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In this paper, the probability density functions (PDFs) of the states of Generalized Chua’s
Circuit (GCC) have been modeled by Finite Mixture α-Stable (FMαS) distributions which is a
Bayesian mixture model of α-stable distributions and it provides semiparametric characterization
for the distributions of multiscroll chaotic attractors. Fully Bayesian approach has been applied
to estimate the mixture parameters of multimodal distributions corresponding to the multiscroll
chaotic attractors.
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1. Introduction

The density estimation is an important subject for
the characterization of the observed data obtained
from real physical systems. By the estimated
parameters, valuable information can be extracted
from the data. In statistical applications, Finite
Mixture (FM) distributions have been of great
interest to model heterogeneous data in various
fields such as astronomy, biology, economics, engi-
neering, and genetics [McLachlan & Peel, 2004; Gel-
man et al., 2013]. In real world applications, the
distributions of the dynamics are complicated and
the special distributions like Gaussian, Poisson are
not sufficient for parametric estimation of such com-
plicated distributions [Zong, 2006; McLachlan &
Peel, 2004]. Since many physical phenomena such
as stochastic disturbances in power systems [Mei
et al., 2011], underwater acoustics, atmospheric
noise [Nikias & Shao, 1995; Janicki & Weron, 1993]
show impulsive characteristics; then the related
statistics might have heavy-tailed distributions.

Such an impulsive behavior with heavy-tailed distri-
butions have been modeled by Stable Distributions
(referred to as alpha-stable (α-stable) distributions)
which also allow for modeling data with skewed
distributions [Samoradnitsky & Taqqu, 1994]. Fur-
thermore, if such data have multimodality charac-
teristics then Finite Mixture of α-stable (FMαS)
distributions introduced in [Casarin, 2004] could be
used for modeling.

The attractors of chaotic dynamics have heavy-
tailed distributions because at the boundaries of the
corresponding trajectories the speed of the trajecto-
ries comparatively decelerate thus the possibility of
occurrence of the points at the boundaries increase.
This fact inspired us to model the chaotic dynam-
ics by FMαS distributions, and thus heavy-tailness.
Further to this observation since FMαS distri-
butions are a more general class of distributions
including Gaussian distributions, FMαS distribu-
tions have become more convenient in statistical
modeling instead of using Parzen estimator given
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in [Günel, 2004; Gunel & Savaci, 2005a; Günel &
Savaci, 2005b]. To the best of our knowledge,
the chaotic dynamics have been modeled firstly
in this paper by Bayesian mixture of α-stable
distributions by applying to the state densities
of Generalized Chua’s Circuit (GCC). The GCC
presented in [Suykens et al., 1997; Suykens &
Vandewalle, 1993] have been deliberately chosen
because while each cluster in GCC can be modeled
by single α-distributions, multimodality character-
istics of multiscroll attractors can be modeled by
FMαS distributions.

Though state densities of GCC have been
already estimated by a nonparametric approach
using B-splines in [Savaci & Güngör, 2012] as an
alternative method to the Parzen estimator given in
[Günel, 2004; Günel & Savaci, 2005b]; however, the
newly proposed FMαS distributions provide semi-
parametric characterization for the distributions of
the attractors of the chaotic dynamics of GCC
which are indeed stationary distributions since the
transients have been ignored in the estimation
procedure.

α-stable distribution can be considered as a
semiparametric model because although α-stable
distributions do not have closed-form expressions,
the characteristic function of a random variable
with stable distribution is described by four param-
eters as given in Sec. 2.1. Such finite mixture of
α-stable (FMαS) distributions can be considered
as a Bayesian semiparametric model. This model is
called Bayesian because in this hierarchical model,
posterior distributions and α-stable distributions in
the final mixture model are evaluated via prior dis-
tributions chosen from the known distributions such
as Normal, Gamma, Uniform distributions.

In modeling FMαS distributions if the number
of mixtures (clusters) are a priori unknown then the
number of clusters is also to be estimated which is
a very hard problem. The mixture model of Nor-
mal Distributions for the case of unknown number
of mixtures in the Bayesian framework is given in
[Green, 1995; Richardson & Green, 1997; Webb &
Copsey, 2011] with Reversible Jump Markov Chain

Monte Carlo (RJMCMC) method to solve the
Model Selection Problem [Andrieu et al., 2001].
However, for the case of known number of mixtures
(# of clusters known) the mixture model of α-stable
distributions has been presented in [Casarin, 2004;
Lombardi, 2007]; furthermore, in [Salas-Gonzalez
et al., 2009] the number of mixtures is assumed
to be unknown (# of clusters unknown) which is
the case usually encountered in real applications.
In order to estimate the number of mixtures, RJM-
CMC method have been applied in [Salas-Gonzalez
et al., 2009].

The rest of this paper is organized as follows:
In Sec. 2.1, α-stable distributions have been briefly
introduced and in Sec. 2.2, the Bayesian algorithm
for the estimation of FMαS distributions has been
presented compactly, but yet, the content is suf-
ficient for applying to any data obtained from
dynamical systems. In Sec. 3, using the Bayesian
algorithm the state densities of GCC have been
estimated by FMαS distributions and the distri-
bution of multiscrolls of GCC has been charac-
terized by the parameters of the estimated FMαS
distribution. Assuming that the number of mix-
tures is known (# of clusters known) the dis-
tributions of multiscrolls have been modeled by
FMαS distributions using the Bayesian algorithm
through Secs. 2.2.1–2.2.2; whereas assuming that
the number of mixtures is unknown (# of clusters
unknown) then the Bayesian algorithm has been
applied through Secs. 2.2.1–2.2.3. In Sec. 3.5, the
comparison of FMαS modeling with the paramet-
ric Gaussian Mixture Model (GMM) and Parzen
estimator has proved the superiority of FMαS
modeling.

2. Bayesian Stable Mixture Model

2.1. α-stable distributions

Although there is no analytical expression for α-
stable density functions, the characteristic function
of a random variable X which has a stable distribu-
tion can be described as [Samoradnitsky & Taqqu,
1994; Nikias & Shao, 1995]

ϕ(w) =




exp
{
−|γw|α

[
1 − iβ sign(w) tan

(πα

2

)]
+ iµw

}
for α �= 1

exp
{
−|γw|

[
1 + iβ sign(w)

2
π

log(|w|)
]

+ iµw

}
for α = 1

(1)
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where sign(w) is signum function and 0 < α ≤ 2,
β ∈ [−1, 1], γ ∈ R+, and µ ∈ R.

A stable distribution is characterized by four
parameters: α, β, µ, σ and denoted by Sα (σ, β, µ).
The characteristic exponent denoted by α mea-
sures the tail thickness of the distribution (smaller
α implies heavier tails i.e. more impulsive behav-
ior). The skewness parameter β measures the sym-
metry of the distribution where β = 0 refers to
symmetric distribution, β > 0 right-skewed distri-
bution and β < 0 left-skewed distribution. µ is a
location parameter and γ is the dispersion param-
eter which determines the spread of distribution
around its location parameter µ as the variance
of a Gaussian distribution determines the spread
around the mean. In fact the Gaussian, Cauchy, and
Levy distributions are special cases of the α-stable
distributions with (α = 2), (α = 1, β = 0), and
(α = 1/2, β = 1), respectively.

In the FMαS distributions model, the numeri-
cal approximation of α-stable density functions has
been evaluated [Nolan, 1997] by the inverse Fourier
transform of the characteristic function of α-stable
distributions given in Eq. (1) as

f(y;α, β, γ, µ) =
1
2π

∫ ∞

−∞
e−jwyϕ(w)dw. (2)

2.2. Bayesian algorithm for
estimation of mixtures of
α-stable distributions

For single-mode data, the methods for parameter
estimation in the special case of symmetric sta-
ble distributions (SαS) have been introduced in
[Ma & Nikias, 1995] whereas Kuruoglu [2001] has
developed estimators for the parameters of skewed
α-stable distributions. For multimode signals usu-
ally observed in physical systems a fully Bayesian
approach has been applied for the estimation of
FMαS distributions [Casarin, 2004]. When a priori
knowledge for the data is available, the parametric
modeling for the estimation is preferred to nonpara-
metric modeling [Scott, 2009]. Bayesian methods
provide a probabilistic model via estimating poste-
rior distributions of the unknown parameters that
characterize the data using prior distributions [Gel-
man et al., 2013; Webb & Copsey, 2011]. Prior
parameters are all drawn independently from the
highly encountered distributions such as normal,
gamma, uniform distributions. Such a selection pro-
vides weak information about the prior parameters

[Richardson & Green, 1997]. Posterior distributions
are computed using the Monte Carlo Markov Chain
(MCMC) method in a Bayesian framework.

The stable distributions mixture model for the
data vector y is given by

pY (y) =
k∑

j=1

wjfj(y |θj) (3)

where pY (y) is the probability density function of
the vector observations y = [y1 y2 · · · ym · · ·
yN ] and wj ∈ R+ is the mixture proportion such
that

∑k
j=1 wj = 1 where j = 1, 2, . . . , k denotes the

clusters (subpopulations) from which the data are
randomly drawn. The likelihood function fj(ym |θj)
is the density of the mth observation ym knowing
that mth observation is from the jth cluster where
θj = [αj βj γj µj] is the parameter vector for
the jth cluster. The likelihood functions through-
out the Bayesian algorithm have been numerically
evaluated using Eq. (2).

Let zi be the allocation variable which is sup-
posed independently to be drawn from the distri-
bution given by Eq. (3) and zi = j denotes that
observation yi is drawn from the jth cluster of the
mixture

p(zi = j) = wj for j = 1, 2, . . . , k. (4)

Assigning the allocation vector z = [z1 z2

· · · zi · · · zN ] then the probability of the ith
observation being from the jth cluster is given by
fj(yi;θj , z) i.e.

yi | z ∼ fj(· |θj , z). (5)

The weight vector w, the component parameters
vector θj and the number of allocations (i.e. the
number of clusters) k are the unknown variables
which are to be estimated. With the Bayesian
approach the posterior probability distribution of
unknown variables can be estimated by the given
observation y and the prior distribution of k, w
and where θ = [θ1 θ2 · · · θk]. The selection
of prior information has been presented in the fol-
lowing sequel [Richardson & Green, 1997; Salas-
Gonzalez et al., 2009].

2.2.1. Selection of the priors for k,w, θθθ

(i) Selection of prior information for the number
of allocations k:
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The number of allocations k is priorly drawn
from the uniform distribution

p(k | k0) =




1
k0 − 1

1 ≤ k ≤ k0

0 elsewhere.

(6)

(ii) Selection of prior information for weights w:
The prior distribution for the weights w = [w1,
w2, . . . , wk] is chosen as symmetric Dirichlet D:

w ∼ D(ζ, . . . , ζ). (7)

(iii) Selection of prior information for component
parameter vector θ:
Location parameter µ is priorily drawn from
normal distribution

µ ∼ N(µ | ξ, κ−1) i.e. p(µ) = N(µ | ξ, κ−1)

(8)

where ξ is set as the midpoint of the interval
of the data and κ as a small multiple of 1/R2,
where R is the length of the interval of data as
in [Richardson & Green, 1997].
The dispersion γ is priorily drawn from an
inverse gamma distribution with the hyperpa-
rameters α0 and β0

γ ∼ IG(γ |α0, β0) i.e. p(γ) = IG(γ |α0, β0).

(9)

Prior distributions for the characteristic expo-
nent α and the skewness β are chosen as in
[Salas-Gonzalez et al., 2009].

p(αj | a) =
1
a

=
1
2
, 0 < αj ≤ 2 (10)

p(βj | b) =
1
b

=
1
2
, −1 ≤ βj ≤ 1. (11)

2.2.2. Updating w, θθθ, z

For a conditionally hierarchical model the joint dis-
tribution of all variables can be expressed by using

the Bayes’ rule as

p(k0, ζ, η, k, w, z, θ, y)

= p(y | k,w, z, θ, η)p(θ | k, η)p(z |w, k)

× p(w | k, ζ)p(k | k0)p(η)p(ζ)p(k0) (12)

where η = {a, b, α0, β0, ξ, κ} and k0, ζ, η are the
hyperpriors for unknown variables k, w, θ, respec-
tively. The method for the estimation of component
parameters in a Bayesian mixture model was given
in [Richardson & Green, 1997; Salas-Gonzalez et al.,
2009]. The steps briefly presented below consist of
the types of updates for a hierarchical stable mix-
ture model:

(i) Updating the weight vector w:

The mixture proportions w have been updated
by Gibbs sampling and the full conditional
distribution of w is taken from a Dirichlet dis-
tribution as in the case of prior distribution
for w.

w ∼ D(ζ + n1, . . . , ζ + nk) (13)

where nj is the number of samples assigned to
the component j.

(ii) Updating the component parameter vector θ:

α, β, γ, µ parameters have been updated using
Metropolis–Hastings algorithm [Rubinstein &
Kroese, 2011, p. 169] which is a powerful
MCMC method.

Metropolis–Hastings algorithm:

(ii.1) At each iteration t, given θ(t) = [θ(t)
1

θ
(t)
2 · · · θ

(t)
k ] where θ

(t)
j = [θ(t)

j1 θ
(t)
j2

θ
(t)
j3 θ

(t)
j4 ] then generate θnew

jm for m = 1,
2, 3, 4 from the proposal distributions
θnew

jm ∼ q(θnew
jm | θ(t)

jm) where the proposal
distributions q have been described in
Eqs. (8)–(11),

(ii.2) for each observation yi, evaluate

Aθjm
= min




1,

N∏
i

p(yi | k,wj , θ
new
jm ,θj(−r))

N∏
i

p(yi | k,wj , θ
(t)
jm,θj(−r))

f(θnew
jm | η)

f(θ(t)
jm | η)




, (14)
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where θj(−r) consists of parameters θjm

m �= r and f is chosen as a uniform dis-
tribution for both characteristic expo-
nent α and skewness β while inverse
gamma distribution (normal distribu-
tion) for dispersion γ (location µ)
parameter, respectively,

(ii.3) generate u ∼ U(0, 1) and then the pro-
posed value θnew

j is accepted (is not
accepted) as a posterior value if u ≤ Aθj

(otherwise), respectively, i.e.

θ
(t+1)
jm =




θnew
jm , if u ≤ Aθjm

θ
(t)
jm, otherwise.

(15)

(iii) Updating the allocation z:
At every iteration t, the full conditional proba-
bility that the ith observation being in the jth
cluster can be determined as

p(zi = j | z−i,y,θ,w, k)

= p(zi = j) · p(y | z−i,θ,w, k) (16)

where z−i is the cluster assignment for all
observations except the ith one i.e. z−i is the
vector z without component i denoted as z−i �
(z1, . . . , zi−1, zi+1, . . . , zN ) and p(zi = j) = wj

as described by Eq. (4).

2.2.3. Estimating the number of
mixtures k

Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) method moves among different number
of finite normal (Gaussian) mixture models in
[Green, 1995; Richardson & Green, 1997; Gelman
et al., 2013] and for non-normal mixture models in
[McLachlan & Peel, 2004]. The reversible jump algo-
rithm given in [Green, 1995] has been summarized
as follows:

RJMCMC algorithm

(i) Define the current state x � (k,w,θ) which
has dimension dim(x) = 5k+1 since dim(w) =
k, dim(θ) = 4k (for each mixture component
there are four parameters α, β, γ, µ to be esti-
mated and therefore for k number of mixtures
totally 4k parameters should be estimated).

(ii) Given a current state x, a Markov Chain move
to the new state x′ is achieved with proba-
bility rm(x′). Since the dimension of the new

state x′ (i.e. dim(x′)) is different than the
dimension of the previous state x then the
one-to-one deterministic function is defined as
(x′, u′) = g(x, u) by using additional random
variable u which is drawn from the jumping
distribution J(u) (independent of x and x′),
where dim(x) + dim(u) = dim(x′) + dim(u′),

(iii) then accept this Markov Chain move to the
new state x′ with probability min(1, Am(x, x′))
where

Am(x, x′) =
p(x′ | y)rm(x′)

p(x | y)rm(x)J(u)
·
∣∣∣∣∂g(x, u)

∂(x, u)

∣∣∣∣
(17)

where rm(x) is the probability of moving to x
when the current state is x′ (i.e. a new model
x is proposed with probability rm(x) when the
current state is x′) and | · | denotes the deter-
minant of the Jacobian matrix.

In FMαS distributions for each proposed num-
ber of mixtures k, new values for weights, loca-
tion and dispersion parameters have been assigned
by the method of splitting one mixture compo-
nent into two, or combining two into one, namely,
split/combine move while α and β parameters have
been assigned by setting the previous values as the
new values. The details of split/combine move for
estimating the number of mixtures k in a mixture
model of α-stable distributions are given in [Salas-
Gonzalez et al., 2009].

Remark (The Number of Clusters Known). If the
number of clusters of the data is considered to be
known or the data is desired to be modeled with
a prespecified number of clusters then there is no
need to estimate the number of mixtures k, there-
fore Secs. 2.2.1(i) and 2.2.3 could be skipped and
hence computational costs could be reduced.

3. Characterization of Distributions
of Multiscrolls by the Parameters
for the Finite Mixture of
α-Stable Distributions

The dynamics of autonomous GCC [Suykens et al.,
1997] are described by the following set of three
differential equations

ẋ = a[y − h(x)], ẏ = x − y + z, ż = −by

(18)
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where a and b denote bifurcation parameters to
avoid confusion with the parameters of α-stable dis-
tribution and h(x) is given as

h(x) = m2q−1x +
1
2

2q−1∑
i=1

(mi−1 − mi)

× (|x + ci| − |x − ci|) (19)

where q determines the number of scrolls.
The data for various chaotic behavior have

been simulated by numerically solving Eq. (18)
using fifth-order Dormand–Prince algorithm with
fixed step size. The first 100 data points have been
ignored due to transients as done in the previous
works [Günel, 2004; Savaci & Güngör, 2012]. The
parameters for the behaviors of limit cycle, dou-
ble scroll, 3-scroll, and 5-scroll attractors have been
chosen as in [Chua et al., 1986; Suykens et al., 1997].

In the following subsections, PDFs of the state
x of Chua’s circuit have been estimated by FMαS
distributions and the estimated parameter wj indi-
cates the probability of data belonging to the clus-
ter j; the estimated location parameter µ is the
mean of the corresponding cluster; the estimated
skewness parameter β shows the inclination of the
data about the location parameter µ and the esti-
mated dispersion parameter γj indicates the spread
of the data about the location parameter which can
be also considered as a measure of energy for the
corresponding cluster.

The FMαS-distributions have been obtained for
two cases:

Case I. When the number of clusters is unknown
then RJMCMC algorithm has been applied to esti-
mate the number of mixtures k.

Case II. When the number of clusters is known
then the mixture proportions w and component
parameters (α, β, γ, µ) of α-stable distributions
have been estimated for a prespecified k.

In the sequel, the number of MCMC and RJM-
CMC iterations have been set as 10 000.

3.1. Limit cycle

The bifurcation parameters have been chosen as a =
7, b = 14.28, q = c = 1 and m0 = −1/7,m1 = 2/7.

Case I. Unknown case: the initial value for the
number of mixtures k is arbitrarily set as k0 = 6
and the number of mixtures k has been estimated

Table 1. Estimated parameters for limit cycle.

# of Clusters # of Clusters
Parameter Known Unknown

[w1 w2] [0.5171 0.4829] [0.5642 0.4358]
[α1 α2] [0.884 0.901] [1.0058 0.9159]
[β1 β2] [1.00 −1.00] [1.00 −1.00]
[γ1 γ2] [0.104 0.089] [0.1048 0.058]
[µ1 µ2] [0.948 1.989] [0.9515 1.989]

by the algorithm given in Sec. 2.2.3 and obtained as
k = 2 for 9932 iterations. Hence the distribution can
be modeled by the mixture of two α-stable densities
expressed as

p(x) =
2∑

j=1

wj · fj(αj , βj , γj , µj) (20)

where the weight vector w = [w1 w2] and compo-
nent parameters have been estimated as shown in
Table 1.

Case II. Known case: the number of clusters has
been prespecified as k = 2 and the estimated
parameters have been listed in Table 1. As seen from
Table 1 the estimated parameters are close to each
other for both cases.

In Fig. 1, the estimated mixture model of α-
stable distributions for both cases have been shown
and both estimated FMαS distributions have fitted
well to the histogram of the data obtained from the
limit cycle.

Remark (Speed of the Trajectory versus Extrema of
FMαS Distributions). In Fig. 2 the trajectory of
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Fig. 1. Estimated FMαS distributions for limit cycle, the
number of mixtures is known (black line), and the number of
mixtures is unknown (red line).

1550038-6



March 26, 2015 13:43 WSPC/S0218-1274 1550038

Bayesian Stable Mixture Model of State Densities of Generalized Chua’s Circuit

1

1.5

2

−0.4
−0.2

0
0.2

0.4
0

1

2

3

4

5

xy

||Ẋ
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Fig. 2. The phase portrait of limit cycle (blue line) and ‖Ẋ‖
(red line).

the system Eq. (18) is shown with blue-line and the
corresponding Euclidean norm of Ẋ � [ẋ ẏ ż]
is shown with red-line. Amin and Bmin correspond
to the points at which the speed of the trajectory
is minimum (i.e. minimum of ‖Ẋ‖ occur at these
points) whereas Cmax and Dmax correspond to the
points at which Euclidean norm ‖Ẋ‖ are maximum.
From Figs. 1 and 2, it can be observed that when
the trajectory slows down, it spends longer time
nearby Amin and Bmin and consequently, the local
maxima of the estimated FMαS distributions occur
at these points. The local minimum of the estimated
FMαS distributions occurs in the interval of Cmax

x

and Dmax
x where ‖Ẋ‖ increase (i.e. the trajectory

moves faster).

3.2. Double scroll

The bifurcation parameters have been chosen as a =
9, b = 14.28, q = c = 1 and m0 = −1/7,m1 = 2/7.

Case I. Unknown case: the number of mixtures k
has been estimated as k = 4 for 8135 iterations.
Hence the observed data of the double scroll can be
modeled by the mixture of four α-stable densities

expressed as
4∑

j=1

wj · fj(αj , βj , γj , µj) (21)

where the weight vector w = [w1 · · · w4] and
component vectors α = [α1 · · · α4], β =
[β1 · · · β4], γ = [γ1 · · · γ4] and µ =
[µ1 · · · µ4] have been estimated as shown in
Table 2.

Case II. Known case: the number of clusters has
been prespecified as k = 4 and the estimated
parameters have been listed in Table 2. As seen from
Table 2, for both cases the algorithm has estimated
the parameters as reasonably close to each other.

The estimated mixture stable model for double
scroll for known case and unknown case has been
shown in Fig. 3.

Remark (Speed of the Trajectory versus Extrema of
FMαS Distributions). In Fig. 4 the trajectory of
the system is shown where the green points cor-
respond to the points at which ‖Ẋ‖ are relatively
small and larger values of ‖Ẋ‖ occur at red points.
From Figs. 3 and 4, it can be observed that when
the trajectory slows down it spends longer time
nearby green points, consequently, the local maxima
of the estimated FMαS distributions occur at these
points. The local minima of the estimated FMαS
distributions occur in the interval of red points at
which ‖Ẋ‖ are relatively high (i.e. the trajectory
moves faster). As the simulation results show that
the speed of the trajectory slows down nearby the
boundaries of the state x hence the occurrence of
these points increases which implies heavy-tailness
at the boundaries of state x.

3.3. 3-scroll

The bifurcation parameters have been chosen as
a = 9, b = 14.28, q = 2 and m0 = 0.9/7,m1 =
−3/7,m2 = 3.5/7,m3 = −2.4/7, c1 = 1, c2 =
2.15, c3 = 4.

Table 2. Estimated parameters for double scroll.

Parameter # of Clusters Known # of Clusters Unknown

w [0.2255 0.2665 0.2989 0.2089] [0.2074 0.2885 0.3110 0.1931]
α [1.5489 1.9500 1.8600 1.4102] [1.4238 1.9500 1.9500 1.4702]
β [0.9841 −0.2972 −0.7949 −1.00] [1.00 −0.4035 −0.3037 −1.00]
γ [0.1831 0.2987 0.3218 0.2110] [0.11708 0.2864 0.3327 0.1721]
µ [−1.8658 −0.8643 0.7691 1.8288] [−1.9105 −0.8682 0.8228 1.8923]
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Fig. 3. Estimated FMαS distributions for double scroll, the
number of mixtures is known (black line), and the number of
mixtures is unknown (red line).
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Fig. 4. 2D phase portrait for double scroll (at green points
the trajectory slows down and at red points the trajectory
moves faster).

Case I. Unknown case: k0 = 11 has been chosen
as the initial value and the number of mixtures k
has been estimated as k = 3 for 8135 iterations.
The observed data can be modeled by the mixture

of three α-stable densities expressed as

3∑
j=1

wj · fj(αj , βj , γj , µj) (22)

where the weight vector w = [w1 · · · w3] and
component vectors α = [α1 · · · α3], β =
[β1 · · · β3], γ = [γ1 · · · γ3] and µ =
[µ1 · · · µ3] have been estimated as shown in
Table 3.

Case II. Known case: the number of clusters has
been prespecified as k = 3 and the estimated
parameters have been listed in Table 3.

The estimated mixture stable model for 3-scroll
attractors for known and unknown cases has been
shown in Fig. 6.

3.4. 5-scroll

The bifurcation parameters have been chosen as
a = 9, b = 14.28, q = 3 and m0 = 0.9/7,m1 =
−3/7,m2 = 3.5/7,m3 = −2.7/7,m4 = 4/7,m5 =
−2.4/7, c1 = 1; c2 = 2.15, c3 = 3.6, c4 = 6.2, c5 = 9.

Case I. Unknown case: the number of mixtures k
has been estimated as k = 5 for 5486 iterations.
Hence the observation can be modeled by the mix-
ture of five α-stable densities expressed as

5∑
j=1

wj · fj(αj , βj , γj , µj) (23)

where the weight vector w = [w1 · · · w5] and
component vectors α = [α1 · · · α5], β =
[β1 · · · β5], γ = [γ1 · · · γ5] and µ =
[µ1 · · · µ5] have been estimated as shown in
Table 4.

Case II. Known case: the number of clusters has
been prespecified as k = 5 and the estimated
parameters have been listed in Table 4. As seen
from Table 4 for both cases as in the previous
chaotic behaviors, the algorithm has estimated the

Table 3. Estimated parameters for 3-scroll attractor.

Parameter # of Clusters Known # of Clusters Unknown

w [0.3771 0.2820 0.3409] [0.3634 0.2952 0.3414]
α [1.9500 1.9500 1.9500] [1.9500 1.9500 1.9500]
β [0.6361 −0.1338 −0.5371] [0.0968 −0.6386 −0.6994]
γ [0.2628 0.7608 0.2745] [0.2531 0.8051 0.2674]
µ [−2.9017 0.0893 2.8817] [−2.8811 0.2952 2.8832]

1550038-8



March 26, 2015 13:43 WSPC/S0218-1274 1550038

Bayesian Stable Mixture Model of State Densities of Generalized Chua’s Circuit

−4 −3 −2 −1 0 1 2 3 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

Fig. 5. 2D phase portrait for 3-scroll attractors (at green
points the trajectory slows down and at red points the tra-
jectory moves faster).
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Fig. 6. Estimated FMαS distributions for 3-scroll attrac-
tors, the number of mixtures is known (black line), and the
number of mixtures is unknown (red line).

Table 4. Estimated parameters for 5-scroll attractor

Parameter # of Clusters Known # of Clusters Unknown

w [0.1586 0.2297 0.3594 0.1486 0.1037] [0.1619 0.2317 0.3360 0.1549 0.1154]
α [1.8164 1.8141 1.7615 1.8264 1.5654] [1.8067 1.9500 1.9500 1.9500 1.5347]
β [0.5248 −0.1657 −0.2943 0.7923 −1.00] [1.00 −0.9158 −0.2939 0.0837 −1.00]
γ [0.4371 0.4392 0.6278 0.3964 0.5402] [0.4131 0.4623 0.6182 0.4035 5257]
µ [−7.3182 −2.8775 0.0769 2.9361 7.4007] [−7.3852 −2.9087 0.0081 2.9019 7.4199]
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Fig. 7. 2D phase portrait for 5-scroll attractors (at green
points the trajectory slows down and at red points the tra-
jectory moves faster).
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Fig. 8. Estimated FMαS distributions for 5-scroll attrac-
tors, the number of mixtures is known (black line), and the
number of mixtures is unknown (red line).
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Fig. 9. Comparison of estimated FMαS distribution with
GMM and Parzen estimator for limit cycle.
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Fig. 10. Comparison of estimated FMαS distribution with
GMM and Parzen estimator for double scroll attractor.

parameters as reasonably close to each other which
proves the strength of the RJMCMC algorithm.

Figure 8 shows the mixture model for the esti-
mated parameters given in Table 4. As seen from
Fig. 8, the estimated FMαS distributions for the
known and unknown cases have been fitted to the

Table 5. Comparison of the distance measure.

FMαS GMM Based on AIC Parzen Estimator

Bhattacharyya Bhattacharyya Bhattacharyya
k Distance k Distance Distance

Limit cycle 2 0.01 10 0.043 0.0837
2-scroll 4 0.0348 12 0.0469 0.1496
3-scroll 3 0.0051 3 0.0052 0.2748
5-scroll 5 0.0258 8 0.0344 0.1045
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Fig. 11. Comparison of estimated FMαS distribution with
GMM and Parzen estimator for 5-scroll attractor.

histogram of data. It has been also observed that
the location parameters of the estimated FMαS dis-
tributions correspond to points at which ‖Ẋ‖ are
relatively small.

3.5. FMαS model versus GMM and
Parzen estimator

Figures 9–11 show the comparison of FMαS model
with GMM and Parzen estimator. Gaussian Mix-
ture Model (GMM) which fits the histogram
obtained from the corresponding attractors has
been determined by using Akaike Information Crite-
rion (AIC) [Webb & Copsey, 2011] and the number
of components has been found as listed in Table 5.

The statistical Bhattacharyya distance [Bhat-
tacharyya, 1946; Kailath, 1967] between the his-
tograms and the models has been calculated for
comparison with the models. As seen from Table 5,
FMαS yields smaller error and less number of mix-
ture components. From this comparison it can be
concluded that when the number of scrolls gets less
which results in more heaviness in the tails then
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the FMαS is more accurate for modeling and as the
number of scrolls increase (resulting in less heav-
iness in the tails) the accuracy of GMM model
approaches that of FMαS model.

4. Conclusion and Future Work

In this paper, FMαS distributions have been used
to model the state PDFs of GCC. The parame-
ters of the distributions have been estimated by the
Bayesian algorithm. When GCC is considered as
black box from which the data are obtained then the
number of clusters cannot be known beforehand and
in this case RJMCMC algorithm has successfully
estimated the true number of mixtures “k” value
and the resulting FMαS distributions have well fit-
ted to the histogram of the simulated data. On the
other hand, when the state space model of GCC is
known then we can a priori determine the number
of clusters which might be greater than the num-
ber of scrolls for GCC then the Bayesian algorithm
without using RJMCMC method still achieves true
FMαS distributions which also well fit to the his-
togram. Actually, the prior knowledge is to know
the state space model of GCC from which the data
are obtained. When the state space model is known
the local minima of the vector field ‖Ẋ‖ can be
found either from simulations or analytically (if
possible). These local minima of ‖Ẋ‖ correspond
to the location of clusters. Therefore, when it is
possible to determine the number of clusters from
the dynamics then modeling with known number
of mixtures (Secs. 2.2.1–2.2.2) can be preferred to
reduce the computational costs because avoiding
RJMCMC algorithm given in Sec. 2.2.3 minimizes
the complexity.

The FMαS distributions of GCC have well fit-
ted not only to the histogram but also to the esti-
mated PDFs using B-spline functions in [Savaci &
Güngör, 2012] and it has been observed in Sec. 3.5
that FMαS models have yielded smaller errors com-
pared to the GMM. It has also been observed that
the estimated values of some impulsiveness param-
eters α increase as the number of scrolls increases
implying the decrease of heavy-tailness in the FMαS
mixture model. For all the estimated FMαS distri-
butions in Sec. 3 the negative (positive) skewness
parameter β has indicated thicker left (right) tail
and the estimated location parameters represent the
mean value for each cluster.

FMαS distributions might become substan-
tial in the determination of the solution of FPK

equation. The determination of the stationary
density for the Fokker–Planck–Kolmogorov (FPK)
equation is a crucial problem [Lasota & Mackey,
1994]. Multi-Gaussian Closure method [Er, 1998] in
which the stationary probability density functions
(PDFs) are assumed to be the weighted average
of the Gaussian densities have been used to find
the stationary density whereas in [Gunel & Savaci,
2005a; Günel & Savacı, 2006] the stationary density
has been represented by compactly supported mul-
tivariable polynomials (CSP). The evolution of the
PDF has also received interest recently for FPK of
power systems in the analysis of stochastic power
system stability [Wang & Crow, 2013]. As a future
work, FMαS distributions can be used to determine
the approximate stationary solution of the FPK
equation in power grids.

Controlling the shape of the PDF has received
growing interest [Wang et al., 2013; Sun, 2006]
and since FMαS distributions represent more gen-
eral class of distributions, then FMαS distributions
might be a more convenient model in the analysis
of controlling the PDF of the dynamical system.
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Andrieu, C., Djurić, P. & Doucet, A. [2001] “Model
selection by MCMC computation,” Sign. Process. 81,
19–37.

Bhattacharyya, A. [1946] “On a measure of divergence
between two multinomial populations,” Sankhyā: The
Indian J. Statist. 7, 401–406.

Casarin, R. [2004] “Bayesian inference for mixtures of
stable distributions,” Working paper No. 0428, Cahier
du CEREMADE, University Paris IX.

Chua, L. O., Komuro, M. & Matsumoto, T. [1986] “The
double scroll family,” IEEE Trans. Circuits Syst. 33,
1072–1118.

Er, G.-K. [1998] “Multi-Gaussian closure method for
randomly excited non-linear systems,” Int. J. Non-
Lin. Mech. 33, 201–214.

1550038-11



March 26, 2015 13:43 WSPC/S0218-1274 1550038

F. A. Savaci & S. Yilmaz

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B.,
Vehtari, A. & Rubin, D. B. [2013] Bayesian Data
Analysis (CRC Press).

Green, P. J. [1995] “Reversible jump Markov chain
Monte Carlo computation and Bayesian model deter-
mination,” Biometrika 82, 711–732.
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