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PERIODIC SOLUTIONS OF A PERIODIC

FITZHUGH-NAGUMO DIFFERENTIAL SYSTEM

JAUME LLIBRE1 AND CLAUDIO VIDAL2

Abstract. Recently some interest has appeared for the periodic FitzHugh-
Nagumo differential systems. Here we provide sufficient conditions for
the existence of periodic solutions in such differential systems.

1. Introduction and statements of the main result

The FitzHugh–Nagumo (or FHN) differential systems are simplified mod-
els of the Hodgkin–Huxley differential system which is a simpler mathemat-
ical model for studying the nerve membrane [4], see for more details the
articles [5, 9, 8, 10] and references therein.

In this work we study the existence of periodic solutions of the following
periodic FitzHugh–Nagumo differential system

(1)

dv

dt
= v̇ = −v(v − 1)(v − b(t)) − w + I(t),

dw

dt
= ẇ = av − cw.

Here v is the analog of the nerve membrane potential, w represents ion
concentrations; I is an applied current (stimulus current). This model (1)
can be considered as an extension of the FHN model, because it includes a
time-varying threshold given by b(t) which corresponds, for example, to the
threshold between electrical silence and electrical firing (see details in [3],
[1] and references therein). Also this model includes a periodic forcing I(t).
Periodical forcing has been considered in [7]. In all this paper both functions
b(t) and I(t) are T–periodic, i.e. b(t + T ) = b(t) and I(t + T ) = I(t) for all
t ∈ R.

The system with I and b constant has been considered by several au-
thors, for example, in [6] using techniques from the ordinary differential
equations is analyzed the possibility of obtaining relaxation wave solutions
and the asymptotic solution having the structure of a relaxation wave has
been constructed.

The system (1) with I(t) periodic and b(t) constant was considered in [2].
A numerical study using the Poincaré map is made, and in particular the
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authors analyzed the consequences of imposing a sinusoidal perturbation of
the form I0 + I cos γt upon the base current. A similar model of FHN was
studied in [7]. They proved that the phase-locking occurs independently of
the magnitude of the periodic forcing. The existence of periodic solutions is
showed using a classical result of second order differential equations. Faghih
et al in [3] revisited the issue of the utility of the FitzHugh–Nagumo model
for capturing neuron firing behaviors. They model this situation considering
b(t) as a periodic function and I constant.

To state our main result we consider the periodic differential system (1)
defined in the open square D = {(v, w) : −r < v, w < r} ⊂ R2 where r is an
arbitrary real number as large as we want.

Let b0 and I0 be the averaged value of the function b(t) and I(t), i.e.

b0 =
1

T

∫ T

0
b(t)dt, I0 =

1

T

∫ T

0
I(t)dt.

Now we state our main results.

Theorem 1. Assume c ̸= 0, d = (a+b0c)
2−4c2I0 > 0 and (a, b(t), c, I(t)) =

(ε2α, εβ(t), εγ, ε2λ(t)). Then for ε ̸= 0 sufficiently small the FitzHugh–
Nagumo model (1) has two T–periodic solutions (v±(t, ε), w±(t, ε)) such that

(v±(0, ε), w±(0, ε)) =

(
a + b0c ±

√
d

2c
+ O(ε2),

a(a + b0c ± c
√

d)

2c2
+ O(ε3)

)
.

Theorem 2. Assume a+b0c ̸= 0 and (a, b(t), c, I(t)) = (ε2α, εβ(t), εγ, ε3λ(t)).
Then for ε ̸= 0 sufficiently small the FitzHugh–Nagumo model (1) has one
T–periodic solution (v(t, ε), w(t, ε)) such that

(v(0, ε), w(0, ε)) =

(
cI0

a + b0c
+ O(ε3),

aI0

a + b0c
+ O(ε4)

)
.

Theorem 3. Assume a ̸= 0 and (a, b(t), c, I(t)) = (ε2α, εβ(t), ε2γ, ε3λ(t)).
Then for ε ̸= 0 sufficiently small the FitzHugh–Nagumo model (1) has one
T–periodic solution (v(t, ε), w(t, ε)) such that (v(0, ε), w(0, ε)) = (O(ε3), I0+
O(ε4)).

Note that when c = 0 Theorem 3 can be obtained from Theorem 2, but
Theorem 2 also holds when c ̸= 0.

Theorem 4. Assume b0c ̸= 0 and (a, b(t), c, I(t)) = (ε4α, εβ(t), εγ, ε4λ(t)).
Then for ε ̸= 0 sufficiently small the FitzHugh–Nagumo model (1) has one
T–periodic solution (v(t, ε), w(t, ε)) such that (v(0, ε), w(0, ε)) = (O(ε3), O(ε5)).

In the next section we prove Theorems 1, 2, 3 and 4, using the averaging
theory for computing periodic solutions. A summary of the results on the
averaging theory that we shall need are given in the appendix.

Taking into account Theorem 5 of the appendix, the stability or instability
of the periodic orbits found in Theorems 1 and 2 can be determined studying
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the eigenvalues of a convenient matrix which appears in the proof of both
theorems.

We note that the assumptions of the previous four theorems can be sat-
isfied simultaneously for convenient values of the parameters, so there are
FitzHugh–Nagumo models (1) exhibiting at least 5 periodic solutions.

2. Proof of the theorems

In order to apply the averaging theory given a FitzHugh–Nagumo model
(1) we define

(2)
V = ε−m1v, W = ε−m2w,

(α, β(t), γ, λ(t)) = (ε−n1a, ε−n2b(t), ε−n3c, ε−n4I(t)),

with m1, m2, n1, n2, n3 and n4 positive integers. Let β0 and λ0 be the
averaged value of the function β(t) and λ(t), i.e.

β0 =
1

T

∫ T

0
β(t)dt, λ0 =

1

T

∫ T

0
λ(t)dt.

The differential system (1) in the new variables (V, W ) writes

V̇ = ε[εn4−m1−1λ(t) − en2−1βV − εm2−m1−1W
+εm1−1(1 + εn2β(t))V 2 − ε2m1−1V 3],

Ẇ = ε[εn1+m1−m2−1αV − εn3−1γW ],

and we assume that n2−1 ≥ 0, m2−m1−1 ≥ 0, m1−1 ≥ 0, n4−m1−1 ≥ 0,
n1 + m1 − m2 − 1 ≥ 0 and n3 − 1 ≥ 0.

Proof of Theorem 1. We have n2 = n3 = 1 and n1 = n4 = 2 and we take
m1 = 1 and m2 = 2. Then system (1) in the new variables (V, W ) becomes

(3)
V̇ = ε

(
λ(t) − β(t)V − W + V 2

)
+ ε2

(
β(t)V 2 − V 3

)
,

Ẇ = ε(αV − γW ).

Note that system (3) is in the normal form for applying the averaging theory
of first order, see the appendix. Moreover, the functions of the right-hand
side of system (3) remain bounded. So the assumptions of Theorem 5 (see
the appendix) are satisfied.

The averaged system of system (3) is

V̇ = εf1(V, W ) = ε
(
λ0 − β0V − W + V 2

)
,

Ẇ = εf2(V, W ) = ε(αV − γW ).

These system has two equilibria, namely:

(V ∗
±,W ∗

±) =

(
α + β0γ ±

√
δ

2γ
,
α(α + β0γ ± γ

√
δ)

2γ2

)
,

which exist by assumptions.
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To guarantee for system (3) the existence of periodic solutions associated
to the equilibria (V ∗

±,W ∗
±), using Theorem 5, we need that the Jacobian (9)

of f = (f1, f2) in each equilibrium point (V ∗
±, W ∗

±) be non–zero, and this is
the case because

det

(
∂(f1, f2)

V, W

∣∣∣∣
(V,W )=(V ∗

±,W ∗
±)

)
= ∓

√
δ ̸= 0.

Therefore, there are two periodic solutions (V±(t, ε),W±(t, ε)) of system (3)
such that (V±(0, ε),W±(0, ε)) = (V ∗

±,W ∗
±) + O(ε). Going back through the

re-scaling (2), the statement of the theorem follows. �

Proof of Theorems 2. We have n1 = 2, n2 = n3 = 1, n4 = 3 and we take
m1 = 2 and m2 = 3. Then system (1) in the new variables (V, W ) writes

(4)
V̇ = ε (λ(t) − β(t)V − W ) + ε2V 2 + ε3β(t)V 2 − ε4V 3,

Ẇ = ε (αV − γW ) .

We have that the averaged system of system (4) is

V̇ = εf1(V, W ) = ε (λ0 − β0V − W ) ,

Ẇ = εf2(V, W ) = ε(αV − γW ).

The unique equilibrium point of this system is

(V ∗,W ∗) =

(
γλ0

α + β0γ
,

αλ0

α + β0γ

)
.

The existence of a periodic solution of system (4) associated to the equi-
librium (V ∗,W ∗) needs that the Jacobian (9) of f = (f1, f2) at (V ∗, W ∗) be
non–zero, and this is the case because

det

(
∂(f1, f2)

∂(V, W )

∣∣∣∣
(V,W )=(V ∗,W ∗)

)
= α + β0γ ̸= 0.

Hence, there is one periodic solution (V (t, ε),W (t, ε)) of system (4) such that
(V (0, ε),W (0, ε)) = (V ∗,W ∗)+O(ε). Going back through the re-scaling (2),
the theorem is proved. �

Proof of Theorem 3. We have n1 = n3 = 2, n2 = 1, n4 = 3 and we take
m1 = 2 and m2 = 3. Then system (1) becomes

(5)
V̇ = ε (λ(t) − β(t)V − W ) + ε2V 2 + ε3β(t)V 2 − ε4V 3,

Ẇ = εαV − ε2γW.

The averaged system of system (5) is

V̇ = εf1(V, W ) = ε (λ0 − β0V − W ) ,

Ẇ = εf2(V, W ) = εαV.
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This system has the unique equilibrium point (0, λ0), and the determinant
of the linear part at it satisfies

det

(
∂(f1, f2)

∂(V, W )

∣∣∣∣
(V,W )=(0,λ0)

)
= α ̸= 0.

So, there exists one periodic solution (V (t, ε),W (t, ε)) of system (5) such
that (V (0, ε),W (0, ε)) = (0, λ0) + O(ε). Going back through the re-scaling
(2), the theorem is proved. �
Proof of Theorem 4. We have n1 = n4 = 4, n2 = n3 = 1 and we take m1 = 2
and m2 = 4. Then system (1) becomes

(6)
V̇ = −εβ(t)V + ε2(λ(t) − W + V 2) + ε3β(t)V 2 − ε4V 3,

Ẇ = −εγW + ε2αV.

Its averaged system is

V̇ = εf1(V, W ) = −εβ0V,

Ẇ = εf2(V, W ) = −εγW.

This system has the unique equilibrium point (0, 0), and the determinant of
the linear part at it satisfies

det

(
∂(f1, f2)

∂(V, W )

∣∣∣∣
(V,W )=(0,0)

)
= β0γ ̸= 0.

So, there exists one periodic solution (V (t, ε),W (t, ε)) of system (5) such
that (V (0, ε),W (0, ε)) = (0, 0) + O(ε). Going back through the re-scaling
(2), the theorem is proved. �

Appendix:Averaging theory of first order

We shall present the basic results from averaging theory that we need for
proving the results of this paper.

The next theorem provides a first order approximation for the periodic
solutions of a periodic differential system, for the proof see Theorems 11.5
and 11.6 of Verhulst [11].

Consider the differential equation

(7) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover we assume
that both F1(t,x) and F2(t,x, ε) are T−periodic in t. We also consider in
D the averaged differential equation

(8) ẏ = εf(y), y(0) = x0,

where

f(y) =
1

T

∫ T

0
F1(t,y)dt.
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Under certain conditions, equilibrium solutions of the averaged equation
turn out to correspond with T−periodic solutions of equation (7).

Theorem 5. Consider the two initial value problems (7) and (8). Suppose:

(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x2, F2 and its Jacobian
∂F2/∂x are defined, continuous and bounded by a constant indepen-
dent of ε in [0, ∞) × D and ε ∈ (0, ε0].

(ii) F1 and F2 are T−periodic in t (T independent of ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged equation (8) and

(9) det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T−periodic solution φ(t, ε) of equation (7) such
that φ(0, ε) → p as ε → 0.

(b) The stability or instability of the limit cycle φ(t, ε) is given by the
stability or instability of the equilibrium point p of the averaged sys-
tem (8). In fact the singular point p has the stability behavior of the
Poincaré map associated to the limit cycle φ(t, ε).
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