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Abstract. The paradox of enrichment was observed by M. Rosenzweig [14] in

a class of predator-prey models. Two of the parameters in the models are cru-

cial for the paradox. These two parameters are the prey’s carrying capacity and
prey’s half-saturation for predation. Intuitively, increasing the carrying capac-

ity due to enrichment of the prey’s environment should lead to a more stable

predator-prey system. Analytically, it turns out that increasing the carrying
capacity always leads to an unstable predator-prey system that is susceptible

to extinction from environmental random perturbations. This is the so-called
paradox of enrichment. Our resolution here rests upon a closer investigation

on a dimensionless number H formed from the carrying capacity and the prey’s

half-saturation. By recasting the models into dimensionless forms, the models
are in fact governed by a few dimensionless numbers including H. The effects

of the two parameters: carrying capacity and half-saturation are incorporated

into the number H. In fact, increasing the carrying capacity is equivalent (i.e.
has the same effect on H) to decreasing the half-saturation which implies more

aggressive predation. Since there is no paradox between more aggressive pre-

dation and instability of the predator-prey system, the paradox of enrichment
is resolved.

The so-called instability of the predator-prey system is characterized by

the existence of a stable limit cycle in the phase plane, which gets closer
and closer to the predator axis and prey axis. Due to random environmental

perturbations, this can lead to extinction. We also further explore spatially

dependent models for which the phase space is infinite dimensional. The spa-
tially independent limit cycle which is generated by a Hopf bifurcation from

an unstable steady state, is linearly stable in the infinite dimensional phase
space. Numerical simulations indicate that the basin of attraction of the limit

cycle is riddled. This shows that spatial perturbations can sometimes (neither

always nor never) remove the paradox of enrichment near the limit cycle!

1. Introduction

The paradox of enrichment was first observed by M. Rosenzweig [14] in a class
of mathematical predator-prey models. Since then, there have been a lot of studies
on the subject [7] [1] [2] [3] [4] [5] [6] [8] [9] [10] [11] [12] [13] [15] [16] [17].
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These studies cover a wide spectrum of topics including invulnerable prey, unpalat-
able prey, prey toxicity, induced defense, spatial inhomogeneity etc.. The paradox
roughly says that in a predator-prey system, increasing the nutrition to the prey
may lead to an extinction of both the prey and the predator. It is possible that the
paradox is purely an artifact of the mathematical models, while in reality increas-
ing the nutrition never leads to extinction. Our studies here totally focus upon the
mathematical models themselves. We are not exploring the experimental aspect
of the subject. As far as the original mathematical models [14] are concerned, we
notice that the paradox can be resolved once the models are put into dimensionless
forms. In dimensionless forms, the essential functions of control parameters can be
revealed.

2. The Predator-Prey Model

The predator-prey model is as follows (a spatio-temporal extension of one of
those in [14]),

∂U

∂T
− C1

∂V

∂X

∂U

∂X
= D

∂2U

∂X2
+ αU

(
1− U

b

)
− γ U

U + h
V,(2.1)

∂V

∂T
+ C2

∂U

∂X

∂V

∂X
= D

∂2V

∂X2
+

(
κγ

U

U + h
− µ

)
V,(2.2)

where U is the prey density, V is the predator density, T is the time coordinate, X
is the one-dimensional space coordinate, C1 and C2 are the coefficients of migration
due to predation, D is the spreading (diffusion) coefficient of the species (chosen
to be the same for both predator and prey), α is the maximal per capita birth
rate of the prey, b is the carrying capacity of the prey from the nutrients, h is
the half-saturation prey density for predation, γ is the coefficient of the intensity
of predation, κ is the coefficient of food utilization of the predator, and µ is the
mortality rate of the predator. The last two terms in equation (2.1), i.e. the prey
birth term and the predation term, can take many different specific forms, but have
the same characteristics as (2.1), which leads to the paradox of enrichment, see [14].

Equations (2.1)-(2.2) can be rewritten in the following dimensionless form:

∂u

∂t
− c1

∂v

∂x

∂u

∂x
=
∂2u

∂x2
+ u(1− u)− u

u+H
v,(2.3)

∂v

∂t
+ c2

∂u

∂x

∂v

∂x
=
∂2v

∂x2
+ k

(
u

u+H
− r
)
v,(2.4)

where u = U/b, v = V γ/(αb), t = αT , x = X
√
α/D, and the dimensionless

numbers are given by

(2.5) H =
h

b
, r =

µ

κγ
, k =

κγ

α
, c1 = C1

αb

γD
, c2 = C2

b

D
.

We name H: the capacity-predation number, and r: the mortality-food number.
These two dimensionless numbers are crucial in our resolution of the paradox of
enrichment. The spatial domain is chosen to be finite x ∈ [0, L]. Three types of
boundary conditions can be posed,

(1) Neumann boundary condition,

∂u

∂x
|x=0,L =

∂v

∂x
|x=0,L = 0;
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(2) periodic boundary condition, u and v are periodic in x with period L;
(3) Dirichlet boundary condition,

u|x=0,L = v|x=0,L = 0.

In the Dirichlet boundary condition case, the spatially uniform dynamics [∂x = 0
in (2.3)-(2.4)] is excluded. Thus the orginal paradox of enrichment for the uniform
dynamics posed by M. Rosenzweig [14] is also excluded.

3. Formulation of the Paradox of Enrichment

The paradox of enrichment was originally formulated by M. Rosenzweig [14]
for the spatially uniform dynamics [∂x = 0 in (2.1)-(2.2)]:

dU

dT
= αU

(
1− U

b

)
− γ U

U + h
V,(3.1)

dV

dT
=

(
κγ

U

U + h
− µ

)
V.(3.2)

The paradox focuses upon the linear stability of the steady state given by

κγ
U

U + h
− µ = 0, α

(
1− U

b

)
− γ 1

U + h
V = 0.

It turns out that when other parameters are fixed, increasing b leads to the loss
of stability of this steady state, in which case, a limit cycle attractor around the
steady state is generated. As b increases, the limit cycle gets closer and closer to the
V -axis. That is, along the limit cycle attractor, the prey population U decreases
to a very small value. Under the ecological random perturbations, U can reach
0, i.e. extinction of the prey. With the extinction of the prey, the predator will
become extinct soon. On the other hand, increasing b means increasing the carrying
capacity of the prey, which can be implemented by increasing the prey’s nutrients,
i.e. enrichment of the prey’s environment. Intuitively, increasing b should enlarge
the prey population and make it more robust from extinction. This is the paradox
of enrichment.

4. The Resolution of the Paradox of Enrichment

In order to resolve the paradox of enrichment, it is fundamental to rewrite the
system (3.1)-(3.2) in the dimensionless form [∂x = 0 in (2.3)-(2.4)]:

du

dt
= u(1− u)− u

u+H
v,(4.1)

dv

dt
= k

(
u

u+H
− r
)
v,(4.2)

and the key to the resolution is a complete understanding of the dimensionless
capacity-predation number H.

First we need to understand the dynamics of (4.1)-(4.2) in details. For all
parameter values, there are two trivial steady states:

(I). u∗ = 0, v∗ = 0; (II). u∗ = 1, v∗ = 0.

The steady state (I) is a saddle for all parameter values. The steady state (II) is
a stable node when H > 1

r − 1, a saddle when 0 < H < 1
r − 1 in which case, a
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nontrivial steady state is born. That is, when 0 < H < 1
r − 1, there is a nontrivial

steady state which is our main focus:

(4.3) u∗ =
r

1− r
H, v∗ = (1− u∗)(u∗ +H);

which is the intersection point of the parabola and the vertical line (Figure 1):

(P ). v = −
[
u− 1

2
(1−H)

]2
+

[
1

2
(1 +H)

]2
, (V ). u =

r

1− r
H.

On the parabola (P), dudt = 0, and on the vertical line (V), dvdt = 0. Linearizing the

Figure 1. The phase plane of the spatially uniform system (4.1)-(4.2).

system (4.1)-(4.2) at the steady state (4.3), we get

du

dt
=

u∗
u∗ +H

[(1− 2u∗ −H)u− v] ,

dv

dt
=
kH(1− u∗)
u∗ +H

u.
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Figure 2. The predation graphs.

The eigenvalues of this linear system is given by

(4.4) λ =
1

2
(1− 2u∗ −H)±

√[
1

2
(1− 2u∗ −H)

]2
− kH 1− u∗

u∗
.

The sign of the real part of λ is decided by the sign of the quantity 1 − 2u∗ −H.
Setting 1− 2u∗ −H = 0, one gets

u∗ =
1

2
(1−H),

which is on the symmetry axis of the parabola (P). This leads to the following fact
first observed by M. Rosenzweig [14]:

• If u∗ in (4.3) is to the left of the symmetry axis of the parabola (P), then
the steady state (4.3) is linearly unstable. If u∗ in (4.3) is to the right
of the symmetry axis of the parabola (P), then the steady state (4.3)is
linearly stable. If u∗ in (4.3) is on the symmetry axis of the parabola (P),
then the eigenvalues λ in (4.4) are purely imaginary.
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Using this fact, we derive the following linear instability criterion of the steady
state (4.3):

(4.5) 0 < H <
2

1 + r
− 1.

(An interesting note is that the unstable zone (4.5) is symmetric with respect to
H = r, i.e. it is the same with 0 < r < 2

1+H − 1.) Based upon this instability
criterion, we offer the following resolution of the paradox of enrichment.

• The Resolution: Unlike the original form of the model (3.1)-(3.2), the
dimensionless form of the model (4.1)-(4.2) is governed by 3 dimensionless
numbers H, r and k (2.5); while the instability of the steady state (4.3)
is governed by 2 of them, H and r. H is a ratio of the half-saturation
h and carrying capacity b, while r is independent of h and b, and is a
ratio of predator mortality rate µ and coefficient of growth from food κγ.
The instability criterion (4.5) says that for a fixed r, r ∈ (0, 1); when H is
smaller than 2

1+r −1, the steady state (4.3) is linearly unstable (leading to

possible extinction). The model displays a very special feature: Increasing
the carrying capacity b (for fixed half-saturation h) and decreasing the
half-saturation h (for fixed carrying capacity b) have the same effect on
the capacity-predation number H, that is, H decreases. Decreasing the
half-saturation h implies more aggressive predation (especially when the
prey population U is small), see Figure 2. Notice that

As U → 0+,
U

U + h
→ 1;

and
d

dU

U

U + h

∣∣∣∣
U=0

= 1/h.

Since there is no paradox between more aggressive predation (especially
when the prey population U is small) and extinction of prey led by the
instability of the steady state (4.3), the paradox of enrichment now re-
duces to a paradox between more aggressive predation (decreasing the
half-saturation h) and enrichment (increasing the carrying capacity b).
As mentioned above, the special feature of the model (4.1)-(4.2) is that
more aggressive predation (decreasing h) and enrichment (increasing b)
is not a paradox, and results in the same effect on the governing dimen-
sionless number H. This offers a resolution to the so-called paradox of
enrichment.

5. More General Model

From last section, we see that the predation term in (4.1)-(4.2) is mostly re-
sponsible for generating the so-called paradox of enrichment. In this section, we will
explore more general form of the predation term. Thus we will study the following
more general model,

du

dt
= u(1− u)− f(bu)v,(5.1)

dv

dt
= k (f(bu)− r) v,(5.2)
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where f is a monotonically increasing non-negative function. For the model (4.1)-
(4.2), f(U) = U

U+h . The nontrivial steady state for (5.1)-(5.2) is given by

f(bu∗) = r, v∗ =
u∗(1− u∗)
f(bu∗)

=
1

r
u∗(1− u∗),

where 0 < u∗ < 1. Linearizing (5.1)-(5.2) at this steady state, we get

du

dt
=

[
1− 2u∗ −

b

r
f ′(bu∗)u∗(1− u∗)

]
u− f(bu∗)v,

dv

dt
= k

b

r
f ′(bu∗)u∗(1− u∗)u.

The eigenvalues of this linear system is given by

λ =
1

2

[
1− 2u∗ −

b

r
f ′(bu∗)u∗(1− u∗)

]

+

√[
1

2

[
1− 2u∗ −

b

r
f ′(bu∗)u∗(1− u∗)

]]2
− kbf ′(bu∗)u∗(1− u∗).(5.3)

The sign of the real part of λ is decided by the sign of the quantity

1

2

[
1− 2u∗ −

b

r
f ′(bu∗)u∗(1− u∗)

]
.

Besides f(U) = U
U+h , another natural model is f(U) = U . Notice that

U

U + h

∣∣∣∣
U=h

= 1/2, U |U=h = h;

thus, for small h, the model f(U) = U
U+h represents a much more aggressive pre-

dation than f(U) = U when the prey population U is small. As U → +∞,

U

U + h
→ 1, U → +∞.

That is, the model f(U) = U represents unlimited predation ability for large prey
population U . In this sense, f(U) = U

U+h serves as a better model. On the other
hand, the prey population is finite with capacity b. With a proper choice of the
coefficient of predation γ (3.1), f(U) = U still represents a limited predation ability
for prey population U near its capacity. When f(U) = U , the eigenvalue (5.3)
becomes

λ = − r

2b
±
√( r

2b

)2
− kr

(
1− r

b

)
,

where r < b is required. Thus for the model f(U) = U , the nontrivial steady state
is always stable.

6. The Limit Cycle in the Phase Plane

Returning to the spatially uniform system (4.1)-(4.2), we can prove the follow-
ing ω-limit set theorem.

Theorem 6.1. Under the dynamics of (4.1)-(4.2), when 0 < H < 2
1+r − 1

(0 < r < 1), the ω-limit set of every point in the first open quadrant of the phase
plane except the unstable steady state (4.3), is a periodic orbit (not necessarily the
same periodic orbit).
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Figure 3. The region setup for the proof of the existence of a
limit cycle attractor.

Proof. First we set up the compact region R as in Figure 3. P1 is the steady
state (4.3) which is unstable since 0 < H < 2

1+r − 1. S is a small closed curve

around P1, on which the vector field given by the right hand side of (4.1)-(4.2) is
transversal to S and points outside of S since both eigenvalues (4.4) of the steady
state (4.3) have positive real parts. P2 is the unstable steady state (0, 0). P3 is
the unstable steady state (1, 0). AB is a vertical line for which u > 1, such that
the vector field is transversal to AB and points leftward by equation (4.1). The
vertical coordinate of B is chosen to be greater than 1

4r , so that on the orbit BC,
the right hand side of (4.1) is negative, where the horizontal coordinate of C is
the u∗ given in (4.3), i.e. C and P1 have the same horizontal coordinate. Notice
that u

u+H is strictly monotonically increasing in u. The right hand side of (4.2) at

C is zero. The right hand side of (4.2) on the orbit BC (except at the point C)
is positive. CD is a horizontal segment on which the v coordinate is a constant,
and the right hand side of (4.2) is negative (except at the point C). The region R
is defined as the region outside S and inside the loop ABCDP2P3A. The region
R is a positively invariant region (i.e. invariant as time increases). By the well-
known Poincaré-Bendixson theorem, the ω-limit set of any point in the region R is
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Figure 4. The setup for the proof that the limit cycle loops
around the steady state.

a periodic orbit. Since the vertical line AB can be moved to the right arbitrarily,
the point B can be moved up arbitrarily, and the closed curve S can be arbitrarily
small, the claim of the theorem is proved. �

Remark 6.2. As shown later, it can be verified numerically that all the ω-limit
sets of points in the first open quadrant of the phase plane except the unstable
steady state (4.3) is actually the same stable limit cycle. Proving such a claim is
not easy.

Theorem 6.3. If all the ω-limit sets of points in the first open quadrant of the
phase plane except the unstable steady state (4.3) is actually the same stable limit
cycle S∗, then S∗ loops around the unstable steady state (4.3).

Proof. Let W be a small tubular neighborhood of the limit cycle S∗, which is
the local stable manifold of S∗, see Figure 4. Let S1 be a closed curve in the region
R and near S (Figure 3), that loops around the steady state P1 once [in fact, S1 can
be just S]. For any q ∈ S1, there is a segment neighborhood of q in S1, ξq ⊂ S1 and
a time Tq, such that FTq (ξq) ⊂W where F t is the evolution operator of the system
(4.1)-(4.2). All such segments form an open cover of S1. By the compactness of S1,
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Figure 5. The limit cycle attractor in the first open quadrant of
the phase plane, where r = 1/2, H = 0.3, k = 1, and the two
initial conditions are (u = 1.01, v = 0.02) and (u = 0.30, v = 0.42).

there is a finite cover {ξqn}n=1,··· ,N . Let

T = max
n=1,··· ,N

{Tqn},

then FT (S1) ⊂ W . Since the region R is positively invariant, FT (S1) still loops
around the steady state P1, then the tubular neighborhood W also loops around the
steady state P1, thus the limit cycle S∗ also loops around the steady state P1. �

Numerically one can verifies that the attractor in the first open quadrant of the
phase plane is a limit cycle as shown in Figure 5. As H is decreased, the limit cycle
is quickly getting closer and closer to the v-axis (and u-axis) as shown in Figure 6.
The time series graph of the limit cycle in Figure 6(b) is shown in Figure 7. One
can see clearly that with small random environmental perturbations, the system
will become extinct!
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(a) H = 0.2 (b) H = 0.1

Figure 6. The deformation of the limit cycle as H is decreased,
where r = 1/2 and k = 1.

7. Spatial Dependence

7.1. The Limit Cycle Is Linearly Stable. Let S∗ be the limit cycle on the
plane,

S∗ : u = u∗(t), v = v∗(t).

The period of S∗ is T∗. Linearizing (2.3)-(2.4) at S∗, we get

∂u

∂t
=
∂2u

∂x2
+

[
1− 2u∗(t)− Hv∗(t)

(u∗(t) +H)2

]
u− u∗(t)

u∗(t) +H
v,(7.1)

∂v

∂t
=
∂2v

∂x2
+

kHv∗(t)

(u∗(t) +H)2
u+ k

[
u∗(t)

u∗(t) +H
− r
]
v.(7.2)

Using the Fourier mode

u = uξe
iξx + c.c. , v = vξe

iξx + c.c. ,

the linear system (7.1)-(7.2) is transformed into

∂uξ
∂t

= −ξ2uξ +

[
1− 2u∗(t)− Hv∗(t)

(u∗(t) +H)2

]
uξ −

u∗(t)

u∗(t) +H
vξ,

∂vξ
∂t

= −ξ2vξ +
kHv∗(t)

(u∗(t) +H)2
uξ + k

[
u∗(t)

u∗(t) +H
− r
]
vξ.

A further change of variables

uξ = e−ξ
2tûξ, vξ = e−ξ

2tv̂ξ,

transforms this linear system into

∂ûξ
∂t

=

[
1− 2u∗(t)− Hv∗(t)

(u∗(t) +H)2

]
ûξ −

u∗(t)

u∗(t) +H
v̂ξ,

∂v̂ξ
∂t

=
kHv∗(t)

(u∗(t) +H)2
ûξ + k

[
u∗(t)

u∗(t) +H
− r
]
v̂ξ;
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Figure 7. The time series graph of the limit cycle in Figure 6(b),
where H = 0.1, r = 1/2, and k = 1.

which is a stable linear system since the limit cycle is linearly stable in the plane.
Since the plane is a subspace of the infinite dimensional phase space under Neumann
or periodic boundary condition, the limit cycle is linearly stable in such an infinite
dimensional phase space.

7.2. The Riddled Basin of Attraction of the Limit Cycle. Since it is
linearly stable, the limit cycle on the plane is an attractor in the entire infinite
dimensional phase space. Numerical simulations are conducted on the system (2.3)-
(2.4) under the periodic boundary condition with spatial period L = 300, where
c1 = 0, c2 = 0, r = 0.8, H = 0.1, and k = 1.0. The initial conditions of the
numerical simulations are given by

u(x) = 0.4018, v(x) = 0.3754 + ε cos(πx/L),

for different values of ε. When ε = 0, the initial condition lies on the limit cycle on
the plane. Figure 8 illustrates the riddled nature of the basin of attraction of the
limit cycle on the plane. This riddled nature indicates that spatial perturbations
sometimes (but neither always nor never) can remove the paradox of enrichment
near the limit cycle on the plane.
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Figure 8. An illustration of the riddled basin of attraction of the
limit cycle on the plane, where the uniform, traveling wave, and
chaos asymptotic states are shown in Figures 9, 10, 11.

7.3. Other Bifurcations? Linearizing (2.3)-(2.4) at the steady state (4.3),
we get

∂u

∂t
=
∂2u

∂x2
+ r [(1− 2u∗ −H)u− v] ,(7.3)

∂v

∂t
=
∂2v

∂x2
+ rkH

1− u∗
u∗

u.(7.4)

Using the Fourier mode

u = uξe
iξx + c.c. , v = vξe

iξx + c.c. ,

the linear system (7.3)-(7.4) is transformed into

∂uξ
∂t

= −ξ2uξ + r [(1− 2u∗ −H)uξ − vξ] ,

∂v

∂t
= −ξ2vξ + rkH

1− u∗
u∗

uξ.

The eigenvalues λ of this system satisfy

(7.5) λ2+
[
2ξ2 − r(1− 2u∗ −H)

]
λ+ξ2

[
ξ2 − r(1− 2u∗ −H)

]
+r2kH

1− u∗
u∗

= 0.

A possible Hopf bifurcation often occurs when the coefficient of the λ term is zero,
i.e.

2ξ2 − r(1− 2u∗ −H) = 0;

while a possible Turing bifurcation often occurs when the constant term is zero, i.e.

ξ2
[
ξ2 − r(1− 2u∗ −H)

]
+ r2kH

1− u∗
u∗

= 0.
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Figure 9. The uniform asymptotic state referred to in Figure 8.

Notice also that when the the coefficient of the λ term is zero, the following part
(of the constant term)

ξ2
[
ξ2 − r(1− 2u∗ −H)

]
is minimal in ξ2.

The minimum of [2ξ2 − r(1 − 2u∗ − H)] in ξ2 occurs at ξ2 = 0, where the
minimal value is −r(1− 2u∗ −H). A Hopf bifurcation starts to occur at

(7.6) 1− 2u∗ −H = 0, i.e. H =
2

1 + r
− 1;

as shown before in (4.5). At this Hopf bifurcation,

λ = ±ir
√
kH

1− u∗
u∗

.

The steady state (4.3) bifurcates into the limit cycle (Figure 5) on the plane.
When 1 − 2u∗ −H < 0 (i.e. H > 2

1+r − 1), by (7.5), the steady state (4.3) is
linearly stable in the infinite dimensional phase space. Therefore, further bifurca-
tion may only occur when 1−2u∗−H > 0 (i.e. H < 2

1+r −1). When H < 2
1+r −1,
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Figure 10. The traveling wave asymptotic state referred to in
Figure 8.

further Hopf bifurcations may occur at

(7.7) ξ2 =
1

2
r(1− 2u∗ −H) =

1

2
r

(
1− 1 + r

1− r
H

)
,

when

k >
1

4

r

1− r − rH

[
1− 1 + r

1− r
H

]2
.

But numerically we did not observe such a bifurcation; the reason seems to be that
the limit cycle in the plane is linearly stable for all these parameter values.

As mentioned above, the minimum of ξ2[ξ2 − r(1− 2u∗ −H)] in ξ2 also occurs
at (7.7), where the minimal value is

−1

4
r2(1− 2u∗ −H)2.

A Turing bifurcation may start to occur at

1

4
r2(1− 2u∗ −H)2 = r2kH

1− u∗
u∗

,
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Figure 11. The chaos asymptotic state referred to in Figure 8.

that is

(7.8) k =
1

4

r

1− r − rH

[
1− 1 + r

1− r
H

]2
,

where λ2 = 0. When

k <
1

4

r

1− r − rH

[
1− 1 + r

1− r
H

]2
,

further Turing bifurcations may occur at

ξ2 =
1

2
r(1− 2u∗ −H)±

√[
1

2
r(1− 2u∗ −H)

]2
− r2kH 1− u∗

u∗

=
1

2
r

(
1− 1 + r

1− r
H

)
±

√[
1

2
r

(
1− 1 + r

1− r
H

)]2
− rk(1− r − rH).

Numerically we did not observe any Turing bifurcation. Usually Turing bifurcations
are observed in (spatially) high dimensional systems or one dimensional systems
with variable coefficients.
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8. Conclusion

In this article, we present a resolution on the paradox of enrichment based
upon the dimensionless form of the mathematical model. We also explore spatial
perturbations. The conclusion is that spatial perturbation sometimes (but neither
always nor never) can remove the paradox of enrichment near the limit cycle on
the plane.
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