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A one–parameter family of differential systems
that bridges the gap between the Lorenz and the
Chen systems was proposed by Lu, Chen, Cheng
and Celikovsy. The goal of this paper is to analyze
what we can say using analytic tools about the dy-
namics of this one–parameter family of differential
systems. We shall describe its global dynamics at
infinity, and for two special values of the parameter
a we also can describe the global dynamics in the
whole R

3 using the invariant algebraic surfaces of
the family. Additionally we characterize the Hopf
bifurcations of this family.
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1. Introduction and statement of the main
results

In 1963 Lorenz (see [Lorenz, 1963]) introduced the
following non–linear system in R

3 of differential

equations
ẋ = σ(y − x),
ẏ = ρx− y − xz,
ż = −βz + xy,

for which it was observed sensitive dependence of
initial conditions. For an open neighborhood of
certain parameter values (σ, ρ and β), numerical
simulations suggested the existence of a strange at-
tractor, known now as the Lorenz attractor. The
proof of the existence of a robust strange attrac-
tor for these equations was later given by Tucker
[Tucker, 2002].

The following differential system in R
3

ẋ = a(y − x),

ẏ = (c− a)x− xz + cy,
ż = xy − bz,

where a, b, c ∈ R are parameters is known as
the Chen system [Chen & Ueta, 1999]. For suit-
able choices of the parameters it exhibits chaotic
phenomena which resembles some familiar features
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from the Lorenz system. Through these recent
years the dynamics of the Chen system has been
analyzed from different points of view.

Recently in [Algaba et al., 2013, Chen, 2013]
it is observed that the Chen system becomes the
Lorenz system doing a rescaling of the three spa-
tial variables and of the time, namely (x, y, z, t) →
(−cx,−cy,−cz,−ct), which reverses the time vari-
able if c > 0. Then the strange attractor of the
Chen system becomes a strange atractor in the
Lorenz system but in backwards time, different to
the classical Lorenz attractor. Moreover, both at-
tractors take place for different values of the pa-
rameters. This observation shows that the Lorenz
and the Chen systems are strongly related, and as it
was mentioned in [Leonov & Kuznetsov, 2015] both
systems stimulate the developments of new meth-
ods for the analysis of the chaotic systems.

In 2002 Lu, Chen, Cheng and Celikovsy
[Lu et al., 2002], introduced a one-parameter uni-
fied chaotic system that contains the Lorenz and
the Chen systems as two dual systems at the two
extremes of its parameter spectrum. The system
introduced is

ẋ = P (x, y, z) = (25a+ 10)(y − x),

ẏ = Q(x, y, z) = (28− 35a)x− xz + (29a− 1)y,

ż = R(x, y, z) = xy − 1

3
(a+ 8)z.

(1)
The differential system (1) here studied provides a
continued transition from the Lorenz system (when
a = 0) to the Chen system (when a = 1) and it is
chaotic along all the values of the transition. Since
the Lorenz and the Chen systems played and are
playing an important role in the study of the chaotic
systems in R

3, it is interesting to study the dynam-
ics of the differential system (1) which connects the
mentioned two differential systems.

Later on system (1) is considered in
[Lu et al., 2006] with the name unified chaotic
system. So in the rest of this paper the differential
system (1) will be denoted as the unified chaotic

system and we shall study it for all values of a ∈ R.

For a study of the differences and similarities
in the analysis of the Lorenz, Chen and Lu systems
see for instance [Leonov & Kuznetsov, 2015].

In [Celikovsky et al., 1994, 2002 and 2005] the
authors introduced the generalized Lorenz canon-

ical form (GLCF), which contains the classical
Lorenz system and the Chen system as two ex-
treme cases, along with infinitely many chaotic sys-
tems in between. It was also shown how several
other chaotic systems studied are special cases of
the GLCF.

In general to describe the global dynamics of a
nonlinear differential system in R

3 is a hard prob-
lem, usually unsolved. The goal of this paper is to
analyze what we can say using analytic tools about
the dynamics of the unified chaotic system. We
shall describe its global dynamics at infinity, and
for two special values of the parameter a we also
can describe the global dynamics in the whole R

3

using the invariant algebraic surfaces of the uni-
fied chaotic system. Additionally we characterize
its Hopf bifurcations.

For some potential practical application of
the unified chaotic system see for instance
[Lin et al., 2015].

The following result shows that the dynam-
ics in a neighborhood of the infinity for the uni-
fied chaotic system is the same as that in the
Lorenz and in the Chen system, see for more details
[Llibre et al., 2010] and [Llibre et al., 2012], respec-
tively. The study of the infinity for a polynomial
differential system is made using the Poincaré com-
pactification, see section 2 for a brief introduction
to such compactification.

x

y

z

Fig. 1. Phase portrait at infinity of the unified chaotic
system in the Poincaré ball.

Proposition 1.1. For all values of the parameters

a, b, c the phase portrait of the unified chaotic sys-

tem on the sphere at infinity has two centers at the
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endpoints of the x–axis, the period annulus of these

centers end at the circle defined by the infinity of

the plane {x = 0}, which is filled of equilibria, see

Figure 1.

Proposition 1.1 is proved in section 2.

Let R[x, y, z] be the ring of the real polyno-
mials in the variables x, y and z. We say that
F = F (x, y, z) is a Darboux polynomial of system
(1) if it satisfies

(∇F ) · (P,Q,R) = kF,

where k = k(x, y, z) is a real polynomial of degree
at most 1, called the cofactor of F (x, y, z) and ∇F
is the gradient of F . If the cofactor is zero, then
F (x, y, z) is a polynomial first integral of system
(1). If F (x, y, z) is a Darboux polynomial with non–
zero cofactor, then the surface F (x, y, z) = 0 is an
invariant algebraic surface, i.e. if an orbit of system
(1) has a point on this surface, then the whole orbit
is contained in it.

In the following proposition we study the in-
variant algebraic surfaces for system (1).

Proposition 1.2. The following statements hold

for the unified chaotic system.

(a) If a = −2/5 then x is a first integral, and the

restriction of unified chaotic system to each

invariant plane x = constant is a linear dif-

ferential system.

(b) If a = −52/149, then the unified chaotic

system has the invariant algebraic surface

F (x, y, z) = 149x2 − 380z = 0.

(c) The cofactor of any invariant algebraic sur-

face of a unified chaotic system is a constant.

(d) The only invariant algebraic surfaces of degree

≤ 6 of the unified chaotic systems are the ones

of statements (a) and (b).

Proposition 1.2 is proved in section 3.

The next result describes the global dynamics
of the unified chaotic system in the Poincaré ball
when the parameter a takes the values −2/5 and
−52/149, i.e. when the system has invariant alge-
braic surfaces.

Theorem 1.3. The following statements hold for

the unified chaotic systems.

(a) For a = −2/5 all the planes x = h ∈ R are

invariant. The unique finite equilibrium point

of the unified chaotic system in the plane x =
h is

(

h,
847h

4h2 + 539
,

462h2

4h2 + 539

)

, (2)

a global stable focus or node if |h| > 215/6
or |h| ≤ 215/6, respectively. Clearly all the

planes x = h reach the infinity in the circle

filled of equilibria.

(b) For a = −52/149 on the invariant algebraic

surface 149x2−380z = 0 there are three finite

equilibria of the unified chaotic system

(0, 0, 0),

(

±170
√
57

149
,±170

√
57

149
,
4335

149

)

. (3)

On this surface the origin is a saddle and the

other two equilibria are stable foci, the two

unstable separatrices of the saddle go one to

one focus and the other to the other focus.

While the two stable separatrices of the saddle

come spiraling from the infinity, see Figure

2. The invariant surface reaches the infinity

in half of the circle filled of equilibria, more

precisely at the infinity of the half–plane x ≥
0. There is numerical evidence that the flow

in the interior of the Poincaré ball outside the

invariant algebraic surface tends in forward

time to the invariant surface.

Theorem 1.3 is proved in section 3.

The Hopf bifurcation of the Lorenz system
has been studied, see for instance [Roschin, 1978,
Buzzi et al., 2007]. Also the Hopf bifurcation of the
Chen system has been analyzed, see for example
[Li & Chen, 2003]. Now our aim is to study the
Hopf bifurcation of the unified chaotic system (1)
that bridges the gap between the Lorenz system and
the Chen system.

The equilibria of the unified chaotic system are

p0 = (0, 0, 0),

p± =
(

±
√

(9− 2a)(8 + a),±
√

(9− 2a)(8 + a),

3(9 − 2a)
)

.
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Fig. 2. Qualitative phase portrait of the unified chaotic
system on the invariant algebraic surface 149x2−380z =
0.

Note that the unified chaotic system has three equi-
libria if a ∈ (−8, 9/2), two equilibria if a = −8 or
a = 9/2, and one equilibrium if a ∈ R\[−8, 9/2].

It is easy to check that the linearization of the
unified chaotic system at p0 never has a pair of con-
jugate purely imaginary eigenvalues, so the equilib-
rium point p0 cannot exhibit a Hopf bifurcation.

The unified chaotic system is symmetric with
respect to the involution (x, y, z) 7→ (−x,−y, z),
i.e. it has symmetry with respect to the z–axis.
So, if there is a Hopf bifurcation at the point p−
there is also a Hopf bifurcation at the point p+.
Consequently our analysis will be only at the point
p−.

As we shall see later on the linearization of the
unified chaotic system at p− has a pair of conjugate
purely imaginary eigenvalues and one real eigen-
value for the unique value

a∗ = −0.0136810441173477...

of the parameter a for which the equilibrium p− ex-
ists. In fact a is the unique real zero of a function
ε(a) defined later on. Therefore when a = a∗ we
have the setting for a Hopf bifurcation. That is,
we can expect to see a small-amplitude limit cycle
bifurcating from the equilibrium point p−. But in
order that this bifurcation takes place it remains
to compute the first Lyapunov coefficient ℓ1(p−) of
system (1) at the equilibrium p−. When ℓ1(p−) < 0
the point p− is a weak focus of the unified chaotic
system restricted to the central manifold of p− and

the limit cycle that emerges from p− is stable. In
this case the Hopf bifurcation is called supercritical.
When ℓ1(p−) > 0 the point p− is also a weak focus
of the unified chaotic system restricted to the cen-
tral manifold of p− but the limit cycle that borns
from p− is unstable. In this second case the Hopf
bifurcation is called subcritical. For more details on
the Hopf bifurcation see for instance the book of
Kuznetsov [Kuznetsov, 2004].

The next result characterize the Hopf bifurca-
tion in the unified chaotic system.

Theorem 1.4. The Lorenz–Chen system has a

subcritical Hopf bifurcation at the equilibrium p−
when a = a∗, and there exists a small ε > 0 such

that for a ∈ (a∗ − ε, a∗) the system has an unstable

limit cycle.

Theorem 1.4 is proved in section 4.

2. The Poincaré compactification

In what follows first we present a summary
of the Poincaré compactification of a polyno-
mial vector field in R

3, for more details see
[Cima & Llibre, 1990].

We consider the polynomial differential system

ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z),

in R
3, or equivalently its associated polynomial vec-

tor field X = (P 1, P 2, P 3). The degree n of X is
defined as n = max{deg(P i) : i = 1, 2, 3}.

Let S
3 = {y = (y1, y2, y3, y4) ∈ R

4 : ‖y‖ = 1}
be the unit sphere in R

4, and S+ = {y ∈ S
3 : y4 >

0} and S− = {y ∈ S
3 : y4 < 0} be the north-

ern and southern hemispheres, respectively. We de-
note by TyS

3 the tangent space to S
3 at the point

y. We identify R
3 with the tangent hyperplane

T(0,0,0,1)S
3 = {(x1, x2, x3, 1) ∈ R

4 : (x1, x2, x3) ∈
R
3}.

Doing central projections of the hyperplane
T(0,0,0,1)S

3 on the sphere S
3 we get two copies of

our vector field X on S
3, one in the open northern

hemisphere S+ and the other in the open southern
hemisphere S−. Now the equator S2 = S

3∩{y4 = 0}
plays the role of the infinity of R3. There is a unique
extension of the two copies of the polynomial vector
field X on S+ ∪ S− to an analytic vector field p(X)
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on S
3. This vector field p(X) on S

3 is called the
Poincaré compactification of X.

Note that the projection of S+ ∪ S
2 on the

hyperplane y4 = 0 through (y1, y2, y3, y4) →
(y1, y2, y3) is the unit closed ball centered at the ori-
gin of R3 = {(y1, y2, y3)}. The interior of this ball
is diffeomorphic to R

3 and its boundary S
2 corre-

sponds to the infinity of R3. This ball is called the
Poincaré ball.

We consider the following eight local charts on
S
3:

Ui = {(y1, y2, y3, y4) : yi > 0}, and
Vi = {(y1, y2, y3, y4) : yi < 0},

for i = 1, 2, 3, 4. Then the analytical field p(X) in
the local chart U1 becomes

zn3
(∆z)n−1

(

−z1P
1 + P 2,−z2P

1 + P 3,−z3P
1
)

, (4)

where P i = P i (1/z3, z1/z3, z2/z3).

In a similar way the expression of p(X) in U2

is

zn3
(∆z)n−1

(

−z1P
2 + P 1,−z2P

2 + P 3,−z3P
2
)

, (5)

where P i = P i (z1/z3, 1/z3, z2/z3); and in U3 is

zn3
(∆z)n−1

(

−z1P
3 + P 1,−z2P

3 + P 2,−z3P
3
)

,

where P i = P i (z1/z3, z2/z3, 1/z3).

In U4 we have that zn+1
3

(

P 1, P 2, P 3
)

is the ex-
pression for p(X) where P i = P i(z1, z2, z3). The
expression for p(X) in the local chart Vi is the same
as in Ui multiplied by (−1)n−1.

When we work with the expression of the com-
pactified vector field p(X) in the local charts we
shall omit the common factor 1/(∆z)n−1. We can
do that through a rescaling of the time.

We remark that all the points on the sphere at
infinity in the coordinates of any local chart have
z3 = 0.

In this section we study the behavior of the
differential system (1) near the infinity using the
Poincaré compactification.

Proof of Proposition 1.1. From (4) the Poincaré
compactification of system (1) in the local chart U1

is

ż1 = −z2 − 7(5a − 4)z3 + 9(6a + 1)z1z3−
5(5a + 2)z21z3,

ż2 = z1 +
2

3
(37a+ 11)z2z3 − 5(5a+ 2)z2z3z1,

ż3 = 5(5a + 2)(z23 − z1z
2
3).

We look for the equilibria (z1, z2, z3) with z3 = 0,
which are the ones which are at infinity, and we only
find the origin, i.e. the endpoint of the positive x–
axis, which has eigenvalues 0 and ±i. The system
in the local chart U1 restricted to infinity z3 = 0
writes ż1 = −z2, ż2 = z1. So this equilibrium point
at infinity is a center whose period annulus filled of
periodic orbits all U1. The same occurs at the local
chart V1.

In short it follows that system (1) has the
canonical linear center at the infinity of the local
chart U1 of the Poincarè ball with the center at the
endpoint of the positive x-axis.

From (5) the Poincaré compactification of sys-
tem (1) in the local chart U2 is

ż1 = 5(5a + 2)z3 − 9(6a + 1)z1z3 + z21z2+
7(5a − 4)z21z3,

ż2 = z1 −
1

3
(88a + 5)z2z3 + z1z

2
2 + 7(5a− 4)z1z2z3,

ż3 = −(29a− 1)z23 + z1z2z3 + 7(5a − 4)z1z
2
3 .

The equilibria of this system with z3 = 0 are
(0, z2, 0) for all z2 ∈ R. This straight lines filled
with equilibria, corresponds to the circle of S2 which
is at the end of the plane x = 0. The same result
is obtained working with the local chart U3. Note
that the local chart U4 has no points at infinity.
This completes the proof of the proposition.

3. Invariant algebraic curves

In this section we prove Proposition 1.2 and Theo-
rem 1.3.

Proof of Proposition 1.2. If a = −2/5, system (1)
becomes

ẋ = 0, ẏ = 42x− xz − 63

5
y, ż = xy − 38

15
z.
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Thus H(x, y, z) = x is a first integral, and the flow
on each level H−1(h) is determined by the linear
differential system

ẏ = 42h − hz − 63

5
y, ż = hy − 38

15
z.

This proves statement (a).

For a = −52/149, we have ∇F · (P,Q,R) =
kF, where F (x, y, z) = 149x2 − 380z is a Darboux

polynomial with cofactor k = −380

149
. So statement

(b) follows.

Let F (x, y, z) = 0 be an invariant algebraic sur-
face of system (1), and let m be the degree of the
polynomial F . Then the homogeneous part of de-
gree m of F denoted by Fm satisfies

−∂Fm

∂y
xz +

∂Fm

∂z
xy = (k1x+ k2y + k3z)Fm,

where the cofactor of F = 0 is k0 + k1x + k2y +
k3z. The solution of this linear partial differential
equations is either

Fm = e−
k3y

x
−

k2z

x
+k1 tan−1( y

z )h(y2 + z2),

or

Fm = e−
k3y

x
+

k2z

x
−k1 tan−1( y

z )h(y2 + z2),

where h(y2 + z2) is an arbitrary function in the
variable y2 + z2. Since Fm must be a homogeneous
polynomial, we get that k1 = k2 = k3 = 0. This
proves statement (c).

We take F an arbitrary polynomial of degree
at most 6, i.e.

F =

6
∑

i+j=0

aijx
iyj ,

and assume that F = 0 is an invariant algebraic
surface with cofactor k = k0 ∈ R, here we have used
statement (c). Then the polynomial∇F ·(P,Q,R)−
kF is the zero polynomial, i.e. all the coefficients
of this polynomial must be zero. Thus we have
a system whose unknowns are the aij and the ki.
After tedious but easy computations with the help
of an algebraic manipulator such as mathematica
or mapple we obtain that the unique solutions of
this system are F = x with a = −2/5 and F =
149x2 − 380z with a = −52/149. This completes
the proof of statement (d).

Proof of Theorem 1.3. First we consider the unified
chaotic system for a = −2/5. Then by statement
(a) of Proposition 1.2 we know that all the planes
x = h with h ∈ R are invariant by the flow of the
unified chaotic system. This system restricted to
the plane x = h becomes

ẏ =
231h

2
− 147

2
y − hz,

ż = hy − 11

6
z.

(6)

The unique equilibrium point of this system is (2).
Since its eigenvalues are

1

6

(

−226 ±
√

46225 − 36h2
)

,

it follows easily that such equilibrium point is a
stable focus or node if |h| > 215/6 or |h| ≤ 215/6,
respectively. Since the differential system (6) on the
plane x = h it follows that such focus or node are
global, i.e. the filled the whole plane x = h. This
completes the proof of statement (a).

Now we consider the unified chaotic system for
a = −52/149, and restricting the system on the in-
variant algebraic surface z = 149x2/380 (see state-
ment (b) of Proposition 1.2) it becomes

ẋ =
190

149
(y − x),

ẏ =
5992

149
x− 1657

149
y − 149

380
x3.

(7)

It is easy to check that the three equilibria (3) of
unified chaotic system for a = −52/149 are on the
invariant algebraic surface. The origin on the sur-
face has the eigenvalues

1

298

(

−1847 ±
√
6706009

)

,

so it is a saddle, and the eigenvalue outside the
surface is −380/149. The other two equilibria on
the surface have eigenvalues

1

298

(

−1847 ±
√
3177791 i

)

,

so they are stable foci, and the eigenvalue outside
the surface is again −380/149. So both foci are
local attractors in R

3.

The global phase portrait on the invariant al-
gebraic surface of system (7) is topologically equiv-
alent to the one of Figure 2, it has been obtained
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with the program P4 (see Chapters 9 and 10 of
[Dumortier et al., 2006]). Moreover, there is nu-
merical evidence that the flow in the interior of the
Poincaré ball outside the invariant algebraic surface
tends in forward time to the invariant surface. So
this proves statement (b).

4. Hopf bifurcation

In order to prove that system (1) exhibits a Hopf
bifurcation for the unique value a∗ of its param-
eter a, we will use the following theorem (see
[Kuznetsov, 2004], page 178) which shows how to
compute the first Lyapunov constant ℓ1(p1) at the
equilibrium p1.

Lemma 4.1. Assume that the differential system

ẋ = F (x) has p0 as an equilibrium point. The

third order Taylor approximation of the function F
around the equilibrium p0 is

F (x) = Ax+
1

2!
B(x,x) +

1

3!
C(x,x,x) +O(|x|4).

(8)
Suppose that A has a pair ±λi of purely imaginary

eigenvalues, and that q is the eigenvector of A with

eigenvalue λi, satisfying qq̄ = 1, where q̄ is the con-

jugate vector of q. Let p be the eigenvector of AT

with eigenvalue −λi satisfying p̄q = 1. Let I be the

identity matrix. The first Liapunov constant l1(p0)
of the differential system ẋ = F (x) at the equilib-

rium point p0 is

1

2λ
Re(p̄ · C(q, q, q̄)− 2p̄ ·B(q,A−1B(q, q̄))+

p̄ ·B(q̄, (2λiI −A)−1B(q, q))).

Proof of Theorem 1.4. The point p− is an equilib-
rium of the unified chaotic system. We translate
this equilibrium point to the origin, with the fol-
lowing coordinate change:

x̃ = x−
√

(9− 2a)(8 + a),

ỹ = y −
√

(9− 2a)(8 + a),
z̃ = z + 3(9− 2a).

In the new coordinates, again denoted by (x, y, z)

instead of (x̃, ỹ, z̃), system (1) becomes

ẋ = (10 + 25a)(y − x) = F1(x, y, z),

ẏ = (29a − 1)(y − x) +
√

(9− 2a)(8 + a)z − xz
= F2(x, y, z),

ż = −
√

(9− 2a)(8 + a)(x+ y) + xy − (8 + a)z/3
= F3(x, y, z).

(9)

The linear part of system (9) at the equilibrium
point (0, 0, 0) is given by the matrix A equal to





−5(5a+ 2) 5(5a + 2) 0
1− 29a 29a− 1 K
−K −K −(a+ 8)/3



 ,

where K =
√

(9− 2a)(8 + a).

The characteristic polynomial p(µ) of the ma-
trix A is

−µ3 + 1
3(11a − 41)µ2 + 2

3

(

5a2 + 21a− 152
)

µ+
10
(

10a3 + 39a2 − 346a− 144
)

.

Writing the polynomial

p(µ) = (µ−ρ(a))(µ−ε(a)−iλ(a))(µ−ε(a)+iλ(a)),

we get

ρ(a) =
ρ1(a)

9 3
√
S
,

ρ1(a) = −211a2 +
(

11 3
√
S + 524

)

a− S2/3−
41 3

√
S + 1055,

ε(a) =
1

18

(

22a+
a(211a − 524) − 1055

3
√
S

+

3
√
S − 82

)

,

λ(a) = − 1

6
√
3

∣

∣

∣

∣

∣

(524 − 211a)a + S2/3 + 1055
3
√
S

∣

∣

∣

∣

∣

,

where

S = −2a(a(19633a + 63987) − 637044)+

9
√
3R+ 425537,

R =
(

(a+ 8)(a(a(a(6306275a2 − 8803940a−

274063261) + 710717860)

+546970601) + 93753076)
)1/2

.
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Then ρ, ε and λ are real if and only if R ≥ 0. Then
it is easy to check that R ≥ 0 if and only if a belongs
to the set

(−∞,−8] ∪ [−6.9452229210.., 4.4844936295..]
∪ [4.5065954528..,∞),

where the finite endpoints of the previous intervals
are zeros of the polynomial R2.

In order that a Hopf bifurcation can take place
at the origin of the differential system (9) ε must be
zero, but an easy study shows that this only occurs
when

a = a∗ = −0.0136810441173477...

Then the eigenvalues of the matrix A are

ρ(a∗) = −13.7168304950..,
±λ(a∗)i = ±10.0759239798..i.

Now the Hopf bifurcation will take place at the
origin O of the differential system (9) when a = a∗

if the Lyapunov constant ℓ1(O) is not zero. We
compute ℓ1(O) using the Lemma 4.1. We need to
write the function

F (x) = F (x, y, z)
= (F1(x, y, z), F2(x, y, z), F3(x, y, z))

of the differential system (9) as it appears in (8).
We already now the matrix A, then an easy com-
putation shows that the bilinear form B(x,y) of (8)
for our system (9) is

B((x, y, z), (u, v, w)) = (0,−wx − uz, vx+ uy).

Since the polynomial differential system (9) is
quadratic it follows that the trilinear form
C(x,y, z) of (8) is zero.

Computing the normalized eigenvector q of A,
associated to the eigenvalue λi = 10.0759239798..i,
we obtain

q =





−0.2649114919.. − 0.2906456499..i
0.0383118865.. − 0.5670212213..i

0.7227490169..



 .

The normalized adjoint eigenvector of the transpose
matrix A with the eigenvalue −λi is

p =





−0.2100011995.. − 0.26682108409..i
0.1076431231.. − 0.69924528074..i
0.5732025206.. − 0.0607327918..i



 .

From Lemma 4.1 in order to compute l1(O)
we must compute −2p̄ · B(q,A−1B(q, q̄)) and p̄ ·
B(q̄, (2λiI −A)−1B(q, q))). We have

−2p̄ ·B(q,A−1B(q, q̄)) =
0.0078908121.. − 0.0706414304..i,

and

p̄ ·B(q̄, (2λiI −A)−1B(q, q))) =
−0.00335845379.. + 0.0253657537..i.

Then

l1(O) =
1

2λ
Re(−2p̄ · B(q,A−1B(q, q̄))+

p̄ · B(q̄, (2λiI −A)−1B(q, q)))

= 0.0002249103..

which is different from zero. This finishes the proof
of Theorem 1.4.
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Lin, Z., Yu, S., Lü, J., Cai, S. & Chen,
G. [2015] “Design and ARM-Embedded Im-
plementation of A Chaotic Map-Based Real-
Time Secure Video Communication System,”
IEEE Trans. Circuits Syst. Video Technol.DOI:
10.1109/TCSVT.2014.2369711, 14 pp.

Llibre, J., Messias, M. & Silva, P. [2010] “Global dy-
namics of the Lorenz systems with invariant al-
gebraic surfaces,” Int. J. Bifurcation and Chaos

20, 3137–3155.

Llibre, J., Messias, M. & Silva, P. [2012] “Global dy-
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