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Effect of nonlinear dissipation on the basin
boundaries of a driven two-well or catastrophic
single-well Modified Rayleigh-Duffing Oscillator
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Abstract

This paper considers effect of nonlinear dissipation on the basin boundaries
of a diven two-well Modified Rayleigh-Duffing Oscillator where pure and unpure
quadratic and cubic nonlinearities are considered. By analyzing the potential an
analytic expression is found for the homoclinic orbit. The Melnikov criterion is
used to examine a global homoclinic bifurcation and transition to chaos in the
case the of our oscillator. It is found the effect of unpure quadratic parameter and
amplitude of parametric excitation on the critical Melnikov amplitude .. Finally,
we examine carefully the phase space of initial conditions in order to analyze the
effect of the nonlinear damping, and particular how the basin boundaries become
fractalized.

keywords: Catastrophic single-well potential, two-well potential,
modified Rayleigh-Duffing oscillator, melnikov criterion, bifurcation, chaotic behavior,
basin boundaries.

1 Introduction

The Rayleigh oscillator is one canonical example of self-excited systems. However,
generalizations of such systems, such as the Rayleigh—Duffing oscillator, have not re-
ceived much attention. The presence of a pure and unpure quadratic and cubic terms
makes the Rayleigh—Duffing oscillator a more complex and interesting case to analyze.
This oscillator is used to modelize the following phenomenon: a El Ninzo Southern Os-
cillation (EN.SO) coupled tropical ocean-atmosphere weather phenomenon in which
the state variables are temperature and depth of a region of the ocean called the ther-
mocline (where the annual seasonal cycle is the parametric excitation and the model
exhibits a Hopf bifurcation in the absence of parametric excitation), a M EM S device
consisting of a 30pm diameter silicon disk which can be made to vibrate by heating
it with a laser beam resulting in a Hopf bifurcation (where the parametric excitation is
provided by making the laser beam intensity vary periodically in time) etc. [16] and
(18]

The behavior of Rayleigh-Duffing oscillator with periodic forcing and/or paramet-
ric excitations has been investigated extensively by many researchers. For instance,
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in their work, the siewe siewe and their collaborators [20]] have studied the nonlin-
ear response and suppression of chaos by weak harmonic perturbation inside a triple
well 6—Rayleigh oscillator combined to parametric excitations. Three years ago, Siewe
Siewe and al.[2] investigated the effect of the nonlinear dissipation on the boundaries of
a driven two-well Rayleigh-Duffing oscillator and in other paper [3], the same authors
focussed their analyze on the occurrence of chaos in a parametrically driven extended
Rayleigh oscillator with three-well potential. However, in many situations, the non-
linear dynamics dominates the behavior of physical systems giving rise to multi-stable
potentials or catastrophic monostable potentials. The authors in Refs. [2| 3] and [20]
showed with a rigorous theoretical consideration that the resonant parametric pertur-
bation can remove chaos in low dimensional systems. They confirmed this prediction
with numerical simulations. It is interesting to note that there is a situation analyzed in
[21]], where Melnikov analysis is applied to a nonlinear oscillator which can behave as
a one-well oscillator, a two-well oscillator or three-well oscillator by simply modifying
one of its parameters, which acts as a symmetry-breaking mechanism. Therefore, the
chaotic behavior using the parametric perturbation in the modified Rayleigh—Duffing
oscillator with a two-well potential still needs to be investigated further. Another good
example is constituted by the generalized perturbed pendulum [22]. Our aim is to make
a contribution in the study of the transition to chaos in the modified Rayleigh—Duffing
oscillator by using the Melnikov theory, and then see how the fractal basin boundaries
arise and are modified as the damping coefficient is varied. The last part of this work
consists of a numerical investigation of the strange attractor at parameter values which
are close to the analytically predicted bifurcation curves. In particular, the case of the
two-well potential is considered.

The paper is organized as follows. In the next section, after describing the model,
analyzing of the model, and some comparison with the simple Rayleigh-Duffing os-
cillator, the conditions for the existence of chaos are thoroughly analyzed. A conve-
nient demonstration of the accuracy of the method is obtained from the fractal basin
boundaries, and this is discussed in Section 4. We conclude in the last section. In the
appendixe A we show the Melnikov integration procedures in details.

2 Desciption and analysis of the model

In this paper, we examine the dynamical transitions in parametric and periodically
forced self-oscillating systems containing the cubic terms in the restoring force and the
pure and hybrid quadratic and cubic in nonlinear damping function as follows:

&+ ep(l — )i + efi? + ekyix + ekod®x + (v + acos W)
+z? = FcosOt, (D

where €, i, 8, k1, ka2, v, A, F and € are parametrs. Physically, u, ko, 8 and k1 represent
respectively pure, unpure cubic and pure, unpure quadratic nonlinear damping coeffi-
cient terms, v and F’ are the amplitudes of the parametric and external periodic forcing,
and /7 and (2 are respectively natural and external forcing frequency. Moreover A
characterize the intensity of the nonlinearity and € is the nonlinear damping parametr
control. The nonlinear damping term corresponds to the Modified Rayleigh oscilla-
tor, while the nonlinear restoring force corresponds to the Duffing oscillator, hence its
name Modified Rayleigh-Duffing oscillator.

In this section, we derive the fixed points and the phase portrait corresponding to
the system Eq. (I) when it is unperturbed. If we let e = o = F = 0, Eq. (1) is



considered as an unperturbed system and can be rewritten as

T=y, Y= —'yz—)\xg, )

which corresponds to an integrable Hamiltonian system with the potential function
given by

1 1
V(z) = 57302 + Z)\x4, 3)

whose associated Hamiltonian function is

1 1 1
H(z,y) = §y2 + i’yacz + 1/\964. )

From Egs. (2) and (@), we can compute the fixed points and analyze their stabilities.
elfy>0,A>0o0rvy <0, < 0, the system have one fixed point (0, 0) which is
a center.

e For v > 0, A < 0, there are three fixed points: two saddles connected by two
heteroclinic orbits and one center. The potential defined by Eq. (3) has two-well (see
Fig. [1}(b)).

e For v < 0, A > 0, there are three fixed points: two saddles connected by two
heteroclinic orbits and one center. The potential defined by Eq. (3) has catastrophic
sigle-well (see Fig.[T(a) ).

Therefore, depending on the values of the external excitation, the system can es-
cape over the potential barrier and dramatically suffers an unbounded motion. Fig.
represents the corresponding phase portraits between the unforced Rayleigh—Duffing
oscillator and the unforced Modified Rayleigh—Duffing oscillator, respectively with
single-well (left) and two-well (right) conditions.
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Figure 1: (a) The catastrophic single well potential of the unperturbed system ; b
The two-well potential function of the unperturbed system (@).
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Figure 2: (a) Phase portrait of the unforced Rayleigh-Duffing oscillator with v =
-L,A=1,a=0,8=0,u=0.2,e =0.1,ky =0,ky = 0; (b) Phase portrait of
the unforced Modified Rayleigh-Duffing oscillator with vy = -1, A =1, =0.5,8 =
05,0 =02,¢e=0.1,k; =05,k =05

3 Taming chaotic behavior in the Modified Rayleigh-
Duffing oscillator

In this section, we discuss the chaotic behavior of the system

&+ ep(l — i%)d + efi? + ekyix + ekod®x + (v + acos W)z
+Az2 = F cos O, 5)

where u, k1, 3, ka,7v,a, A\, Q and F are assumed to be small parameters. Hence, our
dynamical system may be written as

=y, §=—yr—arcosQt— x> — eu(l — 3'02)3& — efi?—
ek1ix — ekoi’x + F cos O, (6)

where F' = eI

When the pertubations are added, the homoclinic orbit might be broken trans-
versely. And then, by the smale-Birkoff Theorem[19], horseshose type chaotic dy-
namics may appear. It is well known, that the predictions for the appearance of chaos
are limited and only valid for orbits starting at points sufficiently close to the separatrix.
On the other hand it constitutes a first order perturbation method. Although the chaos
does not manifest itself in the form of permanent chaos, and some sorts of transient
chaos may showup. Hower, it manifest itself in terms of fractal basin boundaries, as it
was shown by[20]. We start our analysis form the unperturbed Hamiltonian Eq. ).
The potential V' (z) Eq. (3) has the local peak (Fig. [1] (b)) or local antipeak (see Fig.
(a)) at the saddle point x = 0. Esistence of this point with a horizontal tangent makes
possible homoclinic or heteroclinic bifurcations to take place.
At the saddle point = 0, for an unperturbed system ( Fig. [I), the system velocity
reaches zero in velocity y = 0 (for infinite time ¢ = F00) so the total energy has only
its potential part. In this paper, the homoclinic case is be study.



Transforming Egs. , for a closen nodal energy (H = 0) and for v < 0, A > 0
we get the following expression for velocity:

dz A
e L2 _
o 2( 5%% 4% ). @)

=2

Y

Now one can perform integration over z:

d
SN -
zy/—y — S22

where t( represents an integration constant. Finally, we get so called homoclinic orbits

®)

(Fig.2):
—2y
xp =+ Tsech(\/—v(t —tg))
2
o = [ 2seeh (V70— o) b (V¢ 1), ©)
where ¢ + ¢ and ‘ —  signs are related to left — and righ + sign orbits, respectively (

Fig. [2). Note, the central saddle point zy = 0 is reached in time ¢ corresponding to
400 and —oo respectively.

We apply the Melnikov method to our system in order to find the necessary criteria for
the existence of homoclinic bifurcations and chaos. The Melnikov integral is defined
as

+o0o

M) = [ Fonun) A glon )i (10
— 00

where the corresponding differential form f means the gradient of unperturbed hamil-

tonian while g is a perturbation from Eq. (6) after to put & = e and F' = €F. Eq.

can be rewritten as follows:

M*(ty) = —u/yidt+u/yﬁdt—k1/mhyidt—ﬁ/yidt—
l@/xhyf;dtfa/mhyh cos Q(t + to)dt+
F/yhcosQ(t+to)dt, a1

where % is the cross-section time of the Poincare map and ¢ can be interpreted as
the initial time of the forcing term. After substituting the equations of the homoclinic
orbits 5, and y; given in Eq. (9) into Eq. (II) and evaluating the corresponding
integral, we obtain the Melnikov function given by

Mi(to) = —/LI() + ,uIl — klfg — ﬁfg — ]€214 — OzSithoI5 + F'sin Qto[& (12)



where

) 2 “+oo

I, = % sech?(v/—~t) tanh? (/—=~t)dt
4yt 4 4

L = sella sech (v/—7t) tanh® (v/—~t)dt

o [too
I, = i%\/%/ sech®(v/—vt) tanh? (y/—7t)dt
273 2 +oo 3 3
I; = :I:T X sech”(y/—~t) tanh® (v/—~t)dt
4y oo 4 3
I, = V\/—’y sech”™(y/—~t) tanh® (/—~t)dt
2 oo
I; = T’Y\/—W/ sech®(y/—~t) tanh (y/—~t) sin Qtydt,
2 [+
Iy = :I:'y\/:/ sech(y/—~t) tanh (v/—~t) sin Qtodt. (13)

After evaluation of these elementary integrals (see Appendix ), the Melnikov function
is computed.

L=y 16p3v=  mkin? 2
L ATy 163y mhi? 20s
M=(to) = ——33— = — 3532 s (%)

:F

23 2 Q) 0? Q)
mWQF\/:sech(ij) sin Qtg — 27;\?/_7760866}1(2\7;_77) sin Qtg. (14)

It is known, that the intersections of the homoclinic orbits are the necessary conditions
for the existence of chaos. The Melnikov function theory measures the distance be-
tween the perturbed stable and unstable manifolds in the Poincaré section. If M*(¢0)
has a simple zero, then a homoclinic bifurcation occurs, signifying the possibility
of chaotic behavior. This means that only necessary conditions for the appearance
of strange attractors are obtained from the Poincaré—Melnikov—Arnold analysis, and
therefore one has always the chance of finding the sufficient conditions for the elim-
ination of even transient chaos. Then the necessary condition for which the invariant
manifolds intersect themselves is given by

)\2
cr — X
Y= TE ﬁ)
Ta)? sy mhk1y? 2

23 2
mcosech( F) WQF\/>sech(2\/7):|: 5 (= ) (15)

Above this value p > ., the system transit through a global homoclinic bifurcation
which is a necessary condition for ap- pearance of chaotic vibrations.

This implies that if the perturbation is sufficiently small, the reduced Eq. (6) has
transverse homoclinic orbits resulting in possible chaotic dynamics. We study the
chaotic threshold as a function of only the frequency parameter 2. A typical plot of u
against (2 is shown in Fig. [3], in which the critical homoclinic bifurcation curves are
plotted versus the frequency parameter €2. The threshold of chaotic motion increases




with the increasing of the external amplitude  ( Fig. B). The region below the homo-
clinic bifurcation curve corresponding to F' = 0.3 (region (I) of Fig. |3 represents the
periodic orbits. When g crosses its first critical value, a homoclinic bifurcation takes
place, so that a hyperbolic Cantor set appears in a neighborhood of the saddles (regions
(II) and (II1) of Fig. [3]). The dynamics should therefore be chaotic only for large
values of the damping. At the same time, when F' = 0.5 (regions (I) and (/) of Fig.
[3]) it represents the periodic orbits, while the dynamics should therefore be chaotic in
the region (I17). Fig. 4| represents the effect of different amplitude parameters values
on critical amplitude p versus frequency showing chaotic regions. When o = 0 and
k1 = 0 the necessary condition for which the invariant manifolds intersect themselves
corresponding exactly to the condition which is obtained by Siewe Siewe and al. for
Rayleigh-Duffing oscillator [2] (see Fig. [] (a)). Figs. [] (b), (c) and (d) show respec-
tively hybrid quadratic nonlinearity, amplitude of excitation parameter and these two
parameters simultanious effect on critical amplitude p., for F* = 0.5. In these case,
we noticed that the parameters k1, « and F' are several effect on melnikov critical am-
plitude which show when chaotic behavior appear in the modified Rayleigh-Duffing.
Critical amplitude increases with the increasing of the parameter k; (see Figs. {4 (b))
but with « the critical amplitude are two extrema which show the effect of parametric
excitation.
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Figure 3: Critical amplitude p versus frequency for two different external amplitude
parameters values.
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4 Bifurcation analysis, phase portraits and fractal basins

In this part, we study the behavior of the system given by Eq[l] as a function of the
damping parameter for different values of the external perturbation. The bifurcation
diagram and the maximal Lyapunov exponents have been represented for the variable
x, and they can be seen in Fig[5] A positive Lyapunov exponent for a bounded attractor
is usually a sign of chaos. We want to check the threshold of the external amplitude
for the onset of possible chaos obtained in Section 3. For 2 = 1, the critical value
of the external force has been obtained numerically for F.. = 0.5. Above this value,
numerical simulations have been carried out for the selected parameter values F' = 0.5
(see Figs[3] (a) and (c)) and F = 0.6 (see Figs. [5{b) and (d)). From these figures,
one can see that the thresholds of damping amplitude for the onset of chaos increase
when the external amplitude increases above F,,.. After the chaotic motion in the
small domain of y ([0, 0.085] for F = 0.5 and [0, 0.13] for F' = 0.6), the Lyapunov
exponent changes from a negative value to a positive value when p increases, signifying
the appearance of homoclinic chaos motion. From Figs. [3] and [5] we can noticed
that the Melnikov critrical value ., obtained in Section 3 is confirmed by numerical
simulations. The phase portrait of chaotic and periodic orbits have been plotted in Fig.
with parameters of Fig[5] Clearly, we noticed that periodic appear when ;1 = 0.085
and perxist in means forms and is destroyed when this parameter is increasing which
indicate the homoclinic chaos is appeared. Figl6|illustrate the bifurcation diagram and
the maximal Lyapunov exponents of our system when the modified parameters equals
0(a=0,8=0,k; =0,kp = 0) and its corresponding phase portrait have been
plotted in Fig[8] These figures show that our results coincide exactly with the results
when the modified parameters equals 0 which are obtained for Rayleigh-Duffing by
Siewe Siewe and al.(see [2]]). The effect of nonlinear damping parameters, parametric
excitation and external forced amplitude are also seeked through these figures.

A basin of attraction is defined as the set of points taken as initial conditions, that
are attracted to a fixed point or an invariant set. The basin of attraction in this case sig-
nals the points in phase space that are attracted to a safe oscillation within the potential
well, and the set of points that escape outside the potential well to the infinity. In order
to verify the analytical results obtained in the previous sections, we have numerically
integrated the system by using a fourth order Runge—Kutta in order to investigate the
homoclinic chaos in our model. We want to study what is the effect of using the nonlin-
ear damping terms on the equation of the oscillator and how the basins of attraction are
affected as the coefficient parameter p is varied. To show the fractal structure, we con-
sider the case of the bifurcation close to the resonance since it may undergo the limit
cycles in the system. We see through from Figs[9] [T0} [TT] [T2] [T3] [I4], the basin bound-
aries become fractal, which means that the damping parameter value p has contributed
to the fractalization of the boundaries, with the corresponding uncertainty associated to
this fact. For instance, as this control parameter increases above this critical value, the
regular shape of basin of attraction is destroyed and the fractal behavior becomes more
and more visible (see Fig[T2] and [T3). Such fractal boundaries indicate that whether
the system is attracted to one or the other periodic attractor may be very sensitive to
initial conditions. It is also found that even if y is increased beyond the analytical crit-
ical value for the homoclinic bifurcation, it is still possible that the final steady motion
could be periodic rather than chaotic. These results confirme our analytical result. Fi-
nally, we prove through from Figs. and |14] the modified parameters of habituelly
Rayleigh-Duffing oscillator are very effect on chaotic motions of this system.
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Figure 5: Bifurcation diagram and corresponding Maximal Lyapunov exponent of
Modified Rayleigh-Duffing oscillator equation versus p with parameters of Fig. [3}
(a,c0)F =05, (b,d)F = 0.6.
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Figure 7: Phase portraits corresponding to Modified Rayleigh-Duffing oscillator with
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period-1 orbit 1 = 0.5, (d) chaotic orbit ;1 = 0.8.
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Figure 8: Phase portraits corresponding to Modified Rayleigh-Duffing oscillator when
the modified damping parameters equals to 0 with parameters of Fig@ (a) period-1
orbit ;1 = 0.5, (b) chaotic orbit y = 0.695.
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Figure 9: Basin of attraction corresponding to the system with ;1 = 0.0001, the others
parameters are: v = —1,A =1, =03, =0.05,Q = 1,e = —1,k; = 0.5,ky =
0.05 and F' = 0.5.
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Figure 10: Basin of attraction corresponding to the system with p = 0.045, and the
parameters of [0
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Figure 11: Basin of attraction corresponding to the system with ¢ = 0.6, and the
parameters of [0

Figure 12: Basin of attraction corresponding to the system with ;1 = 0.8, and the
parameters of [0}
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Figure 13: Basin of attraction corresponding to the system with ¢ = 0.85, and the
parameters of [0

05

Figure 14: Basin of attraction corresponding to the system with ;1 = 0.6,and the pa-
rameters of [§
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5 Conclusion

In this paper, we have studied conditions of a global homoclinic bifurcation in a double
well potential modified Rayleigh-Duffing system with pure cubic nonlinear damping
coefficient term. Using the Melnikov method we have got the analytical formula for
transition to chaos in a one degree of freedom, system subjected to self-excitation term
with a non-symmetric stiffness with parametric excitation. In our case this effect is
mutually introduced through the modified Rayleigh-Duffing damping and parametric
excitation terms. The transition boundaries in the parameter space are obtained, which
divide the space into different regions. In each region, the solutions are explored the-
oretically and numerically. The critical value of damping coefficient p under which
the system oscillates chaotically has been estimated, in the first step by means of the
Melnikov method and later confirmed by calculating the corresponding Lyapunov ex-
ponent, bifurcation diagrams, and basin of attractions. Results were given for external
periodic perturbation. By means of the basin of attraction, we have shown that for
certain regions of parameter space, the deterministic system driven harmonically ex-
periences behaviors that may be chaotic or non-chaotic. The Melnikov method, is
sensitive to a global homoclinic bifurcation and gives a necessary condition when the
damping coefficient 1 = p.,; is larger than the critical homoclinic bifurcation values.
Our analytical results are consistent with direct computations on homoclinic orbits. It
is also investigated the effect of unpure quadratic nonlinear damping and parametric
excitation amplitude on chaotic behavior through the melnikov criteria and attraction
basin.
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Appendix A

Evaluation of the integrals from Iy, to I is straightforward. After substitution xy,(t),
and y;, (t) (Eq. (9)) we have:

) 2 +oo
I, = %/ sech?(/—7t) tanh? (v/—~t)dt

292 [T°° tanh® (y/—7t

il / tanh” (V=11 4y (16)
A J_w cosh® (y/=7t)
and simple algebraic manipulations:

T =ty/—7, tanht =Z¢, (17)

we obtain

2y2 /1 2
Iy = d€. 18
W _15 3 (18)

Finally the result of one has a following expression:

= v
0= —(—v -

N (19)
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After same algebraic manipulations, I, and I, become finally

167°y/—
L=-—X "1 2
! 352 0)
and
Iy =0. Q1)

On the the hand the integrals /5 and I35 can be evaluated by using following expressions:

dr =
cosh?" 1 - 2n

o S on—p-1D)@2n—p-3)Zn—p—2k+1)
[sech T+k§ 2 (n—1)(n —2)..(n k)

@2n—p—-1)2n—p—-3)..3—p)(1—p) / Sinhpqu—

/ sinh? 7 sinh? ™t
X

sechzn_%]—l—

22
2nn) cosh 7 (22)

/ sinh? 7 sinh?*! 7
2n T= X
cosh”” 7 2n
n—1
_ 2n—p—2)2n—p—4)...2n — p — 2k) ok
hZTL 1 ( h2n 2k—1
[sech™ 7+ > 2n—3)(2n—5)..(2n—2k—1) C I+
k=1
@n—p-2)2n—p—4).(p+2)(=p) [ . \» . 23)
(2n — 1!
. h2
/ S0 T r = sinhT — arctan(sinh 7), (24)
cosh 7
and
. .3 1 3
/smh TdT = 3 cosh” 7 — cosh 7 25)
With these expressions, the finite values of Is and I3 are:
2 /2
Iy = j:% 5 (26)
and
I, =0. 27

Now, we evaluate I5 and Is.

+oo
I, = 2%«—7/ sech?(y/—~t) tanh (v/—7t) cos Q(t + to)dt,  (28)

sin Qtg 5— sin ——dt 29)

I — 29— T tanhr . Qr
5 A oo cosh®T v
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We put

“+o0

tanh Q

I = / tanht o S 30)
—oo COSh”T V=Y

This integrale can be calculated by using the residue theorem

N
%f(z)dz = 2mi ZRes[f(z), 2k, 31
k=1
where
) dmfl
Res(f(2), 4] = (o Jim S (e = 20" £ (2] 62)
In our case,
exp(z) — exp(—2) iQz
z) = ex , (33)
T = o) + (2P P v
where on the real axis (Fig. [[3)Rez = 7 :
tanh 7 Qr
I = 31 . 34
mi(z) = ST sin(—2) (34)
The multiplicity of each pole of the complex function f(z) (Eq. (33):
= (= 4 wk)i fork=1,2,... (35)

2

can be easily determined as m = 3. After summation of all poles (Fig. [T5) we get:

Is' = , O (36)
Y Slnh(ﬁ)
Finally, the result of the above analysis can be written:
4702 sin(Qt
I5==3 sinh(( Qg) ) .
2v/=y

Integral Ig is calculated with the same algebraic manipulations and the can be written
as follows:

23 2 ) .
Is = q:mwﬁ\/:sech(m) sin Q. (38)
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