of parameter space when n = 7/2 (see
Fig. 51)

Fig. 53. Slice of parameter space when n = 2 + /2 (see
Fig. 52)
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V74
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V77
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V76
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Fig. 54. Slice of parameter space when n = 16/5 (see
Fig. 53)

other part with limit cycles (Vg7) as represented in
Fig. 56. In the sequence, we claim that at n = 8/3
the point 3.10L4 goes to infinity (more precisely, to
the point Pg4). Indeed, according to Lemma 6.21,
the last coordinate of the expression of this point is

122404302 — \/3(2+ 0)3(3( — 2)
B 8 —12¢ ’

n

and solving it with respect to n, we obtain three
solutions. Now, if we substitute the value n = 8/3
in these solutions, they are not defined, since 3n —8
is a factor in the three denominators, proving our
claim. The parameter space at this level is shown
in Fig. 57.

Table 18. Transition from slice n > 3 to n = 14/5

Dead parts | Parts in sing. slice | Born parts
‘/217 13L2 ‘/87

However, when we move down the value of n,
the expression above makes sense again and the
point reappears as 3.6Lg in the parameter space,
but in the lower part (in the fourth quadrant), ac-
cording to Fig. 58 (this figure is an ampliation of
a portion of Fig. 50). When this point reappears,

Fig. 55.
Fig. 50)

Slice of parameter space when n = 3 (see

Fig. 56. Slice of parameter space when n = 14/5 (see
Fig. 55)
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Fig. 57. Slice of parameter space when n = 8/3 (see
Fig. 56)

&

Fig. 58. Slice of parameter space when n = 8/3 — eg
(see Fig. 50)

it “brings” the curves 752 (loop—type connection)
and 7S5 (heteroclinic connection between the finite
saddle-node and the finite saddle), making them
intersect 3S5g. This phenomenon can be verified
by fixing n < 8/3, but sufficiently close to this
value, and parameterizing the segment 3S5g in the
coordinate ¢, for example, and for each value of h,
we construct the phase portrait with the program
P4 and verify that the connections of separatrices
which correspond to the curves 7S99 and 7.S95 oc-
cur on this segment. In addition, we must have an
element of surface (Sip) which corresponds to a bi-
furcation of double limit cycle in order to keep the
coherence in the bifurcation diagram. Lemma 6.36
assures the existence of such surface.

Lemma 6.36. Segment 105, corresponds to a bi-
furcation of double limit cycle and its borders are
3.10Lg and Psy (this last one from slice n = —o0).

Proof. We consider Fig. 58. Part Vg first appeared
in slice when n = 2304/625 and its corresponding
phase portrait possesses a limit cycle. We note that
on the segments 3S55g, 3533, 3534, 3535 and on their
linking points the phase portraits possess a weak
focus of order at least one and, consequently, they
refer to a Hopf bifurcation. If we are in part Vgg
and cross the segment 3555, we enter part V79 and
the limit cycle is lost. Following this idea, the same
should happen if we cross the segment 3533, but
that is not what happens. After crossing this seg-
ment, the limit cycle persisted when entering part
Vss. In fact the Hopf bifurcation creates a second
limit cycle.

We can confirm this by moving along a different
path. There exist no limit cycles in the phase por-
traits of parts Vg; and Vzg and, after crossing the
segments 3534 and 3535, respectively, we enter in
parts Vgg and Vg, whose corresponding phase por-
traits have a limit cycle. As the segment 7S5 is the
continuation of 7595, it refers to a heteroclinic con-
nection of separatrices between the finite saddle—
node and the finite saddle, and it also possesses a
limit cycle, since the separatrix which enrolls in the
limit cycle is not involved in the connection. Now,
considering the segment 7597, we know it is the
continuation of 7S99 and, hence, a loop—type bifur-
cation happens on it. So, we have two possibilities
after crossing it and entering in part Vgg: either
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the limit cycle dies, or another one is created. In
fact the second possibility is which happens, since
there already exist at least one limit cycle in Vgg,
confirming that there exist two limit cycles in the
representatives of part Vgg.

We note that these two limit cycles are around
the same focus, because there exists only one focus
in this portion of the parameter space. Then, as
in part V79 we do not have limit cycles and in Vgg
we have two of them (around the same focus), there
must exist at least one element 105 of surface (S1o)
dividing these two parts and corresponding to the
presence of a double limit cycle.

Now, it remains to prove where 1057 starts
from. As we have already discussed, the point
3.10L4 (corresponding to the presence of a weak
saddle of order two) went to infinity and returned
back in the lower part of the forth quadrant, being
labeled as 3.10Lg and corresponding to the presence
of a weak focus of order two. With this in mind, it
is more comprehensible that leaving part Vgg and
crossing the yellow curves, we enter in two topolog-
ically distinct parts, one with limit cycles and the
other without them. The linking point 3.10Lg of
the segments 359 and 3533 is responsible for this,
i.e. if we “walk” along the segment 3555, which does
not possess limit cycle, and cross 3.10Lg, the focus
becomes weaker and a Hopf bifurcation happens,
implying the birth of a limit cycle in the represen-
tatives of 3533. Then, by this argument and by
numerical evidences, the segment 105 starts from
3.10Lg. Since surface (S19) has been born at Pgy in
slice n = 8/3, this point is still a border of 105;. W

We show in Fig. 59 an ampliation of the neigh-
borhood in the parameter space of the point 3.10Lg
with the corresponding phase portraits. Table 19
presents the “dead” and “born” parts when we go
from slice n = 14/5 to n = 8/3 — es.

Table 19. Transition from slicen = 14/5ton = 8/3—¢g

Dead parts | Parts in sing. slice
3.10Ly Pey

Born parts
Vss, Vso, Vao

We now continue moving down the values of
n and the next important value to be considered
is n = n3s = 8/3 —e§. At this level, the point
3.10Lj5 (see Fig. 58) moves towards the intersection

Vso

@
Vss

2
Vzg

Fig. 59. Neighborhood in the parameter space of the
point 3.10Lg with the corresponding phase portraits: the
existence of double limit cycle through a f(?)

between yellow and purple curves (3.7Lg), which
cannot be precisely determined, and crosses it. This
movement does not imply topological changes in the
phase portraits since 3.10Ls5 corresponds to a weak
saddle of order two. We show the movement just
described in Figs. 60 and 61, and in Table 20.

Table 20. Transition from slice n = 8/3 —eg to n =
8/3 — &9

Born parts
3536

Dead parts | Parts in sing. slice
3Sa7 Py

Considering the next singular slice, we analyze
the case when n = 9/4. According to Lemma 6.4,
in this value of n, surface (S3) has a line of singular-
ities of degree of degeneration at least three; in fact,
when n = 9/4, a branch of this surface becomes a
cusp after the collision of the point 2.3L4 (which
is also a common point of surfaces (Sz), (Sg) and
(S7); see Fig. 61) with 355 (a projective line or a
single point in each slice) which corresponds to two
complex singular points with null trace. In addition
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Fig. 60. Slice of parameter space when n = 8/3 — &}
(see Fig. 58)

Fig. 61. Slice of parameter space when n = 8/3 — &g
(see Fig. 60)

Fig. 62. Slice of parameter space when n = 9/4 (see
Fig. 61)

to this collision, the points 3.10Lg and 3.10L7 also
collapse and make part of this cusp point of surface
(S3), as we can see in Fig. 62. It is worth mention-
ing that the corresponding phase portrait of this
cusp point, Pj5, possesses a singularity (a nilpotent
cusp) that grasps simultaneously the properties of
a weak saddle of order two and a weak focus of or-
der two; besides, this focus is in the edge of turning
into a node. We also note that the part with two
limit cycles has remained at this level and it will
“survive a bit longer”.

The next phenomenon is that the same branch
of yellow curve produces itself a loop for values of
n < 9/4, but close to it, and we arrive at the Fig. 63.
We have verified that the purple curves behaves as
represented in Fig. 63 and that the part of two limit
cycles still persists. However, the elements charac-
terized by possessing a weak point of order two do
not persist, since their expression has no image for
values of n € (—2,9/4).

So, there may arise a question. If there exists
no element implying the presence of a weak focus
of order two, where does the bifurcation surface of
double limit cycle start from? This starts from a
weak saddle of order one which produces a loop it-
self (as suggested in the description of surface (Ss3)
on page 22). In the case of planar differential sys-
tems, we know that the stability of a homoclinic



56 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

V92

é@

&
7

3534

g

©»

V7o

Fig. 63. Slice of parameter space when n = 11/5 (see
Fig. 62)

loop through a saddle is determined in first approx-
imation by the trace of the saddle. If the trace is
nonzero, a loop bifurcation leads to the birth (or
death) of a unique limit cycle when the two separa-
trices of the saddle cross each other, and we strongly
use this fact in the results of this thesis. How-
ever, according to Joyal and Rousseau [?]|, when
the trace of the saddle point vanishes, we can have
several limit cycles rising in a loop bifurcation (the
authors prove this phenomenon using the Poincar
return map in the neighborhood of the loop).

In simple words, when an elementary saddle
forms a loop, the interior stability of the loop is
ruled by the trace of the saddle. It is unstable, if
the trace is positive, and it is stable, if the trace is
negative. Thus, if along a set of parameters while
the loop persists the trace changes its sign, a limit
cycle must bifurcate.

The most interesting phenomenon that hap-
pens in the family QsnSN(C) is the fact that we
can pass from a (generalized) Hopf bifurcation to
a (generalized) loop bifurcation continuously as we
can see in Figs. 61 to 63.

Remark 6.37. The terms “generalized” used twice
above refer respectively to a Hopf bifurcation asso-
ciated with a weak focus of order two and a loop
bifurcation associated with a weak saddle of order

Fig. 64. Neighborhood in the parameter space of the
point 3.10Lg with the corresponding phase portraits: the
existence of double limit cycle through a s

one.

We show in Fig. 64 an ampliation of the neigh-
borhood in the parameter space of the point 3.7L1¢
with the corresponding phase portraits. Table 21
shows the “dead” and “born” parts when we go
from slice n = 8/3 — g9 to n = 11/5.

Table 21. Transition from slicen = 8/3—¢cg ton = 11/5

Born parts
VE)I) VE)Q

Dead parts | Parts in sing. slice
Vso Pis

In what follows, the point 3.7Lg moves towards
the point 3.3L;, they intersect and new parts are
created as can be visualized in Figs. 65 and 66. Ta-
ble 22 shows the “dead” and “born” parts when we
go from slice n = 11/5 to n = 11/5 — £1p.

In Figs. 67 to 70, we show the movement of
the curves in yellow and purple when we decrease
n from ny; = 3(102 — 74/21)/100 (including this
value) to ngs = 2, creating contact points with
other curves and after intersecting them transver-
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V50

\

Fig. 65. Slice of parameter space when n = 11/5 — &§
(see Fig. 63)

(V78]

Fig. 66. Slice of parameter space when n = 11/5 — 19
(see Fig. 65)

Table 22. Transition from slice n = 11/5 ton = 11/5—
€10

Dead parts | Parts in sing. slice | Born parts
Vi Pig Vos

sally in two points. Tables 23 and 24 indicate the
“dead” and “born” parts during this transition.

Table 23. Transition from slice n = 11/5 — 19 to n =
3(102 — 74/21)/100 — £11. The symbol ‘() means that no
part was “dead”

Dead parts | Parts in sing. slice | Born parts
0 3.6Lg Voa

Table 24.  Transition from slice n = 3(102 —
7v/21)/100 — €11 to n = 2+ €12. The symbol ‘)’ means
that no part was “dead”

Dead parts | Parts in sing. slice | Born parts
Q) 5.7L5 V95

We recall that surface (S3) is the union of a
plane and a cubic, and the proof of Lemma 6.4 as-
sures that, if n = 2, this cubic can be factorized in
a line plus a conic: —4(2h — 1)(2 + 2¢ + 2hl + £?).
It is to say that this surface changes its behavior
when we move to n = 2 and some parts in the bi-
furcation diagram die and others are created. See
Fig. 71 which illustrates the slice when n = 2 (we
only show the first and fourth quadrants) and Ta-
ble 25 which indicates the “dead” and “born” parts
when we cross slice n = 2.

If we consider the next slice when n = 19/10,
the factorization is not possible and we obtain the
slice shown in Fig. 72. We note that in the lower
part of this slice the elements of surfaces (S7) and
(S10) intersect with an element of surface (Sy). This
fact was verified by “walking” along two segments
parallel to an element of surface (S4) containing
4557 in this slice both left and right sides. On the
right side (upper part), starting from part Vig1, the
phase portrait possesses a limit cycle and the sep-
aratrix which enrolls around it comes from the fi-
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Fig. 67. Slice of parameter space when n = 3(102 — Fig. 69. Slice of parameter space when n = 2+ &7, (see
74/21)/100 (see Fig. 57) Fig. 68)

Fig. 68. Slice of parameter space when n = 3(102 — Fig. 70. Slice of parameter space when n = 2412 (see
7v/21)/100 — 1 (see Fig. 67) Fig. 69)
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Table 25. Transition from slice n = 2 + €15 to n =
19/10. The notation Vzi means that only one of the two
apparently disconnected parts of Vg in Fig. 70 has died

Dead parts | Parts in sing. slice | Born parts
Vi 3.4Lg Vo
Vs 3.4L7 Voz, Vog
Vs 3.4Lg Voo
Vio1, Vioz,
Ves Fos Vios, Vioa
Ve 3.4Lg Vioo

nite saddle-node. However, after “walking down”
a little more, we observed that the limit cycle died
and the separatrix which goes towards the focus
comes from the finite saddle, implying that we have
crossed a loop bifurcation. A little below, a hete-
roclinic bifurcation between finite singularities also
happens.

On the other hand, on the left side, starting
from part Vg and going down, we first cross the
heteroclinic connection and, after, the loop connec-
tion, but in this case, instead of meaning the death
of the limit cycle, it means the birth of a second
one. A little below, these two limit cycles die in a
double-limit—cycle bifurcation. A bit further down,
we cross surface (Sg), so the focus becomes a node
and no limit cycles are possible anymore. Also,
surface (Sy) crosses surface (Sg) forcing part Vig
to be bounded now. Then, the only point where
surface (S1p) may end is 4.7L1, in which we have
two heteroclinic connections between the finite sad-
dle and the finite saddle-node. As it is shown in
the paper of Dumortier, Roussarie and Rousseau
[Dumortier et al., 1994], the graphic in 4.7L; has
cyclicity two which is compatible with the fact that
this part borders a part with two limit cycles around
the same focus and a part with double limit cycle.
Fig. 73 shows an ampliation of the neighborhood
in the parameter space of the point 4.7L; with the
corresponding phase portraits.

In what follows, this point 4.7L; “goes up” in
the sense of increasing ¢ along the segment of sur-
face (S4). The next singular slice to be considered
is when it crosses the intersection 3.4L19 between
yellow and purple curves (see Fig. 74). In addition,
the point 3.7L1¢ tends towards 4.7L1 and, after the
bifurcation, all the parts of surface (S3) close to

the new part 4.7Ls will be below it. So, there is
no more intersection between the weak—saddle phe-
nomenon and the loop phenomenon on the left side
of vertical purple. This avoids the existence of part
Vsg. Then, part Vgg must have shrunk as n tends to
19/10 — €34 and disappeared in P;. On the right
side of the vertical purple it still exists an inter-
section between weak—saddle and loop bifurcations
(3.7L13), but the loop takes place with the separa-
trices of the finite saddle-node and, thus, the weak
saddle is not related to any limit cycle (see Fig. 75).
Table 26 indicates the “dead” and “born” parts in
this transition.

Table 26. Transition from slice n = 19/10 to n = 17/10

Dead parts | Parts in sing. slice
Vs, Vo, Voo Py

Born parts
Vios, Vios

Now, it is the turn of the purple curve 7S53;
(see Fig. 72) to “go down” in the parameter space,
as shown in Figs. 76 to 81. Firstly, part of it be-
comes tangent to the red curve 555 at the point
1.3L5 making disappear a portion of part Vs4; then,
the tangency is lost and it continues to move down
contacting and intersecting the black and the blue
curves yielding the curves 6.7Lg and 1.7Ls, respec-
tively. The first crossing produces new part Vig7,
but the second crossing (see Fig. 81) does no pro-
duce a new part as we will see in the next step. Ta-
bles 27, 28 and 29 indicate the “dead” and “born”
parts in the transition from slice n = 17/10 to
n = 8/5.

Table 27. Transition from slice n = 17/10 to n =
17/10 — €14. The notation V2, means that only one of
the two apparently disconnected parts of Vs4 in Fig. 70
has died. The symbol ‘0’ means that no part was created

Dead parts | Parts in sing. slice | Born parts
Vi 1.3L5 1]
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Fig. 72. Slice of parameter space when n = 19/10 (see Fig. 71)
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Fig. 73. Neighborhood in the parameter space of the
point 4.7L; with the corresponding phase portraits: the
existence of double limit cycle through a finite-to—finite
heteroclinic and a loop bifurcations

Table 28. Transition from slice n = 17/10 — £14 to
n = 41/25. The symbol ‘@’ means that no part was
“dea’d”

Dead parts | Parts in sing. slice | Born parts
0 6.7Lg Vior

Table 29. Transition from slice n = 41/25 to n = 8/5.
The symbol ‘’ means that no part was “dead”. The
“born” part V(js is not new since it will join later with
Vios (see Fig. 83)

Dead parts | Parts in sing. slice | Born parts
0 1.7Ly Vios

When we reach the value n = 1, some consider-
able changes happen to the behavior of the curves.
The purple vertical line and one component of the
green lines collide (since their expressions have the
common factor h) and all the elements which were
in between of them have collapsed in some parts
of this vertical line. See Fig. 82. However, they
separate again for n < 1 and many new parts ap-

Fig. 74. Slice of parameter space when n = 19/10 — 75
(see Fig. 72)

Fig. 75. Slice of parameter space when n = 17/10 (see
Fig. 74)
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Fig. 76. Slice of parameter space when n = 17/10 — &3, Fig. 78. Slice of parameter space when n = 41/25 + &35
(see Fig. 72) (see Fig. 77)

Fig. 77. Slice of parameter space when n = 17/10 — €14 Fig. 79. Slice of parameter space when n = 41/25 (see
(see Fig. 76) Fig. 78)
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Fig. 80. Slice of parameter space when n = 8/5 + &34
(see Fig. 79)

V100

Fig. 81. Slice of parameter space when n = 8/5 (see
Fig. 80)

pear between them, as shown in Fig. 83. All these
“dead” and “born” parts are indicated in Table 30.

Table 30. Transition from slice n = 8/5 to n = 81/100.
Compare Figs. 72 and 83: all parts between the two ver-
tical lines collapse. The lines split again and generate
new parts. Parts Vgg, Vg and Vyy had already disap-
peared some slices above

Dead parts | Parts in sing. slice | Born parts
Vies Voo, Vo2,

Vs, Vea, Vi3, 24L¢, 2.4L7, from Viog
Vg, Vas, Vas, 2.4Lg to Vias
Vs2, Va3, Vo,

Voz, Vs, Voo

We note that most of the new parts in slice n =
81/100 are concentred in the rectangle bounded by
green, vertical purple and two horizontal purple
curves (we call it Region 1), including elements of
nonalgebraic surfaces whose existence are necessary
for the coherence of that part of the bifurcation di-
agram. Moreover, we remark that the rest of the
changes will occur in the portion of the parameter
space in the right side of the vertical purple line (we
call it Region 2).

In Region 1, the three intersection points
among green, black and yellow curves (2.3Lg ), green
and blue curves (1.2L3), and green and red curves
(2.5L7) are the continuation of the intersections
2.3L5, 1.2Ls and 2.5Lg, respectively, but with a
different ordering they were before. Moreover, the
purple segment 7596 which separated parts Vg4 and
Vgs (see Fig. 82) and which started from an inter-
section of green and horizontal purple curves (Pas),
now it is called 7S35 and starts from an intersec-
tion of horizontal purple and vertical purple curves
(4.4L3, in the right top of Region 1), splitting parts
Vigg and Vi1g. In addition, more elements of surface
(S7) were necessary for the coherence and their ex-
istence and shape was verified numerically; four of
them refer to heteroclinic bifurcations (7Ss9, 7540,
7541 and 7S43) and one of them corresponds to loop
bifurcation (7S42).
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Fig. 83. Slice of parameter space when n = 81/100 (see Fig. 82)
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Fig. 84. Slice of parameter space when n = 2 — /2 (see
Fig. 83)

In Region 2, at the level n = 81/100 all the al-
gebraic curves remain and intersect at a single point
1.3 L7 together with an element of a heteroclinic bi-
furcation. But the two disjoint elements of loop
bifurcation 7534 in Figs. 75 and 81 which border
two temporary disjoint parts of part Vigs will have
a common point at Pos in Fig. 82 and will remain
joined and unlinked from any other bifurcation sur-
face. Segment 7534 was purposely drawn in Fig. 83
with a beak to show its movement of separation
from 1.3L7.

In Figs. 84 to 87 we sketch the movement of
the intersection between yellow and purple 3.4L14
along the vertical purple curve (Sy) as it crosses sur-
face (Sg) and another component of (S4). We note
that the intersection shown in Fig. 86 shows it hav-
ing a tangency between 355 and 7S533. However,
this could not be the case and we could have this
transition needing some more steps as a different
crossing between 3S5¢ and 7533 can happen. This
intersection cannot be detected algebraically. Any-
way, since surface (S3) in this surroundings only
means the presence of a weak saddle and there is
no possible loop, this has no effects in the number
of topologically different phase portraits. Tables 31
and 32 indicate the “dead” and “born” parts in the
transition from slice n = 81/100 to n = 9/25.

For the next slices, the intersection between
purple and green 2.7L7, which is located in the left
top of Region 1, will “sweep” the segments from

Fig. 85. Slice of parameter space when n = 9/16 (see
Fig. 84)
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Fig. 86. Slice of parameter space when n = 1/2 (see
Fig. 85)
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Fig. 87. Slice of parameter space when n = 9/25 (see
Fig. 86)

Fig. 88. Slice of parameter space when n = 9/25 — €7
Table 31. Transition from slice n = 81/100 to n = 9/16 (see Fig. 87)

Dead parts | Parts in sing. slice | Born parts
Vos Py Vige

Table 32. Transition from slice n = 9/16 to n = 9/25

Dead parts | Parts in sing. slice | Born parts
Vor Pos Viaz, Vigg

2554 up to 2S595. Consequently, surface 7535 will
also “sweep” most of the parts in Region 1, pro-
ducing new phase portraits. Due to its nature
of being nonalgebraic, we cannot precise the or-
der of the intersection and contact points with the
other curves, but any other order different from the
one we present in Figs. 88 to 109 will not bring
about new phase portraits rather than the ones
which have been created. Moreover, Tables 33 to
43 present the “dead” and “born” parts in the tran-
sition from slice n = 9/25 to n = 1/25.

We now consider the slice when n = 0. At
this level almost all the invariant polynomials we
use to describe the bifurcation diagram vanish and,
hence, we need to consider other ones which will
play a similar role. For this value of n, systems (5)

Fig. 89. Slice of parameter space when n = 81/40 (see
Fig. 88)
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V128

Fig. 90. Slice of parameter space when n = 81/40 — e}g Fig. 92. Slice of parameter space when n = 81/40 — &7,
(see Fig. 89) (see Fig. 91)

Fig. 91. Slice of parameter space when n = 81/40 —e15 Fig. 93. Slice of parameter space when n = 81/40 — £19
(see Fig. 90) (see Fig. 92)
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Fig. 94. Slice of parameter space when n = 81/40 — 3 Fig. 96. Slice of parameter space when n = 81/40 — €3,
(see Fig. 93) (see Fig. 95)
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Fig. 95. Slice of parameter space when n = 81/40 — &g Fig. 97. Slice of parameter space when n = 4/25 (see
(see Fig. 94) Fig. 96)
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Fig. 98. Slice of parameter space when n = 4/25 — e, Fig. 100. Slice of parameter space when n = 4/25 — €34
(see Fig. 97) (see Fig. 99)
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Fig. 99. Slice of parameter space when n = 4/25 — e99 Fig. 101. Slice of parameter space when n = 4/25 — ea3
(see Fig. 98) (see Fig. 100)
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V122

Fig. 102. Slice of parameter space when n = 4/25 —«&3, Fig. 104. Slice of parameter space when n = 4/25 — &
(see Fig. 101) (see Fig. 103)
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Fig. 103. Slice of parameter space when n = 4/25 — gy Fig. 105. Slice of parameter space when n = 9/100 (see
(see Fig. 102) Fig. 104)
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Fig. 106. Slice of parameter space when n = 9/100—¢3
(see Fig. 105)

0] Og/oe

Fig. 107. Slice of parameter space when n = 9/100—e24
(see Fig. 106)

71

Fig. 108. Slice of parameter space when n = 9/100—¢5-
(see Fig. 107)

i

Fig. 109. Slice of parameter space when n = 1/25 (see
Fig. 108)
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Table 33. Transition from slice n = 9/25 to n = 81/40

Dead parts

Parts in sing. slice

Born parts

2594

Pyg

Vigg

Table 34. Transition from slice n = 81/40 to n =

81/40 — £18
Dead parts | Parts in sing. slice | Born parts
7539 Por Viso, Visi

Table 35. Transition from slice n = 81/40 — £15 to

n = 81/40 — €19
Dead parts | Parts in sing. slice | Born parts
Viio Pag Viga

Table 36. Transition from slice n = 81/40 — €19 to

71:81/40—620

Dead parts

Parts in sing. slice

Born parts

Vin

Py

Vi

Table 37. Transition from slice n = 81/40 — e3¢ to

n=4/25
Dead parts | Parts in sing. slice Born parts
Viig, Viis Pso Viga, Viss, Vise

Table 38. Transition from slice n = 4/25 to n = 4/25 —

€22

Dead parts

Parts in sing. slice

Born parts

Vite

P3y

Vizr, Viss

Table 39. Transition from slice n = 4/25 — €95 to n =

4/25 — €23
Dead parts | Parts in sing. slice | Born parts
Viiz Pso Visg

Table 40. Transition from slice n = 4/25 — €93 to n =

4/25 — €924
Dead parts | Parts in sing. slice | Born parts
Viig Ps3 Viao

Table 41. Transition from slice n = 4/25 — eo4 to n =

9/100
Dead parts | Parts in sing. slice | Born parts
Vil Py Viar, Viag
Table 42. Transition from slice n = 9/100 to n =
9/100 — €926
Dead parts | Parts in sing. slice | Born parts
2597 Pss Vi

Table 43. Transition from slice n = 9/100 — e3¢ to

n=1/25
Dead parts | Parts in sing. slice | Born parts
2533 P36 V144

and for systems (18), we calculate

m = 721 — W4 an
Inv = £(1 4 2h)(1 = ¢),

T = —48(h + 1)* (¢ — 1)?,
M = (14 2h+0)%

(19)

Then, we need new comitants which indicate:

get the form:

i = gx® + 2hay — (9 + 2h)y°,
§ =y + Lz + (29 + 2h — 20)zy
+ (2h 4 £ —2(g + 2h))y?,

(18)

(1) when a second finite singular point collides with
an infinite singular point, (i7) when a second finite
singular point becomes weak and (iii) when a sec-
ond node turns into a focus. The next invariant
polynomials we need are, respectively:

(i) p1 = —4(g + h)%(g — £) (drawn in blue);
(ii) By = 2g* + 2h¢ (drawn in yellow);
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(i31) Wr = —12(g+ h)*(g* +293h — 293¢ — 4g*h( —
h2¢?) (drawn in black).

Moreover, by the time we were analyzing this
slice, we verified that there exist some parts in the
bifurcation diagram corresponding to the presence
of invariant parabolas passing through the origin in
the phase portraits. Lemma 6.38 assures the ex-
istence of two straight lines in the bifurcation dia-
gram with such a characteristic.

Lemma 6.38. For g # 0 and n = 0, phase por-
traits possess invariant parabolas passing through
the origin if either h =0 or £ = 1/2.

Proof. We fix ¢ =1 and n = 0. First, we suppose
h = 0. Then, systems (18) become

2 2
-y,

=y +Llx?+ (2 -20xy + (£ —2)y%

Tr=x

(20)

We look for invariant parabolas of the form
P = Ax?> + By?* + Cay + Dz + FEy+ F =0,
but as it passes through the origin we set F' = 0.
IfC=Ux+ Vy+ W is a cofactor of P, then
opP. O0P.

which is equivalent to a system of nine equations in
the variables A, B, C, D, E, U, V and W, whose

solution is
A=-C/2, B=-C/2, D=0, E=-C/(20),
U=20-1), V=20l-1), W=1,
and, hence,

Oz —y)?*+y)
P=- 20

C=1-200— 1)z +2(—1)y.

Applying the change of coordinates r = X +
Y, y =Y, renaming X, Y by x,y and setting C' = 2,
we see that P can be brought to the parabola

P _€$2 Y _ 0.
l
An analogous construction can be applied for
the case £ = 1/2 and we obtain the invariant
parabola
P _2x+(1+2h)x2+2y _o.

1+2h

Remark 6.39. By Lemma 6.38, the straight lines
{h = 0} U {¢ = 1/2} in the bifurcation diagram
correspond to the presence of invariant parabolas
passing through the origin in the phase portraits,
and they will be part of surface (S7) and colored in
purple. Sometimes this invariant parabola will not
coincide with connection of separatrices, so these re-
spective parts are drawn in dashed lines in Fig. 110,
otherwise they are drawn in a continuous line.

Remark 6.40. For g # 0 and n = 0, the correspond-
ing phase portraits on the line {h+¢ = 0} in the bi-
furcation diagram possess an infinite singular point

of type (;)E — H, which is a bifurcation between the

types (3)PEP—H and (3)E—~ PHP. Such a straight
line is needed for the coherence of the bifurcation
diagram.

We observe that, since p = 0 for ¢ # 0 and
n =0 (i.e. this slice is entirely contained in surface
(S1)), all the “generic” parts on this slice are labeled
as 15}, the lines are labeled as 1.iL; and the points
as points. We could have also used surfaces (S3) or
(Sg) for the same reason, but we have used (Sy) for
its higher relevance on singularities. In Fig. 110,
we present the slice when n = 0 with each part
properly labeled.

In Table 44 we indicate the death of all volu-
metric parts from slice n = 1/25 to n = 0 and in
Table 45, the birth of new parts at n = —1 from
slice n = 0.

Since there exists no symmetry in the parame-
ter n of foliation of the parameter space as this hap-
pened to systems in QTN [Artés et al., 2013b], in
QsnSN(A) and in QsnSN(B) [Artés et al., 2014],
for systems (5) we need to consider negative val-
ues for the parameter n according to (17). So, we
consider the next generic slice when n = —1. In
Fig. 111 we present this slice, but we note that
the portion bordered by 4551 and 4555 (the fourth
quadrant) is presented only with the volume parts
labeled. We show a zoom of this part in Fig. 112.
In addition, the dashed vertical line in black repre-
sents the /—axis and we draw it only for reference.
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Fig. 110. Slice of parameter space when n = 0 (see Figs. 83 and 109)



Table 44. Transition from slice n = 1/25 ton =0

Dead parts

Parts in slice n =0

Dead parts

Parts in slice n =0

Dead parts

Parts in slice n =0

\Z1 1597 Vs2 18547, 1548, 1549 Vioo 1.1L3
Vo 1.5L4 Vs 1553, 1556, 1557 Viio Py3
V3 155 Vs 1559, 1560 Vi3 1.4L7
Vi 1.7L1o Vss 1562, 1563 Viis 1543
Vs 1.7L1 Vse 1565, 1566 V120 1.5L3
Ve 1595 Vsz 1.5Lg Vi 1.5L3
\% Pss Vs 1.5L7 Vias 1.5L3
Vi 1.1Ly Vso 1.5L7 Vioa 1S40
Vo 1.1Lo Vi1 1.5Lg Vios 1551
Vio 1533 4 1.5Lg Vize Py3
Vi1 1S40 Ver 1564 Vior 1559
Va2 1534 Vair 1.5L7 Viag 1.1L3
Viz 151 Vaa Psg Vigg Pss
Via 1550 Vss Pss Vizo Pss
Vis Pss Vse 1561 Vs 1.1L3
Vig Pss Vsr 1.5Lg Viza 1.1L3
Viz Pss Vou 1.5L¢ Viss Pss
Vig Pss Vos 1.5L5 Viza Pss
Vig Psg Vos 1530 Vizs Psg
Vao 110, Vioo 1.5L¢ Vise Pss
Var Psg Vior 1558 Visr 1536
Vo 1.1Lg Vio2 1555 Viss 1537
Va3 1.1L7 Vios 1554 Vi3g 1.5L
Vay 1.1Lg Vios 1552 Viao 1.5L
Vis 1531, 1532 Vios 1.5L5 Vin 1.5L2
V51 1538, 1539, 1544, 1545, 1546 Vios 1528 Viaa 1535

un pup apurf v ypm swagshis uualaffip wuruoulijod 2upiponb fo fiugawoal oy

s
[
@
N
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=
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Table 45. Transition from slice n = —-1ton =20
Dead parts Parts in slice n = 0 Dead parts | Parts in slice n =0
Vi4s 1530 Vira 1555
Vi4e 1529, 1531, 1532 Virs 1.5L5
Viar 1527, 1598 Vira 1.5L;5
V149 1.5L Vize 1556
Vis1 1.501 Virs 1558
Vis2 1595, 159 Virg 1.5L¢
Vis4 1533 Vis1 1.5L¢
Viss 1540 Vigo 1559
Vise 1541, 1542 Vigs 1560
Vist 1534, 1535 Viga 1561
Vis9 1536, 1537, 1543 Vige 1.5L7
V160 1538, 1539, 1544, 1545, 1546 Vigr 1.5L7
Vie1 1547, 1548, 1549 Vigs 1562
Vie2 1550, 1551 Vigg 1563
Vie3 1552 Vigo 1564
Vie4 1554 Vio1 1.5Lg
Vies Psq Vig2 1.5Lg
Vier 1.5L4 Viga 1565
Vies 1553 Vigs 1566
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4.6L7

Fig. 111. Slice of parameter space when n = —1 (see Fig. 110)



78 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

h
s8>
(6559

=) V194

Gs7®
vieg o
T RN

Fig. 112. Slice of parameter space when n = —1 (zoom) (see Fig. 111)
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Fig. 113. Phase portraits in a neighborhood of Vg9

We highlight that in part Vigo there exist two
limit cycles in the phase portrait, but each one
around different foci. Each one of the limit cycles
can be created (or lost) either by Hopf bifurcation
on 3579 or 3575, or by loop bifurcation on 7Sg; or
7Ss3. There also exists the possibility of both limit
cycles being created (or lost) at the same time ei-
ther by Hopf bifurcation on 3.3Ly4, or by loop bifur-
cation on 7.7L7. We present in Fig. 113 the phase
portraits in a neighborhood of Vigo.

In Figs. 114 and 115 we present the movement
of a branch of surface (Sg) which contacts another
branch of the same surface and, then, they intersect
transversally in two points. Table 46 indicates the
“dead” and “born” parts in this transition.

Table 46. Transition from slice n = —1 to n = —4.
The symbol ()’ means that no part was “dead”

Dead parts | Parts in sing. slice | Born parts
0 6.6Lo Vigg

Following the values of n in (17), the last slice
we need to described is when n = —oco. However,
on page 41 we have already discussed about the
behavior of the surfaces as n — oco. Due to the

Fig. 114. Slice of parameter space when n ~ —3/4013. ..
(see Fig. 111)

Fig. 115.
Fig. 114)

Slice of parameter space when n = —4 (see
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symmetry in g (see page 18), the slices n = —oo and
n = oo are symmetrical. These slices correspond to
g = 0and n # 0. Setting ¢ = 0 and n = —1,

systems (5) become

i = 2hxy — (14 2h)y?,
=y +Lx* + (14 2h—20)zxy (21)
+ (2h + £ — 2(1 + 2h))y?,

for which we calculate

p=2L02h+10), T=0, Ti=4~L8h?+L+4hL),
Inv=—(2(1+2h), M= 2h+(+1)7?
Wy = £3(16h* + 32h3 + £ + 8h{ + 16h%¢).

(22)

As T vanishes as n — —oo, we need to consider

the next comitant which is responsible for the mul-

tiplicity of finite singular points. This next comi-

tant is R = h2¢2, whose set of zeroes will be called

surface (S11) and colored in green. In Fig. 116 we

present the slice when n = —oo properly labeled.
In Table 47 we indicate the death of all volu-
metric parts from slice n = —4 to n = —oo and in

Table 48, the birth of new parts at n = 10 from slice
n = oo (see Fig. 25 where nonalgebraic bifurcations
and labels must be considered from Fig. 116 with
proper symmetry).

Since there is coherence between the generic
slices bordering the most singular slices n = 1,
n = 0 and n = —oo with their respective generic
side slices, no more slices are needed for the com-
plete coherence of the bifurcation diagram. So, all
the values of n in (17) are sufficient for the coher-
ence of the bifurcation diagram. Thus, we can af-
firm that we have described a complete bifurcation
diagram for family QsnSN(C) modulo islands, as
discussed in Sec. 7.

7. Other relevant facts about the bifurca-
tion diagrams

The bifurcation diagram we have obtained for the
family QsnSN(C) is completely coherent, i.e. in
each family, by taking any two points in the param-
eter space and joining them by a continuous curve,
along this curve the changes in phase portraits that
occur when crossing the different bifurcation sur-
faces we mention can be completely explained.

Nevertheless, we cannot be sure that these bi-
furcation diagrams are the complete bifurcation di-
agrams for QsnSN(C) due to the possibility of “is-
lands” inside the parts bordered by unmentioned
bifurcation surfaces. In case they exist, these “is-
lands” would not mean any modification of the na-
ture of the singular points. So, on the border of
these “islands” we could only have bifurcations due
to saddle connections or multiple limit cycles.

In case there were more bifurcation surfaces, we
should still be able to join two representatives of any
two parts of the 1034 parts of QsnSN(C) found
until now with a continuous curve either without
crossing such bifurcation surface or, in case the
curve crosses it, it must do it an even number of
times without tangencies, otherwise one must take
into account the multiplicity of the tangency, so the
total number must be even. This is why we call
these potential bifurcation surfaces “islands”.

However, we have not found a different phase
portrait which could fit in such an island. A po-
tential “island” would be the set of parameters for
which the phase portraits possesses a double limit
cycle and this “island” would be inside the parts
where W, < 0 since we have the presence of a focus
(recall the item (iii) of Sec. 4).

8. Completion of the proof of the main the-
orem

In the bifurcation diagram we may have topolog-
ically equivalent phase portraits belonging to dis-
tinct parts of the parameter space. As here we
have 1034 distinct parts of the parameter space, to
help us identify or to distinguish phase portraits,
we need to introduce some invariants and we ac-
tually choose integer—valued, character and sym-
bol invariants. Some of them were already used
in [Artés et al., 2013b] and [Artés et al., 2014], but
we recall them and introduce some needed ones.
These invariants yield a classification which is eas-
ier to grasp.

Definition 8.1. We denote by I;(S) the number
of the real finite singular points. We note that this
number can also be infinity, which is represented by
00.
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Fig. 116. Slice of parameter space when n = —oo
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Table 47. Transition from slice n = —4 to n = —oco

Dead parts | Parts in slice n = —oo || Dead parts | Parts in slice n = —oo
Vi4s 2538 Vi3 2553
Ve 2536, 2537 Vira Psg
Viar 2539 Vizs Psg
V14 2540 Vize Psg
Viag 2542 Virr 1.2L19
Vis0 2541, 1.2L19 Virs 2549
Vis1 2543 Virg 2554
V152 2544 Vigo Psg
Vis3 1.2Lg Vis1 Psg
Vis4 1.2Lg Viso Psg
Vise 1.2Lg Viga 2550
Vist 1.2Lg Vigs 2555
Viss Ps7 Vise Psg
Vis9 P57 Visy Psg
Vieo 1.2Lg, 1.2L19 Viss Psg
Vie2 2545 Vigo 2551, 2558
Vie3 2546 Vio1 28556, 2557
Viea 2547 Vigo 2559
Vies 2550 Vigs 2560
Vies Psg Vio4 2561
Vier Psg Vigs 2562
Vies Psg Vigs 1.2Lg
Vieg 1.2L19 Vior P57
Vi7o 2.7 Vios 1.2Lg, 1.2L4
Vir 2.7Lq7 Vigog 1.2Lg
Viro 2548
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Table 48. Transition from slice n = 10 to n = oo

Dead parts | Parts in slice n = —oo || Dead parts | Parts in slice n = —o0
Vi 2558 V35 2553
Vo 2857 Vse 2550
V3 2559 Va7 P57
Vy 2560 Vsg Psg
Vs 2561 V3o Psg
Ve 2562 Vaio 1.2Lg
V7 Psg Vi Psg
Vi1 1.2L4¢ Vis 2545
Via 1.2L1¢ Vie 1.2Lg
Vis 1.2L1¢ Var 1.2Lg
V14 2536 Vig P57
Vir Psg Vs1 1.2Lg
Vig Psg Vso 1.2Lg
Voo 2.11L3 V4 1.2Lg
Vo1 2.11L4 Vss 1.2Lg
Voo Psg Vse 2544
Vo3 Psg Vs7 2543
Vos 2551 V59 Ps7
Vaog 2550 Viso Ps7
Vor 2549 Vi1 2549,
Vos 27018 Vo 2511
Vag 2548 V3 1.2Lg
V3o 2847 V4 2537
V31 2556 Vs 2538
V3o 2555 Viso 2540
V33 2554 Vier 2539
Vaq 2.7L19
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Definition 8.2. We denote by I3(S) the sum of
the indices of the isolated real finite singular points.

Definition 8.3. We denote by I3(S) the number
of the real infinite singular points.

Definition 8.4. For a given infinite singularity s of
a system 9, let /; be the number of global or local
separatrices beginning or ending at s and which do
not lie on the line at infinity. We have 0 < £, < 4.
We denote by I4(.S) the sequence of all such £5 when
s moves in the set of infinite singular points of the
system S. We start the sequence at the infinite
singular point which receives (or sends) the greatest
number of separatrices and take the direction which
yields the greatest absolute value, e.g. the values
2110 and 2011 for this invariant are symmetrical
(and, therefore, they are the same), so we consider
2110.

Definition 8.5. We denote by I5(S) the sequence
of digits between parenthesis and separated by com-
mas, if there is more than one digit, denoting the
number of limit cycles around foci.

Definition 8.6. We denote by I(S) the sequence
of digits (ranging from 0 to 5) between parenthesis
and separated by commas, if there is more than one
digit, meaning the existence or the nonexistence of
separatrices connection, where “0” means no sepa-
ratrices connection, “1” means a loop—type connec-
tion, “2” means a connection of separatrices from
two finite singular points, “3” means a connection
of separatrices from one finite singular point to an
infinite one, “4” means a connection of separatrices
from nonadjacent infinite singular points, and “5”
means a connection of separatrices from adjacent
infinite singular points.

Definition 8.7. We denote by I7(S) the sequence
of digits (ranging from 0 to 4) between parenthesis
and separated by commas which describes the num-
ber of local or global separatrices starting or ending
at the nodal sector of the finite saddle-node and at
each finite antisaddle or each limit cycle.

Definition 8.8. We denote by I3(S) the sequence
of two digits (each one ranging from 0 to 2) be-
tween parenthesis and separated by commas which
describes the total number of local or global sep-

aratrices linking the finite multiple singular points
to the infinite multiple singular points in each local
chart. For example, “(1,0)” means that there exist
only one separatrix linking the finite multiple sin-
gular point to the infinite multiple singular point in
the local chart U; whereas there exists no linking
separatrix going to the local chart Us.

Definition 8.9. We denote by Iy(S) a character
from the set {f, 00} describing the origin of the or-
bits that arrive to a finite antisaddle, where “f”
means that all the separatrices arrive from finite
singular points and “oo” means that at least one
separatrix arrives from an infinite singular point.
We observe that this invariant makes sense only in
the case of the existence of only one antisaddle.

Definition 8.10. We denote by I9(S) a digit
(ranging from 0 to 2) describing the connection
of separatrices involving the separatrices of finite
saddle—nodes, where “0” means that the connection
is produced by separatrices associated with nonzero
eigenvalues, “1” means that one of the separatrices
in the connection is associated with a zero eigen-
value and “2” means that both of the separatrices
are associated with zero eigenvalues.

Definition 8.11. We denote by I11(.S) an element
from the set {a, N, SN} which describes the sin-
gular point which would receive one or two sepa-
ratrices of the finite elemental saddle, if the finite
saddlenode disappears. Here, “a” means an an-

tisaddle_, “N” means an infinite node and “SN”
means (g) SN.

Definition 8.12. We denote by I12(.S) an element
from the set {s,d} describing if the stability of the
focus inside a graphic is the same as or different
from the nodal part of the finite saddle—node.

Definition 8.13. We denote by I13(.S) an element
from the set {S, SN} describing the origin of the
middle separatrix (of three) received by the nodal
sector of the finite saddle—node. Here, “S” means

an infinite saddle and “SN” means (2) SN.

Definition 8.14. We denote by I14(S) a character
from the set {f,oo} describing the nature of the
singular point which sends or receives a separatrix
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to or from a limit cycle.

Definition 8.15. We denote by I;5(S) the sum of
the indices of the isolated infinite multiple singular
points (considered in only one local chart).

Definition 8.16. We denote by I14(S) a character
from the set {H, P}, where H determines that a fi-
nite antisaddle sends (or receives) orbits to (from) a
parabolic sector of a multiple infinite singular point
situated in the local chart where the parabolic sec-
tor is accompanied by other hyperbolic sectors, and
P denotes that the parabolic sector is the only sec-
tor of the infinite singular point in that local chart.
This invariant is needed to distinguish 1.5L3 from
1.5L4.

Definition 8.17. We denote by I17(S) a symbol
to represent the configuration of the curves of sin-
gularities. The symbols are: “—” to represent a
straight line and “U” to represent a parabola.

Definition 8.18. We denote by I15(S) a charac-
ter from the set {n,y} describing the nonexistence
(“n”) or the existence (“y”) of graphics.

Definition 8.19. We denote by I19(S) a character
from the set {c,s} describing the position of the
separatrix of the finite saddle—node associated with
the eigenvector with zero eigenvalue which arrives
to (or leaves from) (g) SN when this point receives
3 separatrices. We use “c” for the central position
and “s” for the lateral (side) position.

Definition 8.20. We denote by I3(S) a charac-
ter from the set {s,d} describing if each point of
the pair of infinite saddle—nodes sends (or receives)
two separatrices to/from the same or different fi-
nite saddle—nodes. This invariant only makes sense
in case of existence of two finite saddle-nodes.

As we have noted previously in Remark 6.31,
we do not distinguish between phase portraits
whose only difference is that in one we have a fi-
nite node and in the other a focus. Both phase
portraits are topologically equivalent and they can
only be distinguished within the C! class. In case
we may want to distinguish between them, a new
invariant may easily be introduced.

Theorem 8.21. Consider the family QsnSN(C)
and all the phase portraits that we have obtained
for this family.  The wvalues of the affine in-
variant I = (Il, IQ, 13, I4, I5, Iﬁ, I7, Ig, Ig, 110, IH,
Lo, I3, 14, Its, 116, 117, 118, 119, I20) given in the fol-
lowing diagram yield a partition of these phase por-
traits of the family QsnSN(C).

Furthermore, for each value of T in this dia-
gram there corresponds a single phase portrait; i.e.
S and S’ are such that 1(S) = I(S"), if and only if
S and S’ are topologically equivalent.

The bifurcation diagram for QsnSN(C) has
1034 parts which produce 371 topologically differ-
ent phase portraits as described in Tables 50 to 59.
The remaining 663 parts do not produce any new
phase portrait which was not included in the 371
previous ones. The difference is basically the pres-
ence of a strong focus instead of a node and vice
versa and weak points.

The phase portraits having neither limit cy-
cle nor graphic have been denoted surrounded by
parenthesis, for example (555); the phase portraits
having one or two limit cycles have been denoted
surrounded by brackets, for example [Vgg], pos-
sessing one limit cycle, and [[Visg]], possessing two
limit cycles; the phase portraits having one or two
graphics have been denoted surrounded by {x} or
{{*}}, for example {1528} and {{1S57}}; the phase
portraits having one limit cycle and one graphic
have been denoted surrounded by [{*}], for exam-

ple [{1S60}]-

Proof of Theorem 8.21. The above result follows
from the results in the previous sections and a care-
ful analysis of the bifurcation diagrams given in
Sec. 6, in Figs. 23 to 116, the definition of the in-
variants I; and their explicit values for the corre-
sponding phase portraits. [ |

We recall some observations regarding the
equivalence relations used in this study: the affine
and time rescaling, C'' and topological equivalences.

The coarsest one among these three is the topo-
logical equivalence and the finest is the affine equiv-
alence. We can have two systems which are topo-
logically equivalent but not C''—equivalent. For ex-
ample, we could have a system with a finite anti-
saddle which is a structurally stable node and in
another system with a focus, the two systems being
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topologically equivalent but belonging to distinct
C'—equivalence classes, separated by the surface
(Sg) on which the node turns into a focus.

In Tables 60 to 73 we listed in the first column
371 parts with all the distinct phase portraits of
Figs. 1 to 11. Corresponding to each part listed in
column 1 we have in its horizontal block, all parts
whose phase portraits are topologically equivalent
to the phase portrait appearing in column 1 of the
same horizontal block.

In the second column we have put all the parts
whose systems yield topologically equivalent phase
portraits to those in the first column, but which
may have some algebro—geometric features related
to the position of the orbits. In the third column we
have presented all the parts which are topologically
equivalent to the ones from the first column having
a focus instead of a node.

In the fourth (respectively, fifth; sixth; seventh;
and eightieth) column we have listed all parts whose
phase portraits have a node which is at a bifurcation
point producing foci close to the node in perturba-
tions, a node—focus to shorten (respectively, a finite
weak singular point; belong to disconnected parts;
possess an invariant curve not yielding a connection
of separatrices; and have symmetry).

The last column refers to other reasons associ-
ated to different geometrical aspects and they are
described as follows:

(1) it possesses a 37i(y) as a finite singular point;

(2) it possesses a (?)N at infinity;

(3) 38y is the singularity of the surface (S3), i.e.
of the invariant polinomial 74, where the two
finite complex singularities are weak;

~

(4) it possesses a (;)E — H at infinity;
(5) the antisaddle is triple;

o~

(6) it possesses a (g)N at infinity;

Whenever phase portraits appear on a horizon-
tal block in a specific column, the listing is done
according to the decreasing dimension of the parts
where they appear, always placing the lower dimen-
sions on lower lines.

8.1. Proof of the main theorem

The bifurcation diagram described in Sec. 6, plus
Tables 50 to 59 of the geometrical invariants distin-
guishing the 371 phase portraits, plus Tables 60 to

79 giving the equivalences with the remaining phase
portraits lead to the proof of the main statement of
Theorem 1.1.

Moreover, the phase portraits Ps; from family
QsnSN(A), P, from family QsnSN(B) and Psr
from family QsnSN(C) are topologically equiva-
lent since there exists no geometrical invariant that
distinguishes them. It has been needed to have the
curve at infinity filled up with an infinite number of
singularities to have a common element in the three
families. The same argument is applied to prove the
equivalence of the two other triplets. Also, there
are 10 more cases of coincidences between phase
portraits of family QsnSN(C) and one of either
QsnSN(A) or QsnSN(B) and we have discovered
another equivalence between 55 from QsnSN(A)
and 5S3 from QsnSN(B) which have no equiva-
lence in QsnSN(C). This proves Corollary 1.2.

Now, summing all the topologically dis-
tinct phase portraits from families QsnSN(A),
QsnSN(B) and QsnSN(C) and subtracting the
intersections among them, according to Corol-
lary 1.2, we obtain 38 + 25 + 371 — 17 = 417 topo-
logically distinct phase portraits in QsnSN, and we
prove Corollary 1.3.

In the family QsnSN(C), all the phase por-
traits corresponding to parts of volume yield all the
topologically possible phase portraits of codimen-
sion one from group (A) (see page 7?7 for the de-
scription of this group). Many of them had already
been discovered being realizable, and others which
realization was missing have been found within the
perturbations of family QsnSN(C). In the next ex-
ample we perturbe one phase portrait from family
QsnSN(C) and obtain one phase portrait of codi-
mension one which was missing. Also three new
phase portraits of group (B) can be found from per-
turbations of family QsnSN(C).

Ezample 8.22. Phase portrait V177 yields an exam-
ple of the “wanted” case Agg of codimension one.
Indeed, by adding the small perturbation /100
in a representative of the part V77 we obtain the
following system:

&= a? + 122y /5 — 22y /5 + 22 /100, (29)
y=y—x?/10 + 28zy/5 — 13y° /2,

and, hence, the infinite saddle-node (g) SN splits
into a saddle and a node, and we obtain the
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Virr ‘ Ase

Fig. 117. The perturbation of phase portrait Vi77
yielding the structurally unstable phase portrait Agg

phase portrait Agg of codimension one, as shown
in Fig. 117.

By applying perturbations to the phase por-
traits of family QsnSN(C) we obtain the “wanted”
new phase portraits of codimension one in Table 49.
Then, Corollary 1.4 is proved.

Table 49. New codimension—one phase portraits ob-
tained after perturbations

Phase portrait from Splitting Splitting

QsnSN(C) (5)SN 57 (9)
Vag Ay Bs3
V35 — Bsy
V3e — Bsg
Vio2 Ayy —
Viro Asg —
Vira Aszz —
Vira Arz —
Virr Agg —

2534 As1 —
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Table 50. Geometric classification for the family QsnSN(C)

1& Ih=

2& b=

,

1 {2.8Ly},

1 (5S2)7

(1110 {Py3),
2100 (Pyo),

2101 & 118:{

2111 (755),
2120 (7S),

2210 & 118:{

2211 (Va3),
0& I3=4 2 & I;={ 3101 {1.1Ly},
3110 (453),
3120 (Vay).

3200 & Ig:{

Y (1.1L4),
n (1.1L7),

Y (1.1L3),
n (4S2),

3211 & Ig:{

3220 (Vis),
4120 (Var),
5211 (V3),

(o0 { s},

(1 (Pss),

1110 {2.8L5)},
1111 (1.2L5),
2100 (2.8L3),
2120 (1.2L-),
9210 {1.4Ls},

3101 {1.7L1s},

—1& I,={ 3201 & 18_{

3310 {1523},
\ 4201 {1833}7
0 & Is=A; (next page)
1 & I3=Ay (next page)
2 & I3=Aj3 (next page)

1& Is= 9 & Ij—

(1’ 0) {1340}7
(1,2) {1Ss0},

3 & Iy=Ay (next page)
oo & Iy=As (next page)
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Table 51. Geometric classification for the family QsnSN(C) (cont.)

, 11 {Pso},
v RO RONCEI )
21 & 1,={ © 6_{ (2) (Py),
B (1) [25L1s),
e li=4 99 (251, 0n) N |
0,2) (2.5L3),
31 &172{ W (P, ’
| 41 (2.5L1),
[ () @7L),
2111 & Ig= (8) & Iy = (1,2) (2-4125),
(273) (P22)a
() 27L),
2120 & 17_{ 02) (2.4123)’
s (2513),
(0) & Iy=
2121 & 16{ o) (2.4L7),{ d (251),
. o
0) (2545),
[1}1;%] & Iz= 2211 & 16{ (1) {2.;218},
(3) (2.7L5),
(0) (2513),
92991 & 16_{
_ (2) (2.4Ls),
2&Ih= (0) (2552),
3120 & Ig=< (1) {2.7L19},
(3) (2.7L3),
[ (1,0) (2.7L7),
3121 & I7—{ 0) (Pa). !

3130 (2S12),
3131 (2524),

[ (1,0) (2851),
(0) & 17—{ (2,0) (252),
o=y Vb= g 17_{ %8; g;ﬁg
(3) (24Ly),
(1) [2S49],

Ag (next page)
9 & 12_{ 1 & I3=Ay (next page)
2 & Is=As (next page)
3 & Iy=Ay (next page)
| o0 & Iy=A5 (next page)
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Table 52. Geometric classification for the family QsnSN(C) (cont.)

3212 (2.3Ly),
3220 (2553),
3221 (2.7Ly),
3231 (2.3L7),
3232 (2Sy),
_J (2,0) (2517),
i1 & h={ (0 (G35
3321 (2S),
4111 (2.4L4),
_J (0) (2556),
4120 & 15{ 0) & 16_{ (2) (2.7L2),
g (1) [2854];
A [ (0) (23Lg),
?:(2)’ g =) M 16—{ (3) (2.7L11),
12_ 5 4131 (2.3L1),
5 4141 (283),
_ [ (0,2) (2516),
4211 & 17_{ (1) (23La).
4212 (2S5),
4220 (2511),
I = 4221 (2553),
4231 (2531),
[ (1,2) (2.3Ly),
5120 & 17_{ 0.2) (25:0),
5121 (254),
5211 (25,),
| 6120 (255),
( ( (0,2) (Pa),
21 & Ir =
’ { (]—7 1) {P50}7
_{(0,3) (1.5L9),
22 & 16{ (0) & Iz { (2,1) {1.5Ls},
Ay (1) {Ps2},
1& I,=
- =2 & I3= | H {1.5L4},
[ (0,2) (1.5Ly),
wen-{ OeE={ @Y
(1) [L.5Lg],
Al (next page)
2 & I3=Aj3 (next page)
3 & Iy =Ay (next page)
| o0 & I, =As5 (neat page)
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Table 53. Geometric classification for the family QsnSN(C) (cont.)

[ (0,2) {14L~},
1110 & 17_{ (11) {14Lss}.
_J (0,2) (1.7Lg),
2100 & I7—{ (1) {170},
(0,3) {1537},
(1,0) {{1.7L31 }},
2101 & I = [ (1,0) (1S552),
(1.2) & 18‘{ (2,0) {1845},
\ (2’ 1) {{1557}}7
| el
1,3) (1Sy),
O &1=3(55) (1)
(3,1) {1514},
(1) {1.7Ls},
0) & Is— 0,2) (1.4L14),
| 111 & Is=d O &L El 1; ; 19_4% £ (1AL,
5 _ 3) & Ir= ’ T\ oo (1.4Ly),
[11:2,} & I3= 2& Iy e (1,3) {1.4Lg}, ( )
L=1 (2,2) {1.4L12},
(3,5) {Ps1}},
(1) [1.4Ls],
~{(0,2) (1.7Lg),
2120 & 17_{ (1 1) (L7La),
(0) {1544},
{ (0,1) (1.7L7),
o (O) & Iﬁz (3) & I7= (O, 3) {1-7L21}7
202 & 5= (1,2) {1.7Lor},
(5) {1.7Ls},
(1) [1.7L4],
_J (0,3) (1S35),
2200 & 16{ (0) & 17_{ (2,1) {1522},
(1) {1.7Lo9},
A7 (next page)
( o0 {1.3Ls},

2& I[,=2 & I3=As (next page)
3 & I =Ay (next page)
0o & Ir=As (next page)
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Table 54. Geometric classification for the family QsnSN(C) (cont.)

(1,1) (156s),
2211 & 15{ 0) & 18:{ (2,0) (1523g
(1) 1512,
(0,2) {1555}
3101 & I = (0) & 18:{ (1,1) {1522},
(1) [{1Se0}],

)
_] 0) &=
3111 & Is= ' { (3) {1.7L¢},
3120 & Ig= {

' (L& ne={ U050
(1,3) {15561},
(0) & Ir=
0 e 6 (3.1) {15,),
I;;I’ b= ( (4,0) {1536},
Il— 13:2 (1) {{17L30}}7

( (1) [LSi6], | |
(0,2) (1Sa7),

3200 & 15{ (0) & 17:{ (1,1) (1821),
(1) [1Sss],
3211 {1.7Ls},
3221 & 15_{

4111 {1.7L,},

(0) (1523),
(1) [1S20],

_J (0,2) (151),
4120 & 15{ (0) & Ir= (1,1) (157),
(1) [1S72],
(0,1) (152),
(0) & Ir=1 (0,3) {1Su},
4121 & I3 = (2,1) {155},
_J vy [{1850}],
(U&Im—{nu&L

4211 {151},
5111 {185},
2& I[b=2 & Is=As (next page)
3 & Iy =Ay (next page)

oo & Ir=As (next page)
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Table 55. Geometric classification for the family QsnSN(C) (cont.)

oo & I,=As (next page)

1111 (2841),
2111 {2.7L0},

( 1 (2.5L10),
As
[12:2} R 15:{ (1) (251
| 3111 {256},
‘ [ (0,2) (5.7L1y),
21 & 17_{ (1,1) (5.7L;,
22 (559),
( { (Oa 3) (5526)a
(0) & Ir = _f y {5533},
o) B = T @y &118_{ n (551,
4= (1) {5.7L1 },
(2) {5.7L14},
{ (0,2) (551),
) (0) & Ir=1 (1,1) (5S3),
& b= (2,1) (5S3),
(1) [5S5],
{ (3) (4Ss),
2111 & Ig={ (1,5) {7.7L4},
(2,3) (4.4L3),
2120 (45%),
(1,1) (Vag),
0) & Ig=
B - (2,0) (Vas),
A ] 08B 221 & =4 (4533)7{ "
[ =3 (3,3) (7.7L1),
_ (Ov 3) (7365)7
(2) & ”‘{ (2,1) (7853),
o] 2LE&L=q 3)& 110{ 0& I”_{ SN (7?9),
4= 1 (7568),
(2,2) {4.7L1},
(2,3) (4.4L1),
_ [ N (Viss),
(0) & 17{ (1,3) & I”_{ SN (1‘/5454
2221 & Is= (2,2) (Vioa),
_ [ (0,2) (4552),
| @ “‘{ (1,1) (429),
0 (7S69),
3120 & To=9 ¢, qu{ gj\yggﬁl)
\ As (next page)

2 & Is=Ag (next page)

93



94 J.C. Artés, A.C. Rezende and R.D.S. Oliveira

Table 56. Geometric classification for the family QsnSN(C) (cont.)

( (0) (Vi22),
O &I - 072 75 I
e I LR R
(1) [Vas],
_ N (‘/37)7
3130 & f;={ 13 E I“_{ SN (Vigs),
(2,2) (Via3),
3131 (Vi10),
(0,4) (Visa)
OV & 17=1(3,1) (Vioe)
(1) {7Ss2} 150
0,2) &18_{ 0,0) &I“—{ N (7800)
(1,0) (754),
(0) & Is=
3211 & 5= (2) & Ir= (0.0 (75n) a (4S16)
(1,1) & Is={ (1,0) & Ilo—{ ?f;;“){ SN (7Ss)
(2,0) (7523) "
(3)4(;%5'31)7
As \ (1)&1102{ 1 {7523
11—3, o S {75 }
& I — o 22 )
L {120, T a2 e =] O { d {752},
I3=2 (1) {7827},
(07 1) (7544)7
3221 & I;= (0,1) & 18_{ (1,1) (7S45),
(1a4) (459)7
3231 {7552},
3232 (Vigg),
N (Vis3),
f& 1= SN & I19= C(Vl70>7
0) & = (1,0) & Iy= (Vr1),
3311 & I;= 8 o & I { a (Vis),
TN (M),
(2,0) (Vea),
(1) [Vool,
( o (07 2) (‘/108)7
(0) & 17_{ (1,1) (Vzs),
3321 & I5= Vsol,
5 (1) & 112—{ 2 [[18(2,1]’
(2) [[Vss]l,
A§ (next page)
3& [h=2 & Is=Ay (next page)
oo & Iy=As (next page)
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Table 57. Geometric classification for the family QsnSN(C) (cont.)

A111 (45y),
4120 (75 2),
6 (0) (Vio)
(1) {7Su},
(0) & Tg=
4121 & I; = (3) & Iy = gé; gi))
_J (0) [Vioo],
(1) &Iﬁ—{ (3) (751,
4131 {75}, 0
4141 & 15:{ )
o3 & 1={ LI
4211 & Ig = W (2,1) &I —{ ek
6= ’ = SN (V@g),
(1) & fn_{ o
_J (0,2) (Vao),
2128 =0 & 17_{ (1,1) (Vgg),
(1) [Vzol,
: 4220 & Iu—{ gj\;‘(‘*;) )
11_3, 142 ),
L o “07) e n={ R
0 & h={ () 15

5120 & I = ’ N (Vu1),
(1) & I11_{ ;{ffgfj}
_J (0,2) (Vo),
5121 & I5 = (0) & 1 { (1,1) (V?m),
(1) Vil Vi)
(0) & 111: a 190 ),
5211 & Iy = 5}{\7‘/1(7135),
D &= 5N (1),
(0,2) (Va), )
0) & I; = a (Vig1),
(0) & Ig= (L) &hi=3 y (Va1),
6120 & 15: (2) (7515)7 { :
W= K3

3& [h=2 & I3=Ag (next page)
oo & Ir=As (next page)
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Table 58. Geometric classification for the family QsnSN(C) (cont.)

. (0,2,3) (5598),
_ ) (0) & Iz=4q (1,1,3) (5512),
1& Is= (0) & I = (2,1,2) {5523},
(1) {5.7Lo}
( (1) [5S22],
(0,3,4) (Vi)
(27174) (VGI)a
(0) & Ir=
(3,1,3) & 113_{ gjgvgji}
(0) & Is= S {783},
(1) & I3
oo
3) & 17—{ (1,1,3) (4515)
(2,1,2) {4513}
(1) & Ig= (O) & [13:{ g]\[fvgé/]gd’
(3) [4525] (1.0) ( )
_J (1,0) (Vigs),
0) & 17{ (1,2,3) & 18‘{ (2,0) (V).
o 0) & Iﬁ— _ 0,1 4551 )
’ 1,0,1) {7.7L5},
R (1) [Vasl, L
( ( (0,1,2) (7S72),
— I =
28 11— P { (0:11) (5%),
B o S 7567 5
2121 & I5= ((5) & )11[1{] d {74},
[ (0,1,2) [7S56),
| wen={ (07 e
( _ (07 1a2) {7558}’
(3) & 17‘{ (1,1,1) {787},
3111 & Ig= _f (0,0,3) {7857},
(5) & 17‘{ (2,0,1) {787},
L (1,5) {7.7L7}},
(0,1,3) (Viao),
_J 1{Vies},
0) & I &17{ 1,1,2) & Is= (’1)&118_{2{{%69}},
6= ( 1) {Vis},
3121 & Ir= 1) {75}, 2L1) i},
(0,1,3) [Vas7],
&', I;= 1 1, 2 {Vmg}
L L Ao (next page)
oo & Iy=As5 (next page)
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Table 59. Geometric classification for the family QsnSN(C) (cont.)

4111 & Is =

-Al(]

I =3, _
=2, =
I3=2 4121 & Is=

5n1&g{
\

o & n={ iy

(UHWMH% s
0,2,0) {7 ,

“)&”:{<LLm{%éL

(0) & Is=

_J (0,2,1) (V3),
“”&”‘{GAJM€%»
(0’27 1) [V5]7
e o
(1,1) [[Vas2l],

(0.1,2) Vi),
“”&”‘{<LLD{£wL

(1) {Vass},

0 {Pss},

e -

0& L15= — {Pgs),
.A5 &12: 15 { 1 &117:{ { 65}

2 {1.2Ls},
(0. ] {P57}.

U {Pss},
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Table 60. Topological equivalences for the family QsnSN(C)

Presented Identical Finite Finite Finite = Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve  Symmetry Other reasons
portrait  perturbations focus node—focus point (no separatrix)
Vi
Va
Vi
Vs 65, 35
Vs
Ve
Vz
Vig Vs, Vis
Vo 653, 655 353, 35
3.6L,
Via
3.10L,
Vi1, Viu
Vis 35, 454
Vig
Vis 65, 38,
Viz
Vag 2.11L3(
Vo 1.20,®, 2.11L,™
Vao
Vau
Vas 4515 3590
1.2L5?), 2.11L,™")
Vag
Vs 655 3Ss

Vor

el
oo
~
Q
iy
=
a
B
£
1

S

2
=
I
o
S




Table 61. Topological equivalences for the family QsnSN(C) (cont.)

6518, 6519
3.6L7, 6.6

3516, 3532, 3542

3

Presented Identical Finite Finite Finite Disconnected Possessing ‘§
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other rea(%ons

portrait  perturbations focus node-focus point (no separatrix) g

Vo g

Var 655 35 3

Vs 5

Viz Va6, Vao 5

Vi7 659, 6510 3512, 3513 S

3.6Ls g

Vaa, Vis 3

Va 657 3510 £

Vss, V39 S

Viz 655 351, :

Vas, Vzs, Vos Vo, Vro =

Vi 6511, 6522 3523, 3524, 3526, 3543 =

3.6L3 3.10L4 2

Vir, Ves 3

Vig 3514, 3515 4511 g

3.10Lo s

Vag, Vis, Vor Vo, Vos B

Vig 6512, 6530 3525, 3844, 3545 4512, 452 s

3.4L7, 3.6Lg 2

Va2 by

Vs1 6515 §

Va3 S

Va4 g

Vss, Vse, Var 2

Vs, Vsg =

Ve 6515, 6516, 6517 i

S

S

3

66



Table 62. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle  antisaddle weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node—focus point (no separatrix)
Véo
Vo2 6514 3546
Ves Vaa, Ve
3517, 3518, 3597
6523, 695 oo "
Vs 28, Do 3530, 35935, 351
3.6Ly4, 3.6L5 3.3Ls, 3.10L3, 3.10L5
Pio
Ver Vaz, Vss
Ves 6525, 6S28  3S19, 3531, 3548, 3519
3.3L3, 3.6Lg
Vas, Ves
Veo 6520 3521
Vag, Vao
Vi 6591 3529
Vg, Vo
Vag 6526 3598, 3537
3.10Lg
Vso 3533
Vs, Vo
Va3 6527 3539, 3534, 3536, 3539
3.3Lq, 3.10L7
Vsa 1203
Vas 1.20,®
Vss
Voo
Vo 3538
Voo Vos

3540

WO S AY Pup Y DY SV DL 00T




Table 63. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle  antisaddle weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node—focus point (no separatrix)
Var
Vou 655
Voo
Vior
Vioo 35,7
Vios
Vio2 355
v Vios, Vios Vizs, Viss
10 6531 3551 48537, 4535
Vos
Vior 6540
Viar
Vios 3557
Viag Vigi, Visz
Viog 6939, 6510 3558, 3559
3.6L10
Vige Vi, Vine
Vito 6533, 6537 3552, 3556
3.6Lg
Viis
Viis, Viie
Vi 6534 3553
Viir
Viis
Viig
Viz 6535 3554
Viao
V39 .
122 6536 3855
Viag

(D) apou—ayppvs apurfur uv puv aguurf v ypm swayshs rpuaiaffip ruoufijod 29v.iponb fo fiugawoal oy

10T



Table 64. Topological equivalences for the family QsnSN(C) (cont.)

DAY "G Y PUD WU DY SV DL 0T

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle  antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node—focus point (no separatrix)
Viso Vizo, Viss ) ‘
6538 3S60
Viza
Viss
Vizs 651 3561
Vigr
Viss
Visg
Viao 6549 3S62
Vi
Viaz
Vias
Viaa
Viaa
Vias 3563
Viag
Viar 3564, 3556
3.10Lg
Viss, Viss Vis1, Visz
Viag Vigs, Vigr Visg
6543, 6544
()‘Si;, ()‘Sij 4515, 4515
Visz
Visa 356r
Viss Vise, Vie2, Vies Vies ‘
6549 3S66 4S50, 4552
Vigs
Vis Vier

6550 3568




Table 65. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node-focus point (no separatrix)

Vies
Viso
Viro Vin
Vira
Vizs

Vizs
Vina 6551 3569
Vize
Vizz
Virs
Virg 350

Visi
Viso 655 357
Visa
Viss

Vigs
Viso 6559 3576

Viga
Viso 6554 357

Viss
Vig1 655

Vise, Visr, Vigs
Vigo 6557, 6560 3577, 3S7s
3.6L11, 3.6L12 o -
6.6L, 3.3L4
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Table 66. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle  weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node-focus  point (no separatrix)
Viss
Vios 6559 3576
Viso Vieo, Vier, Vigy
6545, 6548
V ’ 48
198 6561, 65 47
6.6L3
15
153
L5 1.6L4 1314
15,
155
156
157
1S9
15 1.6Lo 1.3L3
1511
15 1.6L3 1.3L4
1512
1513
1514
1515
1516
1517
151 1.6L4 1.3Lg
1520
152
1522
152 1.6Ls 1.3Lg
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Table 67. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle  antisaddle weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node-focus  point (no separatrix) g
=
1594 s
1555 1.7L1o® 2
152 &
157 E“
1529 S
1 =8
52 1.3L1 §
1531, 1532 3
1550 1.3L1» 1.7Lay g
1534 S
1553 1.3Lyo g
1535 g*
1536 :
1837 L7L;, ™ z
1841, 1850 S
1510 1.3Lg 1.4L1g g
1543 N
1S47 E
15u 1.6L; S
1S3g, 1539 2
To 1548, 1549 g
1545 1546 ’ . 1]7[1227 1.7Lo3 (4) (4) :‘
1.6Lg, 1.6Lg 1 7Los. 1.7Log 1.7L12%, 1.7L3 s
Pyg Py 3
1842, 1851 1554 S
1552
1.6Lg 1.4Lg, 1.4L14 2
1S53 §
1S53 ;‘
1556 2
1557 1.7L14™ 3

=
o=}
[



Table 68. Topological equivalences for the family QsnSN(C) (cont.)

Presented
phase
portrait

Identical
under
perturbations

Finite
antisaddle
focus

Finite
antisaddle
node-focus

Finite
weak
point

Disconnected
parts

Possessing
invariant curve  Symmetry Other reasons
(no separatrix)

1558

1559

1560

1.7L15@

1564

1561

1.6L19

1.3L13

1565

1562

1.6L1,

1.3L14

1566

1563

1.6L12

1.3L15

1.7L16®, 1.7L;®
P53, Pys

1567

1568

1569

1571

157,

1S74

1873

1.6L15

1.3L17

25

2853

255

2S5y

2853

2854

28596

255

255

256

257

2515

2.4L,

2510

2539

2511

2533

2812

2897

WO S AY Pup U DY SV DL 90T




Table 69. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing &
phase under antisaddle — antisaddle weak parts invariant curve Symmetry  Other reasons <
portrait  perturbations focus node-focus point (no separatrix) i'»
2514 2

251 2.4L,4 5
25416 2535 ;“
2517 2554 g
2598, 2529 3

2518 2.4L1g £
259 g
2593 2595 S
2S94 <
2530 §
2531 Z
29, 28542, 2544 2543 S
2.6, 2415 :

2557, 2835 2

a5 S P 28 250, 2500 T
2.6Ly  2.3Lg, 2.3L1» 2.4L11, 2.2L1s, 2.4L14 ]

Pgr® 3

2548 g
28549 s
2550 2555®) s

2551 2.6L3 2.3Lyg &
2552 §
2553 §
3

_
o
=



Table 70. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle  antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node-focus point (no separatrix)
2555 255,
2556 2.6Ly 2.3L1;
2
559 2.6Ls 2.3L1y
2561
2562
45,
451 3.4L,
453
457
45 3.4L,
45 48510, 4518, 4593
8 3.4L4, 34L1,
4599
45 3.4Lg
4513
4514
4515 4.6L, 3.4Lg
4517 4519, 4521
3.4L3, 3.4L5
4516 4.6Lo, 4.6L: e ‘
St 0L2,46Ls 347 34Ly
P3 Py
4555
45-
4896 a1

34L15
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Table 71. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons
portrait perturbations focus node-focus point (no separatrix)
4S50 48558
4929 4.6L4 3.4L13
484
4531 3.4L17
4840
4552 3.4L16
48539 48534, 4535
Py
4536
45,3
4512 3.4L5
451 4.6L; 4.4Ls
55
5S20. 5521
55, 5.7L4 4515
P3s®, Py
554
553 5.6L, 3.5L
555 5534
5%, 5510, 5516 557, 5515 5594, 5595
5515, 5519 5517 5531, 5532
559y 5.7L3, 5.7Lg 3.5L3, 3.5L4
7L 6Ly, 5.6Ls 45L;, 4.5L;
571 5.7L7, 5701, > 0F0 50l g sr 351, 5L1, 4.5
by Ps, Py Py

i up pup apuf v ypm swagshs ruaiaffip prwoulijod 21ypiponb fo fiigawoab o1 ]
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Table 72. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle  antisaddle weak parts invariant curve  Symmetry Other reasons
portrait  perturbations focus node-focus  point (no separatrix)
5511
551 5.6Lo 3.5Ly
556, 5S14
551 5.6L3 3.5Lg
5522
5523
55 5529 5527, 5S30
2 5.6Lg, 5.6L7 4.5L4
5533
5535
.
553 5.6Ls 3.5Lg
7S1
75,
753
755
754 3.7L,
756
757
., 7518 7S19
75 6.7L3 3.7L4
7520 7891
75 6.7L4 3.7Ls
7510
7511, 7513
7515 6.7L; 3.7Ly
7812, 7S14
7516 6.7Ls 3.7L3
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Table 73. Topological equivalences for the family QsnSN(C) (cont.)

=

Presented Identical Finite Finite Finite Disconnected Possessing g
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons 3
portrait  perturbations focus node-focus point (no separatrix) S
7317 =
7Sa2 3.7L7 Y
7S94, TS5 §

7523 37L6 6.7L5 3.7Lg, 3.7Lg, 3‘7L11 ‘g
Py, Pig s

7526 3
7507 g
7530 &

7%s 3.7L1, g
7S%9 3.7L10 Ry
I~

7536 N

7531 3.7L1s z
7534 3

7532 37[/13 §
7535 B

7533 3.7L14 =
TS43 7S48, TS0 §»

7S37 6.7L10, 6.7L11 3.7L1¢, 3.7L17 8
Pas i“

78, 7839, TS40 ™
38 6.7L7 3.7L15 d
754 N
7542 z
0

7Su 7846, TS50 =
6.7Lg 3.7L1s :‘

784 TS47, 7551 ‘ 2
6.7L8 3.7[/19 ’6

—
—
—



Table 74. Topological equivalences for the family QsnSN(C) (cont.)

Presented
phase
portrait

Identical
under
perturbations

Finite
antisaddle
focus

Finite
antisaddle
node-focus

Finite
weak
point

Disconnected
parts

Possessing
invariant curve
(no separatrix)

Symmetry

Other reasons

7S52

7553

7555

7854

6.7L12

3.7Lyg

7556

7557

7558

WO S ATY Pup Y DY SV DL GIT

7S60

7S59

6.7L13

3.7Loy

7561

7562

7S63

7S64

7S65

7S66

3.7L22

7Se7

7568

7569

7S70

7571

7872

7573

6.7L14

3.7La3

7574

7575

7576

7S77




|

Table 75. Topological equivalences for the family QsnSN(C) (cont.) g

Presented Identical Finite Finite Finite Disconnected Possessing §
phase under antisaddle antisaddle  weak parts invariant curve Symmetry Other reasons E
portrait  perturbations focus node-focus  point (no separatrix) S
7578 2
7Ss0 =

7S s

" 6.7L15  3.7La &
7531 S
7552 g
7533 S

7Ss4 3
7S,

8 6.7Lic  3.TLos &
105, i
1.1L,4 ;
1.1L, z
1.1L; e

1.1L5 3

1.1L o b
‘ Pyr g
1.1Lg :
Pyo £

1.2L¢ )

1.2L5 s
° Prs iy
1.2L; :
12Ls  1.2Lg, 1.2L10 =
1.3Ls, 1.3L7, 1.3L16 &S

1,3L‘ 29 ’ (1)
2 Pis, Pys g
1.4L, =

14L &
! Py P s
1.4L3 B
3

—
—
w



Table 76. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle  weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node-focus  point (no separatrix)

141,

1.4L;

AL P ®

1.4Lg

1.4L1

1.4L13 Pio@

144L14

150,

W0 S ATY Pup Y DY SV DL TIT

1.5Lo

1.5L3

1.5L4

1.5L5

1.5Lg

1.5L7 P56 Psy

1.7L4

1.7L,

1.7L3

1.7L4

1.7L;

1.7Lg

1.7L7 1.7Lg

1.7Lg

1.7L1s 1.7l

L?LQU




Table 77. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing

phase under antisaddle antisaddle — weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node—focus  point (no separatrix) <
171y =
1.7Lo7 S
1.7Log g
L.7Ls0 g
1.7L31 Py 3
1.7L3 S
1.7L33 N

2.3L,

2.3Ls s
2.3L3 =
2.3L5 <
2.3L4 Prs §
2.3Lg z
2.3L7 g
24L1 ]
240, E}
2.4L; N
2.4L¢ 2.4Lg g
2.4L7 g
2.4Lg s
2.514 2.5L, =
2.5L3 2.5Lg o
2.5Ls, 2.5Lg =
2.5L4 2.5L7, 2.5Lg §
Pr, Pss Py §
2.5L19 =
a

-
=
[



Table 78. Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle  weak parts invariant curve Symmetry Other reasons
portrait  perturbations focus node-focus  point (no separatrix)

2.5L19, 2.5L1y  2.5L15 2.5L15°)

.
25Lu Psg Peo Pr1

2.5L13

2.7Ly 2.7L¢

2.7Ly 2.7L12

2.7L3 2.7L13

2.7L4 2.7L15

WO S AY Pup U DY SV DL 91T

2.7L5 2.7L14

2.7Ly7 2.7Lg

2.7Lg 2.7L1o =)

2.7L11

2.7L1¢

2.7Ly7

2.7L1g

2.7Lyg

2.7Lag

2.8Ly

2.8L,

2.8L3

441, 4.4L, »
17

4Ly 140, .,
25

4TI 4.7Ly »
21

5.7L4 5.7Ls 5.7L13

=
0.7L2 Pg PQ

5.7Lo




Table 79. Topological equivalences for the family QsnSN(C) (cont.)

Presented
phase
portrait

Identical
under
perturbations

Finite
antisaddle
focus

Finite
antisaddle
node—focus

Finite
weak
point

Disconnected
parts

Possessing
invariant curve
(no separatrix)

Symmetry

Other reasons

7Ly

5.
5.

7Ly

7.7Ly

7.7L3

T7.TLy

Pyr

Pag

T7.7Ly

7.7L5

T7Lg

7.7L7

Py

Py

P

Py

Pa3

Pag

P

Py

Psg

(D) apou—ayppvs apurfur uv puv aguurf v ypm swayshs rpuaiaffip ruoufijod 29v.iponb fo fiugawoal oy
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