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Until now, most memristor-based chaotic circuits proposed in the literature are based on math-
ematical models which assume ideal characteristics such as piece-wise linear or cubic non-
linearities. The idea, illustrated here and originating from the experimental approach for device
characterization, is to realize a chaotic system exploiting the non-linearity of only one memristor
with a very simple experimental set-up using feedback. In this way a simple circuit is obtained
and chaos is experimentally observed and is confirmed by the calculation of the largest Lyapunov
exponent. Numerical results using the Strukov model support the existence of robust chaos in
our circuit. This is the first experimental demonstration of chaos in a real memristor circuit and
suggests that memristors are well placed for hardware encryption.
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1. Introduction

The memristor is the first (and possibly the only) non-linear fundamental circuit element, and, as such, has
a lot to offer to those interested in non-linear dynamics. By virtue of being a fundamental element, we can
be reasonably certain that it’s the simplest non-linear circuit element. It is a physical device, announced
to the world in 2008 [Strukov et al., 2008], although its existence was predicted many years earlier in
1971 [Chua, 1971]. The non-linear behaviour arises because the memristor relates the total history of the
charge (the time integral of current), that has passed through the device, with the total history of the
magnetic flux (the time integral of voltage) [Chua, 1971].

Since the first physical realization of a memristor [Strukov et al., 2008] a huge amount of effort has
been devoted to the study of materials and manufacturing techniques for memristor devices, as well as
theoretical models, (as is covered in detail in a recent review [Gale, 2014]). In terms of materials, the first
and archetypal memristor is a device made of titanium dioxide sandwiched between platinum electrodes.
Studies on TiO2 memristor [Strukov et al., 2008] have shown that the main cause of the memristive effect
is the motion of oxygen vacancies from the high resistance layer, the TiO2 layer, to the sub-oxide (TiO2−x),
or low resistance layer, under the application of an external bias: it is this interconversion that changes the
resistance of the device. The realization of the active layer requires expensive techniques, such nano-imprint
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lithography and atomic layer deposition, followed by subsequent annealing at high temperature. Most
memristors are fabricated by atomic layer deposition as perfect crystals and annealing is usually required
to introduce vacancies, as these are errors in a perfect crystal. The fabrication techniques significantly
influence the device performance and significantly impact the cost-effectiveness of the device. For this
reason, new methods, typical of the printing industry, screen printing or ink-jet printing, have been also
investigated for the realization of memristive devices [Duraisamy et al., 2012; Choi et al., 2012]. Despite
the numerous realizations of memristors, a breakthrough in ease of manufacturing was the fabrication of a
device by spin-coating a titanium isopropoxide solution on a flexible plastic substrate [Gergel-Hackett et al.,
2009]. Unlike devices created by atomic deposition, sol-gel and ink-jet printed devices already have vacancy
errors, so they require no annealing step for the formation of the active layer. In this paper, we make use
of flexible TiO2 memristors [Gale et al., 2014b].

Memristors belong to the class of resistive switching devices, which in recent years, attracted a lot of
interest for memory, logic and neuromorphic applications. In particular, the memory effect is due to the
possibility to switch the status of the device, through SET and RESET processes, between two states, the
high resistance state (HRS), and the low resistance state (LRS). In bipolar RRAM, the SET and RESET
processes occur through the formation/dissolution of conductive filaments [Ielmini, 2011]. This mechanism
is controlled by a compliance current. Depending on the compliance current, during the switching of a
metal-insulator-metal structure between the HRS and the LRS, random telegraph noise (RTN) may be
observed. RTN can be reduced with proper SET and RESET processes, but, on the contrary, fluctuations of
current at different resistance states can be exploited for non-destructive studies of switching phenomena at
microscopic scale [Ielmini et al., 2010]. RTN is also used as the principle for true random number generators
based on a contact resistive RAM [Huang et al., 2012].

As resistive switching devices, the memristors are also of interest for implementation of Boolean logic
gates [Borghetti et al., 2010; Rose et al., 2012; Gale et al., 2013; Kvatinsky et al., 2014; Vourkas et al.,
2014], for applications as nonvolatile memories [Ho et al., 2011], and as synapses in neuromorphic circuits
[Jo et al., 2010]. Due to its non-linearity, the use of the memristor as nonlinear component in chaotic circuits
[Muthuswamy, 2010] has been envisaged. To this aim the memristor has been used to substitute for Chua’s
diode in versions of Chua’s circuits [Itoh & Chua, 2008; Muthuswamy, 2010; Muthuswamy & Chua, 2009]
and simulated chaos has been observed [Messias et al., 2010; Bao et al., 2010a,b; Bo-Cheng et al., 2011].
Most of the memristor-based oscillators used in these chaotic circuit simulations assume ideal characteristics
for the memristor, e.g. cubic or piece-wise-linear (PWL) nonlinearities [Itoh & Chua, 2008]. Since the
Strukov memristor is a passive non-symmetrical element having a non-linearity different from the one
most frequently investigated, its use for chaotic circuits design is not trivial. Specifically, the non-linearity
assumed in literature is usually a continuously varying function or a piece-wise linear-continuously varying
function for filamentary type devices.

We would like to demonstrate experimentally that the memristor can be used as the non-linear element
in a chaotic circuit. The first step is to demonstrate that simulated circuits including a realistic model of
memristor exhibit chaos, this has been done in [Buscarino et al., 2012, 2013] where recently a gallery of
chaotic circuits using the HP model has been proposed: these papers utilised a particular configuration of
two memristors connected in anti-parallel, which allowed the authors obtain a symmetrical characteristic
suitable for chaos generation. This sub-circuit has been experimentally realised in [Gale et al., 2014a]
where circuits made of 2 or 3 memristors were found to give rise to complex dynamics. What has not been
done is to conclusively demonstrate chaotic dynamics in an experimental circuit containing a memristor
and to do so with only one non-linearity in the circuit (i.e. only one memristor). In our experiments we do
not apply specific SET and RESET processes, but we drive the memristor by a signal which is function of
the actual status of the device, exploiting its switching properties to obtain deterministic chaos.

The aim of this work is to provide an experimental demonstration of chaos with memristive devices. For
this purpose, a simple experimental set-up is proposed in Sec. 2.1, where chaos can be uniquely attributed
to the presence of the memristor, as described in Sec. 3.1. We then perform a numerical simulation of
the set-up as described in Sec. 2.2 using the simplest model available and explore the parameter space to
demonstrate that the chaos is a robust phenomenon observed over a large parameter space in Sec. 3.2. In
Sec. 4 the conclusions of the work are drawn.
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2. Methodology

2.1. Experimental

The idea underlying the experimental set-up originates from the way in which memristors are usually
characterized. One of the main fingerprints of memristors is the pinched hysteresis loop in the v − i plane
measured under periodic excitation [Chua, 2011; Biolek et al., 2013]. A commonly used technique to obtain
the v − i characteristics is to apply a sinusoidal voltage input to the memristor (alternatively, the time
response is studied through the application of pulse functions) and to measure the current through the
device. To do this, a (Keithley 2602) programmable sourcemeter is commonly used because it allows the
tuning of the input parameter and the recording of the current. The core of this work is to dynamically
change the parameters of the input waveforms as a function of the actual state of the memristor, to our
knowledge, this is the first experiment using such a feedback loop.

The memristor used in this work has a sandwich structure of Al-TiO2-Al: the aluminium electrodes
were sputter-coated onto PET plastic substrate via a mask as in [Gergel-Hackett et al., 2009; Gale et al.,
2014c], the sol-gel layer [Gale et al., 2014c] was deposited via spin-coating (spun at 33r/s for 60s) and then
left under vacuum to hydrolyse for an hour as in [Gale et al., 2014b]. The electrodes are 4mm wide, crossed
at 90◦, giving an active area of 16mm2, the titanium gel layer is 40nm thick. In contrast to other more
expensive techniques for the fabrication of the active layer, the spin-coated memristor was created with a
simple procedure, and without the need for a forming step.

The experimental methodology consists of two separate steps. In the first, we test the memristive
behavior by exciting it with a periodic input and observing the behavior in the v − i plane. In the second
step, we drive the memristor with pulses which are related to the actual state of the memristor through
a law discussed in details below. The first step corresponds to operating the memristor in open loop
conditions, while the second in feedback mode. In feedback conditions the whole system operates without
external inputs, so the actual status of the system (which includes the memristor status and the voltage
applied to it) is the result of an autonomous evolution.

The memristor characterisation analysis (first step of our methodology) was performed by setting the
sourcemeter to run linear voltage sweeps between a range of ±1V , with a voltage step size of 0.02V and a
settling time of 0.01s (settling time is the delay period after which the measurement is made). The signal
may be viewed as the DC equivalent of an AC waveform with a frequency of 0.5Hz. The measurements
have been repeated several times to test the device performance over iterated cycles.

In the second step, we investigate the effect of establishing a relationship between the measured current
and the next sample of the applied voltage signal, that is, we drive the memristor on the basis of the
current flowing through it. This is particularly simple to realize since it only requires a memristor and a
programmable sourcemeter. The scheme adopted to test for non-linear dynamics is illustrated in Fig. 1,
where v(t) indicates the voltage applied to the memristor, i.e. a digital-to-analog converted signal. The
memristor current, indicated as i(t), is sampled as a sequence of measurements ih. Each sample ih is used
to generate the next voltage sample vh+1 through the relation:

vh+1 = r(1− kih) (1)

where k and r are constant tunable parameters. The sequence of samples vh is converted into the analog
signal v(t) through the zero-order hold (ZOH), so that:

v(t) = vh, th ≤ t < th+1 (2)

with th = h∆T , where ∆T is the sampling time. The sampling of i(t) occurs immediately before the
sweep of the voltage from vh to vh+1, that is, ih = i(t)|

t=t
−

h+1

. We note that Eq. (1) is linear, so that any

non-linearity in the system comes from the memristor.
The sampler, the processor implementing Eq. (1) and the ZOH are all implemented in the sourcemeter.

During operations in feedback conditions, in the sourcemeter Eq. (1) is iterated, so that the voltage levels
are automatically generated for a given time window during which a number of samples of the waveforms
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Fig. 1. The memristor based circuit.

is acquired. Specifically, we used a Keithley 2602 programmable sourcemeter to apply a step-wise sweep
voltage (both the step amplitude and the duration can be programmed). We used steps with fixed duration
so that the applied waveform is a continuous-time signal generated by the conversion of a discrete-time
signal through a zero-order hold. The measurement is made at each step after a specified delay period
(the sampling time ∆T ). Lyapunov exponents of the data were calculated using the TISEAN package
[Hegger et al., 1999], which is based on Rosenstein’s algorithm [Rosenstein et al., 1993].

2.2. Simulational

Many models of memristors, ranging from very simple ones to ones incorporating a very detailed level of
description of the phenomena occurring in the device, have been proposed in literature. The first electronic
engineering model of a memristor was Chua’s original model in 1971 [Chua, 1971], this model offered a way
to relate the circuit measurables to the state of the system, but was too abstract to model specific systems.
The first materials science model of a memristor was in the original Strukov paper [Strukov et al., 2008],
this included a very simple approach based on modelling the memristor as a space-conserving variable
resistor, where the boundary, w, between TiO2 and TiO2−x (Fig. 2) is used as a state variable which holds
the memory of the device (this fits the chemistry of the system, as when the voltage is removed the oxygen
vacancies do not dissipate like electrons or holes do in semiconductors, but remain ‘remembering’ a state).
The Strukov model assumes a linear dopant drift under a finite uniform field, which is widely thought to
be unlikely in thin-film [Strukov & Williams, 2009]. Several papers have attempted to improve on this, by
introducing a window function to prevent the system from going outside of its bounds 0 and D, the thickness
of the device, and slowing the boundary down near the edges [Joglekar & Wolf, 2009; Biolek et al., 2009;
Prodromakis et al., 2011]. Nonetheless, the original model allows ease of modelling and simplicity to the
interpretation of results as long as the simulation code takes care to avoid w taking un-physical values,
and has been widely adopted for simulations [Pazienza & Albo-Canals, 2011; Albo-Canals & Pazienza,
2012]. More realistic models have also been proposed, an example is [Pickett et al., 2009] which gives good
agreement with the experimental data, but requires 8 fitting parameters and contains difficult to simulate
terms.

We show here that the presence of chaos is demonstrated even with a very simple model capturing
only the main characteristics of the memristive behavior. Specifically, numerical results are obtained by
substituting the memristor in the scheme of Fig. 1 with its modelling equations as proposed by Strukov
et al. [Strukov et al., 2008]: the resulting simulational scheme is shown in Fig. 3. The relationship between
current and voltage in the memristor is governed by:

i(t) = v(t)/

(

RON

w(t)

D
+ROFF

(

1−
w(t)

D

))

. (3)

The variable w(t) (the width of the doped region) represents an internal memory variable limited to
values between zero and D, the thickness of the device, and is characterized by the following dynamics:
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Fig. 2. Schematic representation of a TiO2 memristor.

Fig. 3. Scheme used for numerical analysis of the memristor based circuit.

ẇ(t) = η
µvRON

D
i(t) (4)

where η characterizes the polarity of the memristor (η = 1 if the doped region is expanding, η = −1
otherwise), µv is the oxygen vacancy ion mobility, and RON (ROFF ) is the resistance of the device in
its lowest (highest) resistance state. Following [Strukov et al., 2008] Eqs. (3) and (4) may be rescaled to
obtain:

i(t) = v(t)/ (w̄(t) + β (1− w̄(t))) (5)

and

˙̄w(t) = ηi(t) (6)

where β = ROFF/RON and time is now expressed in the units of t0 = D2/µvv0, with v0 = 1V . The
numerical simulations have been based on Eqs. (5) and (6), which are dimensionless and contain only one
parameter (β).

3. Results

3.1. Experimental results

The experimental results are reported for two devices, indicated as memristor 1 and memristor 2. The two
memristors were fabricated with the same procedure, however parametric tolerances due to the fabrication
process do appear. We first describe the v− i characterization under periodic excitation of the memristors
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Fig. 5. Experimental results: time evolution of current and voltage in the memristor 1 based circuit for r = 0.25 and k = 1750.

analyzed in this work. The results, which refer to memristor 1, are reported in Fig. 4, showing that the
resistance change is not fully reversed over the range of the hysteresis loop. However, in view of the
application as chaos generator, this does not represent a severe issue, since the non-linearity is not required
to be time-invariant. Similar behavior has been obtained for memristor 2.

The spin-coated TiO2 memristor was then controlled by a feedback signal generated by using the scheme
of Fig. 1. In both cases chaos has been observed, but the two devices required a different parameter tuning
of the control law (1). For memristor 1 we have chosen r = 0.25 and k = 1750 and obtained the waveforms
shown in Fig. 5. For memristor 2 we have chosen k = 850 and r = 0.25; the time evolution of i(t) and
v(t) is reported in Fig. 6. Starting from the acquired data reported in Figs. 5 and 6 we have estimated the
largest Lyapunov exponents: for the data referring to memristor 1 (Fig. 5) the largest Lyapunov exponent
is λmax = 0.7947, and for the data from memristor 2 (Fig. 6) λmax = 0.9230. The existence of positive
values for the largest Lyapunov exponent indicates that the behavior is chaotic. As the rest of the set-up
was linear, this chaos arises from the memristor, and thus we have demonstrated chaotic dynamics from a
single memristor device.
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Fig. 6. Experimental results: time evolution of current and voltage in the memristor 2 based circuit for r = 0.25 and k = 850.
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Fig. 7. Trend of the current (a) and voltage (b) of the memristor circuit for k = 10 and β = 100.

3.2. Numerical results

In order to demonstrate that the chaos observed with our devices was a real effect generally due to the
memristor behaviour, we simulated the set-up and numerically analyzed it with respect to the parameters
k and β. Several regions in the parameter space for which chaotic behavior arises were found. An example
of chaotic behavior is reported in Fig. 7 where the time evolutions of the variables v(t) and i(t) are shown
for k = 10 and β = 100. In Fig. 8 the bifurcation diagram with respect to k (for β = 100) is illustrated,
it shows alternating windows of periodic behavior and chaos. The bifurcation diagram with respect to
β is reported in Fig. 9 (for k = 10), showing how chaos is preserved for a wide range of values of the
constitutive parameter β. Since β may vary in real memristors due to technology, fabrication process and
device characteristics, the robustness with respect to this parameter is particularly important.

We observe that the numerical results have been obtained with a dimensionless set of equations; the
parameters of the control law (k and r) have been rescaled during the experimental tests. The numerical
results show that chaos can be generated using this approach. However, the waveforms observed in the
experiments and in the numerical simulations do not coincide, indicating that the simplified mathematical
model of Eqs. (3)-(4) is able to capture the general behavior of the system, but not the details of the
waveforms observed in the experiments. This shows that the chaotic behaviour comes from an aspect
of the memristor that is captured qualitatively by the simplest possible memristor model. However, we
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Fig. 8. Bifurcation diagram of the memristor circuit with respect to k (β = 100, r = 1).

Fig. 9. Bifurcation diagram of the memristor circuit with respect to β (k = 10, r = 1).

strongly suspect that further work involving using more complicated models will produce numerical results
closer to experimental data, and this might provide memristor modellers a test case for the improvement
of their models.

It is interesting to ask why the memristor allows chaos to arise in such a simple system, and the fact that
such a simple model of memristance demonstrates chaotic dynamics provides a clue. As mentioned earlier,
the memristor non-linearity is not time-invariant, and it is known that memristors possess a memory. We
posit that it is specifically the interaction of this time-varying memory with the time-based feedback that
gives rise to chaos in this system (as the voltage for each step is generated on the data from the previous
step, there is a memory in the experimental system). The simulation equations are so simple that there
is only one time-varying variable, w(t) which is the internal state of the memristor and its memory. This
variable depends on i(t) (which is linearly updated through the feedback) but also on the past history of
the memristor through a functional which, instead, is non-linear.

4. Conclusions

In this work experimental findings on the generation of chaos with a spin-coated memristor are presented.
The experimental set-up consists of a single memristor driven by a linear control law relating the applied
voltage to the actual value of the current flowing in it. This feedback law does not introduce any non-
linearity, so that the observed behavior can be uniquely attributed to the memristor characteristics. Chaotic
waveforms have been experimentally observed in several samples of spin-coated memristors and confirmed
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by a numerical analysis. The largest Lyapunov exponent has been calculated in the experimental time-
series, and the positive value obtained indicates chaotic dynamics. A simple model of memristive behavior
has been shown to be sufficient to reproduce the onset of chaos, although capturing all the features of
the waveforms observed in the experiments requires a more detailed model. The experiments showing the
irregularity of the behavior of the circuit demonstrate the suitability of this simple approach to generate
chaos with memristors and suggests that memristors might be useful components for hardware chaos-based
encryption.

The analysis performed through the use of the Strukov model suggests that the main mechanism
explaining chaos in the experimental and simulation behaviors is the presence of the pinched hysteretic
behavior. However, as in the experiments specific SET and RESET processes are not applied, it cannot be
excluded the presence of RTN, which on the contrary could be a possible explanation for the differences
between experimental and simulation results.
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