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We demonstrate how coupling nonlinear dynamical systems can reduce the effects of noise. For
simplicity we investigate noisy coupled map lattices. Noise from different lattice nodes can diffuse
across the lattice and lower the noise level of individual nodes. We develop a theoretical model that
explains this observed noise evolution and show how the coupled dynamics can naturally function as
an averaging filter. Our numerical simulations are in excellent agreement with the model predictions.

I. INTRODUCTION

We investigate the evolution of local noise under cou-
pled dynamics and demonstrate how coupled dynamics
reduces the overall noise content of the individual ele-
ments. For simplicity we consider a coupled map lattice
(CML) as a paradigm for generically coupled systems [6].
We model how coupling identical maps can reduce the
noise content of the overall lattice and observe that the
noise from different nodes diffuses across the lattice and
attenuates the noise in each element of the lattice.

Additionally we demonstrate that an implicit form of
average filtering, also known as ensemble averaging, can
occur within the coupled map dynamics. An averaging
filter is a widely used noise filtering technique where dif-
ferent readings of a measurement, or different values of lo-
cal independent nodes in a spatially extended system, are
averaged and the result is a system with less noise content
[10]. In this work we demonstrate how one can tune the
coupled dynamics to act as an averaging filter for noise
in locally and globally coupled systems This dynamics-
based realization of an averaging filter has practical im-
portance in applications that utilize dynamics to operate.
Such applications include optimizers for hard problems
[2], chaos based data transmission [4], and chaos based
computation [5]. Evaluating and improving robustness
to noise in such dynamics based applications is of critical
importance. Extensive research has been dedicated to
investigate and improve the robustness to noise in such
systems [1, 7, 11]. From the practical standpoint our ob-
servation and development of coupled dynamics as a noise
filtering mechanism is novel because it allows us to utilize
the inherent coupled dynamics for noise reduction rather
than resorting to an external filter or different design
that applies an averaging type filter for noise reduction.
Rather than having one isolated, independent dynami-
cal system to implement the application, we can use a
set of similar dynamical systems, which are dynamically
coupled together, to implement noise reduction. This
has particular application to chaotic computation where

noise can play either a catastrophic or productive role in
computation [7, 9].

This noise reduction mechanism can filter noise from
the steady-state, long term behavior of periodic CMLs
as well as from its transient behavior. In chaotic CMLs,
this technique can only reduce noise from the transient
behavior of the CML. However, many dynamics based
applications such as chaotic computation, chaotic opti-
mization, or chaotic data transmission utilize this tran-
sient behavior. As a result, this noise filtering of transient
chaos is of particular relevance for such applications.

It is well known that when signal and noise are added
to each node of a coupled array, the signal adds coher-
ently but the noise adds incoherently [3], thus increasing
the signal-to-noise ratio. Furthermore arranging bistable
dynamical systems in an array and coupling them to-
gether enhances their response a time-periodic signal by
increasing a signal-to-noise ratio [8]. Here we focus on
the ability of dynamical coupling to reduce the effects
noise.

The organization of the paper is as follows. In Sec-
tion II we describe the coupled map model that we use.
In Section III we derive a model for noise deviation in the
coupled map lattice, which is the deviation from noise
free evolution caused by noise, and using this model we
explain and predict the mechanism through which the
dynamics of the coupled systems reduces the noise. In
Section IV we present our simulation results, and in Sec-
tion V we discuss our conclusions.

II. COUPLED MAP LATTICE

To demonstrate noise reduction by coupling, we first
study coupled map lattices (CMLs). The model for noise
deviation is general and applicable to a variety of dynam-
ics. The CML we use to first demonstrate noise reduction
was introduced by Kaneko [6] and has been extensively
studied. It combines a nonlinear map with diffusive cou-
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pling in the recurrence relation

xi+1
n = (1− ε)f [xin] +

ε

2

(
f [xin−1] + f [xin+1]

)
, (1)

where xin is the state of the nth node at the ith iter-
ation, n = 1, 2, 3, . . . , N and i = 1, 2, 3, . . ., f [x] is a
one-dimensional map, and ε is the coupling parameter.
The first and the last map of the lattice are connected to
each other to realize periodic boundary conditions. For
simplicity we start with a small lattice of size N = 3,
where local and global coupling are the same, and later
generalize to a globally coupled map lattice of any size.

III. THEORETICAL ANALYSIS

We model the effects of noise and coupling on the
Eq. (1) CML by comparing the deviation of the noisy and
noiseless evolutions of the coupled system to the devia-
tion of the noisy and noiseless evolution of the uncoupled
single isolated map. To broadly quantify this effect, we
define noise robustness

R =
σ2
s

σ2
c

, (2)

where σ2
s is the variance of noise deviation in a single iso-

lated map and σ2
c is the variance of noise deviation in N

coupled maps. The maps are subjected to local, statis-
tically independent but identically distributed noise. All
the CML maps have a noisy version of the same initial
condition x0 of the single isolated map.

Specifically, the initial conditions of the maps in the
CML are

x0n = x0 + σδ0n, (3)

and the noise is added to each node at each future itera-
tion like

xi+1
n = f

[
xin
]

+ σδi+1
n , (4)

where δin is normal Gaussian noise with zero mean and
unit variance. The variance σ2 of the maps’ additive
noises is the same, and the noise terms are independent
and identically distributed for different maps of the CML
and for different iterations of the maps.

The future noisy state of a map in the CML after one
iteration or step will be

x1n = (1− ε)f
[
x0n
]

+
ε

2

(
f
[
x0n−1

]
+ f

[
x0n+1

])
+ σδ1n

= (1− ε)f
[
x0 + σδ0n

]
+
ε

2

(
f
[
x0 + σδ0n−1

]
+ f

[
x0 + σδ0n+1

])
+ σδ1n, (5)

which, after linearizing the function f [x] around the ini-
tial condition x0, becomes

x1n = f [x0]

+ σλ1

(
(1− ε)δ0n +

ε

2
δ0n−1 +

ε

2
δ0n+1

)
+ σδ1n, (6)

where λ1 = df/dx is evaluated at x0. The one-step map
is composed of three elements: (1) noise free evolution
of the map starting from the noise free initial condition,
f [x0]; (2) evolution of previous noise terms under the cou-
pled dynamics, σλ1

(
(1− ε)δ0n + (ε/2)δ0n−1 + (ε/2)δ0n+1

)
;

and (3) noise term that is added to the map at the current
iteration, σδ1n. The term of interest is the second, which
models the noise deviation in the coupled dynamics. The
noise terms added to different maps are independent and
identically distributed. Because independent uncertain-
ties add in quadrature, the variance of the second term
is

σ2
c1 = σ2λ21

(
(1− ε)2σ2

δ +
ε2

4
σ2
δ +

ε2

4
σ2
δ

)
= (σλ1)

2

(
(1− ε)2 +

ε2

2

)
, (7)

which is the coupled map one-step noise variance. Setting
ε = 0 in Eq. 7 gives

σ2
s1 = (σλ1)

2
=

(
(1− ε)2 +

ε2

2

)−1
σ2
c1, (8)

which is the single isolated map one-step noise variance.
Comparing Eq. (8) and Eq. (2), the CML one-step

noise robustness R =
(
(1− ε)2 + ε2/2

)−1
. For coupling

0 < ε < 4/3, the noise robustness R > 1, and the variance
of noise deviation in the CML is less than the variance
of noise deviation in a single isolated map. Furthermore,
an optimal coupling parameter of ε = 2/3 implies

σ2
s1 = (σλ1)

2
= 3σ2

c1 (9)

and a maximum one-step noise robustness of R = 3.
Thus, in a CML of size N = 3 with optimal coupling,
the variance of one-step noise deviation is reduced to 1/3
of the variance when the maps are isolated.

The same modeling and the same result can be ob-
tained for further iterations of the CML and variance of
noise deviation. Iterating Eq. (4) one more time with
ε = 2/3 gives

x2n =
1

3
f

[
f
[
x0
]

+ σλ1
δ0n−1 + δ0n + δ0n+1

3
+ σδ1n

]
+

1

3
f

[
f
[
x0
]

+ σλ1
δ0n−1 + δ0n + δ0n+1

3
+ σδ1n−1

]
+

1

3
f

[
f
[
x0
]

+ σλ1
δ0n−1 + δ0n + δ0n+1

3
+ σδ1n+1

]
+ σδ2n. (10)

By linearizing this around f
[
x0
]
, we obtain

x2n =
1

3
f
[
f
[
x0
]]

+ λ2 σλ1
δ0n−1 + δ0n + δ0n+1

3

+ σλ2
δ1n−1 + δ1n + δ1n+1

3

+ σδ2n, (11)
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where λ2 = df/dx is evaluated at f [x0].
Again we observe that the noise terms δ1n−1, δ1n, δ1n+1

added during the previous step are averaged by the cou-
pled map dynamics. Once more adding independent un-
certainties in quadrature, the two-step variance of noise
deviations is

σ2
c2 =

1

3
σ2
(

(λ1λ2)
2

+ λ22

)
, (12)

whereas the two-step variance of noise deviations in a
single map is

σ2
s2 = σ2

(
(λ1λ2)

2
+ λ22

)
= 3σ2

c2, (13)

for a two-step noise robustness of R = 3.
This noise averaging by the coupled dynamics is re-

peated over the next iterations of the map as well. In
general, the variance of noise deviation in the coupled-
map lattice after i iterations is

σ2
ci =

1

3
σ2
(

(λ1λ2 · · ·λi−1λi)2

+ (λ2λ3 . . . λi−1λi)
2

+ · · ·+ λ2i

)
, (14)

where λi = df/dx is evaluated at f (i−1)
[
x0
]
, where

f (i) [x] means i iterations of function f [x], whereas the
variance of noise effects in the single map is

σ2
si = σ2

(
(λ1λ2 · · ·λi−1λi)2

+ (λ2λ3 . . . λi−1λi)
2

+ · · ·+ λ2i

)
= 3σ2

ci. (15)

Thus after i iterations, our linearization approximation
still indicates a noise robustness R = 3, and the Eq. (1)
CML reduces the variance of noise deviation to 1/3 of
the variance of noise deviation of a single map.

Figure 1 plots noise robustness R for a CML of size
N = 3 versus different possible values of coupling param-
eter ε for one step and two step evolution of the CML.
The solid lines are the theory, and data points are sim-
ulation results (which will be discussed and explained in
Section IV). The peak of the noise robustness R is located
at ε = 2/3 and its maximum value is N = 3.

We can obtain this rescaling rule in a more general
form for the Kaneko globally coupled map (GCM) lattice
defined by

xi+1
n = (1− ε)f

[
xin
]

+
ε

N − 1

∑
m 6=n

f
[
xim
]
. (16)

Similar to our analysis of 3-node CML, by linearizing
GCM lattice dynamics along the noise free orbit, it is
straightforward to show that the coupled dynamics of
GCM shrinks the variance of noise deviation. More
specifically, the optimal coupling ε = (N − 1)/N pro-
vides the maximum noise robustness of R = N , thereby
reducing the variance of noise deviation of the CML to
1/N of the variance of noise deviation in a single map.
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FIG. 1: Noise robustness R versus coupling ε for a ring of
N = 3 cyclically coupled chaotic maps. Red squares indicate
first iteration or step, blue disks indicate second step, and the
corresponding lines indicate theory. The simulation uses the
Eq. (18) quadratic map and 106 realizations of noise with
variance σ2 = 10−6.

In fact, this coupling converts the Eq. (16) Kaneko GCM
into a filter that averages the different noise terms across
the lattice,

xi+1
n =

(
1− N − 1

N

)
f
[
xin
]

+
1/(N − 1)

N − 1

∑
m 6=n

f
[
xim
]

=
1

N

N∑
m=1

f
[
xim
]

=
〈
f
[
xim
]〉
, (17)

for all nodes n. In the presence of independent but identi-
cally distributed noise, the noise deviation in the coupled
map is N times smaller than that of an isolated map,
because the variance of the mean of N independent but
identically distributed random variables is 1/N times the
variance of one single random variable with the same dis-
tribution, σ2

c = σ2
s/N . This is a dramatic example of a

GCM as the dynamical realization of an averaging filter.
However, the phenomenon of coupling-reduced-noise is
more general than mere averaging and exists for a broad
range of coupling constants and coupling schemes.

For exact analysis and measuring of the effects of cou-
pled dynamics on noise deviation we have excluded the
noise terms that are added to the maps at the last it-
eration of the maps from our study. Coupled dynam-
ics diffuses and averages the noise terms that are added
from the previous steps, but it does not alter or change
the effects of current local noise terms. That is why we
exclude the current noise terms from our study in order
to measure the effects of the coupling. For example, if
we wanted to include the current noise terms, we would

add
(
σδin

)2
to Eq. (14) and

(
σδi
)2

to Eq. (15). Both
noise terms are independent, but identically distributed.
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Therefore, by including the last noise term, the ratio ob-
tained from the analysis will not be exactly 3; rather it
will depend on the last noise term. However, if the dy-
namics is unstable, meaning that the noise effects grow
under the dynamics, we can safely assume that the am-
plitude of additive noise at the last step is very small
compared to the evolved noise effects under the nonlin-
ear dynamics, and therefore we can neglect the last noise
term.

Linearization of the coupled dynamics is the basis for
our analytical results, and we have limited our study to a
first order approximation. In the Taylor expansion of the
coupled dynamics, the first order terms are the local noise
terms multiplied by the local eigenvalues. These different
local noise terms are summed together, and the result is
that the first order approximation of the coupled map
dynamics functions as an averaging filter. However, after
some iteration, the second order terms become larger and
larger. The local noise terms in the second order term of
the Taylor expansion of the coupled map dynamics are
squared, therefore there is no noise filtering for second
order noise effects.

IV. NUMERICAL ANALYSIS

Here we present two numerical examples of coupling
reducing noise involving nonlinear maps with finite or
infinite basins of attraction to test the limits of our the-
ory.

A. Quadratic Map

In this numerical example, we assume the famous
quadratic map

xi+1 = 1− λ
(
xi
)2
, (18)

which is chaotic on the interval xi ∈ [−1, 1] for bifurca-
tion parameter λ = 2. First we arrange three of these
maps in a lattice with a ring architecture, and couple
them based on the Eq. (1) coupling scheme. Then we
initialize all three nodes of the lattice to a common ini-
tial condition x0 = −0.9 and evolve the coupled map lat-
tice in the presence of local additive noise. To measure
the variance of the noise deviations, we stop the evo-
lution and measure how much the final state of a map
has deviated from noise free evolution, and then we re-
peat this process 106 times, each time with the same
initial condition. It doesnt matter from which map of
the CML we choose to measure the distribution of noise
deviations. All maps in the CML are symmetric and all
have the same distribution of noise deviations. We re-
peat the same process for a single map, starting from the
same initial condition, and measure the noise variance in
the single map as well. The ratio of these variances is the
Eq. (2) noise robustness R, as shown in Fig. 1 for one step

and two steps of the CML. The simulation results follow
the Section II theory, with peak noise robustness R = 3
and the optimal coupling parameter is ε = 2/3. In this
simulation, the variance of the additive Gaussian noise is
σ2 = 10−6. However, similar results can be achieved by
using other noise variances.

The reduction of noise deviation in a CML always oc-
curs regardless of initial condition. To further investigate
this occurrence we randomly initialize all three maps of
the lattice to a common point x0 ∈ [−1, 1], which is the
interval where the chaotic attractor exists. From this
random initial condition we evolve the coupled map lat-
tice for some number of iterations, and then stop the
evolution and measure how much the final state of a
node has deviated. The exact iteration number we used
here is i = 6, however similar results can be obtained
for other iteration numbers. Without loss of general-
ity, we set the additive noise variance in this example
to σ2 = 10−10. We repeat this process 106 times, each
time with a new random initial condition. The proba-
bility distribution of these noise deviations is calculated
and presented in Fig. 2. We also carry out the same
experiment on a single Eq. (18) map for λ = 2 . The
variance of noise deviations in the coupled map lattice
σ2
c = 1.44 × 10−6, whereas the variance of noise devia-

tions in the single map σ2
s = 4.39 × 10−6, so the noise

robustness R = σ2
s/σ

2
c = 3.04, which is close to the R = 3

predicted by the theory.

0.002
0.000

0

0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

CML
Single Map

FIG. 2: The probability distributions P of noise deviations δx
for a single isolated map (red) and for a CML of size N = 3
(blue). The smaller spread of the CML distribution reflects
the coupled dynamics suppressing the noise.

To investigate the effect of lattice size N on noise ro-
bustness R, we study a GCM lattice of N Eq. (18)
quadratic maps with bifurcation parameter λ = 2 and
coupling parameter ε = (N − 1)/N . We initialize all N
maps of the GCM to a randomly chosen initial condi-
tion and then let the GCM iterate for a specific number
of iterations and measure the deviation from noise free
evolution. The additive noise variance in this example is
σ2 = 10−6, and the iteration number is i = 6, but similar
results can be obtained using other iteration numbers and
noise variances. We repeat this process 106 times, each
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time with a new random initial condition. At the end we
measure the variances of noise deviations in the GCM
for each lattice size, and calculate the ratios against the
variance of noise deviations in a single isolated quadratic
map. The results are depicted in Fig. 3. We observe that
in a GCM lattice of size N , noise robustness R = N ,
where N = 3, 4, . . . , 15. While this is for the optimal
coupling parameter, Fig. 4 shows the noise robustness R
of the GCM lattices of sizes N = 3 and N = 10 for differ-
ent coupling parameters when the GCM lattice iterates
just once.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 162
3
4
5
6
7
8
9
10
11
12
13
14
15
16

N

R

theory
simulation

FIG. 3: Six-step noise robustness R versus lattice size N of a
GCM lattice of optimally coupled chaotic quadratic maps.
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R

FIG. 4: One-step noise robustness R versus coupling param-
eter ε for lattice sizes of N = 3 and N = 10.

We can also examine the effects of coupling by ob-
serving the noisy attractor of the coupled and uncoupled
maps. For illustrative purposes, we consider a simple ex-
ample. Figure 5 shows delay coordinate embeddings of
the first 5 iterates of the Eq. (18) quadratic map when
λ = 2, where the dynamics is chaotic, from the initial
condition x0 = −0.8. Figure 5(a) shows the iterates of
an isolated single map (corresponding to ε = 0) when
noise variance σ2 = 0. Figure 5(b) shows 105 different
realizations of the iterates of the isolated single map (cor-

responding to ε = 0) when the noise variance σ2 = 10−6.
Figure 5(c-e) shows the iterates of a map in a GCM of
size N = 5 when the noise variance σ2 = 10−6 for cou-
pling parameters ε = 1/5, 4/5, 4.8/5. We observe that
by coupling maps together the “fuzziness” or noise con-
tent in the orbit is reduced. Furthermore, the maximum
amount of noise reduction occurs when ε = 4/5, which
is the optimal coupling parameter based on the theory
we developed in Section III. For better comparison of
the effects of the coupling value, Fig. 5(f-h) zooms in
on the corresponding last iterate x4 of Fig. 5(c-e). The
non-optimal coupling parameters produce thicker, noisier
iterates.

So far we have demonstrated that for a GCM of size N ,
the coupled dynamics can reduces the variance of noise
deviation to 1/N of variance of noise deviation in a single
isolated map, producing a noise robustness of R = N .
However there are exceptions to this rule. The major
exception is when the dynamics is chaotic, and the evo-
lution time is long enough so that the noise deviation
becomes too large. For example, assume the case that
the basin of attraction of a chaotic map is limited to one
small portion of the state space, and beyond this por-
tion the map diverges to infinity. In finite time, the noise
can evolve to be large enough to push the orbits out of
this basin and as a results these noisy orbits will diverge.
The resulting ratio of variances of noise deviations could
then be much different. We study this case here, where
the dynamical system of Eq. (18) quadratic map has a
small basin of attraction for its chaotic attractor, [−1, 1],
but beyond this interval the map diverges to infinity. (In
Section IV B, another dynamical system will be studied
where the entire state space is the basin of attraction for
the chaotic attractor, and there another exception to our
rule will be studied.) When a noisy orbit leaves this basin
of attraction, it diverges from the chaotic attractor, usu-
ally at an exponential rate. As a result, one can argue
that the noisy orbits of such systems have two phases:
first, when they are still inside the basin of attraction of
the chaotic attractor; second, when they have eventually
pushed out of the basin of attraction because of noise.

For example, consider Eq. (18) quadratic map with
initial condition x0 = 0.7 and variance of the additive
noise σ2 = 10−6. We calculate the noise robustness R in
a CML of size N = 3 for different iteration numbers i.
The results are depicted in Fig. 6. We observe that for
the first few iterations, the ratio is 3 as we expected. But
from iteration 7 onwards the iterates of the single map
start to fall beyond the basin of attraction and escape,
whereas the iterates of the CML still remain on the at-
tractor, basically because the coupled dynamics averages
the local noise terms and reduces its effects. The ratio of
variances of the noise deviations exponentially increases.
However upon further iteration the noise effects in CML
will become large enough to push the orbits beyond the
basin of attraction as well. Numerical simulation, with
finite precision, doesnt return any valid number for the
ratio of variances for these cases because the variances
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FIG. 5: Delay coordinate embeddings of the first 5 steps of 105 realizations of a GCM lattice of size N = 5 with the Eq. (18)
quadratic map for different coupling parameters ε. The optimal coupling of ε = 4/5 produces the smallest final spread.

are too large.

The observed limitations discussed above are not due
to the coupled dynamics but simply due to the nature of
the averaging filter and chaotic dynamics. Even with the
application of a conventional averaging filter to average
the dynamical states of a set of independent maps (at
each iteration) and then using this resulting value to ini-
tialize the maps to perform a new iteration, there is still
noise remaining in the averaged states. This noise evolves
exponentially over time, and eventually leads the iterates
of the map out of the basin of attraction of the chaotic
attractors. Alternately, exponentially growing noise can

cover the entire chaotic attractor, as we will demonstrate
for the coupled dynamics based realization of the aver-
aging filter in Section IV B.

If the dynamics is not chaotic, the noise effect doesnt
grow exponentially over time to rapidly push the orbit
out of the basin of the attractor. As a result the ex-
pected noise robustness can be obtained for higher iter-
ates of the CML as well. To examine this case, we have
studied a CML of size N = 3, when the local dynamics is
governed by the Eq. (18) quadratic map but with bifur-
cation parameter λ = 1.2 where the dynamics is periodic.
In Fig. 7 shows the noise robustness R for different itera-



7

0 1 2 3 4 5 6 7 8 90

3

6

9

12

15

i

R

FIG. 6: Noise robustness R versus iteration number i for
N = 3 coupled chaotic quadratic maps. By iteration i = 8,
the single noisy quadratic map has escaped its initial basin of
attraction and has begun diverging.

0 5 10 15 20 252.5

3

3.5

i

R

FIG. 7: Noise robustness R versus iteration number i for
N = 3 coupled periodic quadratic maps.

tion numbers i when the variance of the additive noise is
σ2 = 10−6. The noise robustness R = 3 even for higher
iteration numbers of the CML.

B. Sine Map

To demonstrate that noise reduction in CMLs is not
limited to a specific type of local dynamics, we next study
the sine map

xi+1 = r sin
[
πxi
]
, (19)

which is chaotic on the interval xi ∈ [0, 1] for bifurca-
tion parameter r = 1. The key difference between the
Eq. 18 quadratic map and the Eq. 19 sine map is that
the quadratic map has a finite basin of attraction and
the sine map has an infinite basin of attraction, and this
affects the evolution of the noise robustness R.

The sine map exhibits different types of dynamics
depending on the bifurcation parameter r. Figure 8
presents the corresponding bifurcation diagram. To
demonstrate that the reported phenomenon of noise re-
duction in CMLs is not just restricted to a specific regime

of dynamics, but rather generic, we statistically compute
the noise robustness R of coupled maps for different val-
ues of bifurcation parameter r. That result is presented
in Fig. 8. We observe that no matter what the regime of
the local dynamics, the noise robustness R ≈ 3. In this
simulation, we randomly initialize all N = 3 nodes of the
lattice to a common point x0 ∈ [0, 1]. From this random
initial condition we evolve the coupled map lattice, and
after i = 5 iterations we stop the evolution and measure
how much the final state of a map of the CML has de-
viated from noise free evolution. We repeat this process
106 times, each time with a new random initial condi-
tion, and calculate the variance of these noise deviations.
Then we repeat the same procedure again, but this time
with a single isolated map, and compute the variances of
the noise deviations. The ratio is the noise robustness R.

0

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2.9

2.95

3

3.05

3.1

r

R

FIG. 8: Five-step noise robustness R versus bifurcation pa-
rameter r for N = 3 coupled sine maps (bottom); sine map
bifurcation diagram (top).

For bifurcation parameter r = 1, the Eq. (19) sine map
has a chaotic attractor whose basin of attraction is the
entire state space. Therefore there is no escaping orbit
from the chaotic attractor and the condition depicted
in Fig. 6 doesnt happen. But a new exception to the
Section III theory happens in this chaotic system. In
a chaotic system, in finite time, noise effects will spread
over the entire chaotic attractor. This condition happens
earlier to a single map and later to the CML. Figure 9
depicts the noise robustness R for a CML of size N = 3.
Initially, noise robustness R = 3, as we expect. But after
about i = 9 iterations, the noise in a single map has
already spread over the entire attractor, and therefore its
variance doesnt increase anymore. But the noise in the
CML has not covered the attractor yet and its variance
is still growing with each iteration. As a result the ratio
of variances decreases. It takes i = 13 iterations for noise
in CML to cover the entire attractor. Now the variances
of noise effects for both single map and the CML are
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exactly the same: the size of the attractor. Therefore,
from iteration i = 13 and thereafter the noise robustness
is R = 1 and remains unity thereafter.

When the dynamics is not chaotic, the noise doesnt
grow exponentially over time to rapidly cover the entire
attractor (Fig. 9) or to push the orbit out of the basin of
the attractor (Fig. 6). Therefore we can iterate the single
map and the CML longer and still get the expected noise
robustness R. To investigate this case, we have studied
a CML of size N = 3 the Eq. (19) sine map at bifurca-
tion parameter r = 0.8, where the dynamics is periodic.
Figure 10 shows the noise robustness R for different iter-
ation numbers i when the variance of the additive noise is
10−6. We observe that the noise robustness R ≈ 3 even
for large iteration number of the CML.
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FIG. 9: Noise robustness R versus iteration number i for
N = 3 coupled sine maps. By iteration i = 13, noise has
diffused over the entire attractor.
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FIG. 10: Noise robustness R versus iteration number i for
N = 3 coupled periodic sine maps. The robustness is inde-
pendent of the iteration number.

C. Local Coupling Noise Diffusion

Global coupling is not necessary to reduce the noise
effects in a CML. Noise can diffuse across the lattice

through local coupling as well, and eventually the effects
of local noise from different nodes attenuate and reduce
each other and the coupled dynamics can still function
as an averaging filter. The noise evolution and noise ro-
bustness of a CML of size N = 5 with local coupling is
studied in this section. Figure 11 depicts the architec-
ture of the CML with local connectivity. The coupling
scheme is

xi+1
n =

1

3
f
[
xin
]

+
1

3

(
f
[
xin−1

]
+ f

[
xin+1

])
. (20)

!

FIG. 11: Schematic three-node CML with local and global
connectivity (left) and five-node CML with local, nearest-
neighbor coupling (right). Each node (circle) is coupled (lines)
to its two nearest neighbors.

As a first example, we let the Eq. 18 quadratic map
with bifurcation parameter λ = 2 and additive noise vari-
ance σ2 = 10−6 determine the local dynamics. Figure 12
depicts Monte Carlo simulation results for noise robust-
ness. At the first iteration, we observe that the noise
robustness is three, which is expected. The coupling is
local, and each node is connected to its left and right
neighbors. Therefore the noise effects are averaged over
three nodes. But as the CML iterates, the noise effects
diffuse across the lattice, and eventually the noise robust-
ness peaks at R = 5, which is the size of the lattice. This
means that global coupling is not necessary for global dif-
fusion of noise, rather the noise can diffuse though local
coupling, and eventually local noise effects from differ-
ent nodes average each others effects and the result is a
system with less noise content.

After about i = 8 iterations the noise starts to cover
the entire attractor and then pushes the orbits beyond
the basin of attraction. This is the same phenomenon
that we observed and reported for GCM lattice in Sec-
tion IV A.

As a second example, we let the Eq. 19 sine map with
bifurcation parameter r = 1 and additive noise variance
σ2 = 10−6 determine the local dynamics. Figure 13 de-
picts Monte Carlo simulation results for noise robustness.

Similar to Fig. 12, at the first iteration, we observe that
the noise robustness is R = 3. The coupling is local, and
therefore the noise effects are averaged over three nodes.
But as the CML iterates, the noise effects diffuse across
the lattice through the local coupling, and as a result,
eventually the noise robustness peaks at R = 5, which
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is the size of the lattice. This again implies that local
coupling is enough for diffusion of noise and building a
more robust to noise system.

Similar to the noise robustness of a CML of size N = 3
shown in Fig. 9, at iteration i = 8 the noise robustness
R decreases and eventually converges to one. The reason
behind this observation in a locally coupled map lattice
is exactly the same as discussed in Section IV B. The
noise grows and eventually covers the entire attractor in
both single map and the coupled map. Therefore the
ratio of noise deviations, which is the noise robustness
R, becomes unity.
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FIG. 12: Noise robustness R versus iteration number i for
N = 5 nearest-neighbor coupled quadratic maps. By iteration
i = 5, noise robustness peaks at R = 5, even though the
coupling averages only the nearest neighbors.
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FIG. 13: Noise robustness R versus iteration number i for
N = 5 nearest-neighbor coupled sine maps. By iteration i =
5, noise robustness peaks at R = 5, even though the coupling
averages only the nearest neighbors. By iteration i = 14,
noise has diffused over the entire attractor.

V. CONCLUSIONS

In this paper, we have demonstrated how coupling non-
linear dynamical systems can reduce the effects of noise.
For Kaneko three-node coupled map lattices, we showed
in theory and in simulations how to tune the coupling
to optimize the noise reduction and create a dynamics-
based averaging filter. For larger lattices, we generalized
the noise reduction to both global and nearest-neighbor
coupling. We also explored factors that modulate the
noise reduction, including the periodicity or chaoticity of
the underlying maps, the sizes of their basins of attrac-
tion, and their transient and steady states.

Coupled dynamics can realize an averaging filter that
can be used in dynamics-based applications such as chaos
computing, chaos communications, and chaos based op-
timizers to design more noise tolerant versions of these
applications. The coupling obviates the need for a ded-
icated averager to reduce the noise content. Instead,
the inherent coupled dynamics achieves the same ef-
fect. In chaos computing applications, the noise reduc-
tion thereby becomes part of the chaotic computing ar-
chitecture itself rather than an addition to it.

For computational speed and theoretical simplicity,
this paper focussed on coupled map lattices, but the phe-
nomenon of coupling reducing noise is more general and
applies to many other kinds of systems. Having the abil-
ity to exploit coupled dynamics for noise reduction offers
the opportunity to develop and design dynamical sys-
tems that can perform dynamics-based application while
reducing unwanted noise through the dynamics itself.
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