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We consider a system of three interacting van der Pol oscillators with reactive coupling. Phase
equations are derived, using proper order of expansion over the coupling parameter. The dynamics
of the system is studied by means of the bifurcation analysis and with the method of Lyapunov
exponent charts. Essential and physically meaningful features of the reactive coupling are discussed.
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I. INTRODUCTION

Phenomena of synchronization of oscillators are wide
spread in nature and technology. A variety of examples
can be found in electronics, laser physics, biophysics,
chemistry, neuroscience, etc. [1–6]. Synchronization in
modern experiments for optomechanical, micromechani-
cal, electronic oscillators is investigated, e.g. see [7–11].
The general picture of oscillatory modes in arrays of el-
ementary oscillators substantially depends on a number
of the elements and of the coupling type. In the simplest
case of two oscillators with dissipative coupling one can
observe mutual mode locking of the oscillators with dif-
ferent natural frequencies, two-frequency quasi-periodic
oscillations, the effect of ”the oscillation death”, and the
regime called the ”broadband synchronization” specific
for the oscillatory elements with non-identical control pa-
rameters [1–3, 12–16]. With increase of a number of the
oscillatory elements the picture becomes more compli-
cated; many features of it have been established and un-
derstood recently [17–23].

More complex is a case of reactive coupling (termed
sometimes as the conservative coupling) [1–3, 13–15]. In
radio-engineering and electronics, the coupling of such
kind occurs in the case of presence of a reactive element
(inductance) in the coupling circuit instead of a resistor
giving rise to the dissipative coupling [2]. A topical ex-
ample of a system with the reactive coupling corresponds
to ionic traps [24]. In such traps ions are confined us-
ing variable microwave fields, which restrict a magnitude
of radial oscillations of the ions, and a constant electric
field, limiting the axial motions. In a trap with many
electrodes, the ions form a chain being located in the
potential wells, and the nonlinearity provides the anhar-
monic nature of oscillations of the ions in the wells. Ad-
ditionally, the ions are irradiated by laser beams. The
blue laser light of frequency larger than the natural fre-
quency of the ion oscillations provides instability in the

system. The red laser light of frequency less than the os-
cillation frequency gives rise to dissipation. The ions in
the chain are coupled due to the Coulomb repulsion. The
simplest model of such a system is a chain of reactively
coupled van der Pol oscillators [24]. In other concern the
models of coupled van der Pol oscillators are studied in
application to biological circadian rhythms [25] and for
arrays of nanoscale mechanical resonators [26].

The reactive coupling is a phenomenon essentially
more subtle than the dissipative coupling. The reason is
that when constructing a reduced phase model one must
take into account the second order effects in the coupling
magnitude. In the case of two oscillators in the first or-
der approximation the coupling effects are generally not
manifested. For three or more oscillators the linear terms
are present, but the resulting abridged system is conser-
vative [27, 28].

The case of two oscillators was discussed in Refs. [13–
15]. There the appropriate model for dynamics of the
phase variable was derived and it was shown that the syn-
chronization effect appears only with taking into account
the terms of the second order in the coupling parameter.
One more feature of the dynamics with the reactive cou-
pling is the phase bistability; it means that depending
on initial conditions the oscillators may synchronize ei-
ther in phase, or in counter-phase. In the present Letter
we consider dynamics and synchronization in a chain of
three reactively coupled van der Pol oscillators. In con-
trast to [27, 28], we will assume non-identical oscillators
for frequency and focus on the discussion of structure of
parameter plane of frequency detuning. The first task is
derivation of correct phase equations accounting all rel-
evant effects. Then, they are studied using approaches
developed in Refs. [22, 23]. We reveal possible modes of
complete and partial synchronization of the oscillators,
the bifurcation mechanisms of destruction of the syn-
chronization, and describe arrangement of the parameter
domains of quasi-periodic modes with different number
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of incommensurable frequencies. One of the main ques-
tions we discuss concerns features and distinctions of the
reactive coupling in comparison with the earlier known
results for the dissipative coupling.

II. THE PHASE MODEL

Consider a set of equations

ẍ− (λ− x2)ẋ+ x+ ε(x− y) = 0,
ÿ − (λ− y2)ẏ + (1 +∆1)y + ε(y − x) + ε(y − z) = 0,
z̈ − (λ− z2)ż + (1 +∆2)z + ε(z − y) = 0.

(1)
where λ is a parameter controlling intensity of the self-
oscillations, ∆1 and ∆2 are the detuning parameters for
the second and the third oscillators, and ε is the coupling
constant.
If the excitation parameter λ is small enough, as well

as the detuning parameters, one can apply the slow-
amplitude method for the analysis of the equations (1).
Using the standard approach [1, 2], one can derive the
following equations for the real amplitudes ri and phases
of the oscillators ψi (Landau-Stuart equations):

2ṙ1 = r1 − r3
1
− εr2 sin θ,

2ṙ2 = r2 − r3
2
+ εr1 sin θ − εr3 sinϕ,

2ṙ3 = r3 − r3
3
+ εr2 sinϕ,

2ψ̇1 = ε− ε r2
r1

cos θ,

2ψ̇2 = 2ε+∆1 − ε r1
r2

cos θ − ε r3
r2

cosϕ,

2ψ̇3 = ε+∆2 − ε r2
r3

cosϕ.

(2)

Here θ = ψ1 −ψ2, ϕ = ψ2−ψ3 are relative phases of the
oscillators, and the parameters are normalized in respect
to the small parameter λ [14, 15]:

r →
√
λr, t→ t/λ, ε→ λε, ∆ → λ∆. (3)

Subtracting pairwise the phase equations (2), we obtain
the following equations for the relative phases:

2θ̇ = −ε−∆1 + ε
(

r1
r2

− r2
r1

)

cos θ + ε r3
r2

cosϕ,

2ϕ̇ = ε+∆1 −∆2 + ε
(

r2
r3

− r3
r2

)

cosϕ− ε r1
r2

cos θ.
(4)

Let us set ri = 1 + r̃i, where the tilde designates per-
turbations of the stationary orbits r = 1. The amplitude
equations are strongly damped [1, 13–15], so the orbits
in a short time reach roughly the stationary amplitudes
with some perturbations easily estimated from (2) as

2r̃1 = −ε sin θ, 2r̃2 = ε sin θ− ε sinϕ, 2r̃3 = ε sinϕ. (5)

In turn, from the phase equations (4) we obtain

2θ̇ = −ε−∆1 + 2ε(r̃1 − r̃2) cos θ

+ ε(1 + r̃3 − r̃2) cosϕ,
2ϕ̇ = ε+∆1 −∆2 + 2ε(r̃2 − r̃3) cosϕ

− ε(1 + r̃1 − r̃2) cos θ.

(6)

Substituting the expressions for the perturbations from
(5) we get

2θ̇ = −ε−∆1 + ε cosϕ− ε2 sin 2θ

+ ε2
(

sinϕ cos θ − 1

2
sin θ cosϕ+ 1

2
sin 2ϕ

)

,
2ϕ̇ = ε+∆1 −∆2 − ε cos θ − ε2 sin 2ϕ

+ ε2
(

sin θ cosϕ− 1

2
sinϕ cos θ + 1

2
sin 2θ

)

.
(7)

These are the correct phase equations for three reactively
coupled oscillators derived up to the terms of order ε2.
Their structure is notably more complex than that for
the dissipative coupling [1, 22].
In contrast to the case of two oscillators [13–15], the

phase equations (7) do contain terms of the first order
in the coupling strength ε, however, for proper descrip-
tion of the synchronization effects these terms are not
sufficient. Indeed, if one neglect the quadratic terms, the
matrix for perturbations of the stationary state of (7) is

M̂ =

(

0, −ε sinϕ
ε sin θ, 0

)

. (8)

The trace of this matrix is zero, S = 0. It means that
a kind of “neutral” state occurs on the border between
the stable and unstable solutions (conservative dynam-
ics). Hence, in the system there is no main resonance at
all in this approximation. As follows, for description of
synchronization phenomena one has necessarily take into
account the effects of the second order in the coupling
parameter.
Figure 1a illustrates bifurcations of equilibrium points

of the system (7). In the case of dissipative coupling the
border of the domain of complete synchronization corre-
sponds to a curve of degenerate saddle-node bifurcations,
where simultaneous merging occurs for a pair of the sad-
dles with the stable and the unstable nodes [22, 29]. For
the reactive coupling the curves of the saddle-node bifur-
cations SN for merging of a stable node and a saddle and
for an unstable node and a saddle do not coincide[33].
Moreover, here a bifurcation of Andronov-Hopf is possi-
ble (designated by H), where the equilibrium point be-
comes unstable with appearance of the stable limit cycle
departing from it. Therefore, the region of complete syn-
chronization in the case of reactive coupling of phase os-
cillators appears to be bounded both by the curves of the
saddle-node bifurcations and of the line of the Andronov-
Hopf bifurcations. Also we indicate in Figure 1a the
points of codimension two: the cusp point CP and the
Bogdanov–Takens point BT. In Figure 1b, the domains
inside of which system has one or two stable equilibria are
shown using different colors. Thus, there is the simplest
multistability.
Figure 2 shows the chart of Lyapunov exponents [22,

23] of the system (7) on the parameter plane of frequency
detuning of the oscillators (∆1,∆2). To draw the chart
we compute two Lyapunov exponents of the system (7)
Λ1 and Λ2 at each pixel of the picture and attribute it
with a color depending on the signature of the Lyapunov
spectrum to visualize the following regimes:
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FIG. 1: Bifurcation curves and points of the system (7), ε =
0.2. Digits in fragment b) indicate the number of coexisting
stable equilibriums.

a) Λ1 < 0, Λ2 < 0 – the complete synchronization of
three oscillators P (red),

b) Λ1 = 0, Λ2 < 0 – the two-frequency quasi-periodicity
T2 (yellow),

c) Λ1 = 0, Λ2 = 0 – the three-frequency quasi-periodicity
T3 (blue).
(Here the types of regimes are responsible to original sys-
tem (1). In this case it is convenient to compare the re-
sults obtained at investigations of the phase model and
the original system, see Fig.7.)

The area of complete synchronization in Fig. 2 con-
tains four “islands”[34]. In each island we observe a spe-
cific kind of complete synchronization as illustrated in the
phase portraits of Fig. 3 from (a) to (d). At the point (a)
the relative phases are close to zero: θ ≈ 0, ϕ ≈ 0, and
this is the synchronization mode of the in-phase type.
At the point (b) the relative phases are θ ≈ −π, ϕ ≈ π;
so, the first and the third oscillators are roughly in phase
while the second oscillator is in the counter-phase rela-
tively to them. This is the counter-phase synchroniza-
tion. In the rest two islands we observe the complete
synchronization of mixed type. In this case one of the
pairs of the oscillators (1-2 or 2-3) are in phase, while
the rest is in the counter-phase relative to them. The
corresponding configurations of chain are shown in the
right part of Fig.2[35].

Beside the region of complete synchronization, on the
Lyapunov chart of Fig. 2 one can see a set of bands of two-
frequency quasi-periodic regimes immersed in the domain
of three-frequency regimes. Within each such band in-

FIG. 2: Chart of Lyapunov exponents on the parameter plane
and configurations of basic modes of complete synchronization
of the system (7) at ε = 0.2. The letters designate points cor-
responding to the phase portraits of Fig. 3. Used hereinafter
color palette for the Lyapunov charts is shown below.

variant curves of different types occur in the phase plane.
Say, in the diagram 3(e) the relative phase of the first and
the second oscillators θ fluctuates around a certain equi-
librium value, while the phase φ varies across the whole
range of values. This is a partial mode-locking of the first
and the second oscillators. In the diagram 3(f) one ob-
serves bounded oscillations of the relative phase of the
second and thirds oscillators φ, so this is a partial mode-

locking of the second and the third oscillators.

We can classify regions of two-frequency modes with
help of the rotation number w = p : q. Here p and q
are numbers of intersection of the corresponding invari-
ant curve with vertical and horizontal sides of the phase
square. Only significant intersections should be used tak-
ing into consideration 2π-periodicity of phase. So for
Fig.3e the rotation number w = 0 : 1 (for both curves)
and for Fig.3f w = 1 : 0.

This classification becomes obvious if we compute a
“torus map” using the numerical calculation of the fac-
tors p and q at each point in the parameter plane. The
corresponding illustration is given in Fig.4. We use the
following rule of coloring. Blue color associates with
regime of the rotation number w = 1 : 0. Decreasing
of the rotation number corresponds to a piecemeal trans-
formation of this color to green mode w = 1 : 1. Then
green color is gradually transformed into the red for the
mode with the rotation number w = 0 : 1. Stable equi-
libriums are shown in white and the other modes – in
black. Light gray color corresponds to the regime with
contractible limit cycles when invariance curve has no
significant intersections with the sides of the phase of a
square.
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FIG. 3: Phase portraits for the system of three reactively
coupled oscillators (7) at ε = 0.2: a) ∆1 = 0, ∆2 = 0; b)
∆1 = −0.45, ∆2 = 0; c) ∆1 = −0.38, ∆2 = −0.33; d) ∆1 = 0,
∆2 = 0.36; e) ∆1 = −0.2, ∆2 = 0.4; f) ∆1 = 0.05, ∆2 = 0.22;
g) ∆1 = −0.2, ∆2 = 0; h) ∆1 = −0.3, ∆2 = 0.

FIG. 4: Map of the two-frequency quasi-periodicity area of
the system (7)

Origin of the two frequency bands with a common sym-

metry center in Figure 2 may be explained by the pres-
ence of various possible resonances in the system. To
substantiate this point, outline the partial frequencies ωi

of the system (6). If we ”switch off” in each equation all
other oscillators, in the linear approximation we obtain
from (6)

ω1 =
ε

2
, ω2 = ε+

∆1

2
, ω3 =

ε

2
+

∆2

2
. (9)

A feature of the reactive coupling is that it shifts the
partial frequencies by a value of order ε (the shift for the
central oscillator is twice as large as for the other ones
because it interacts with two rather than one neighbors).
Now, let us write out the main resonances for the par-

tial frequencies. In round brackets the respective con-
ditions are indicated in terms of the frequency detuning
parameters:

ω1 = ω2 (∆1 = −ε) ,
ω2 = ω3 (∆2 = ∆1 + ε) ,
ω1 = ω3 (∆2 = 0) ,
ω1 + ω3 = 2ω2 (∆2 = 2∆1 + 2ε) .

(10)

The resonance conditions (10) determine the centers
for the wide bands of two-frequency modes in Fig. 2. Ad-
ditional resonances are possible too, say, ω1 + ω2 = 2ω3

etc. They correspond to more narrow bands in Fig. 2.
The resonances of higher order give rise to invariant
curves with larger number of intersections with the sides
of the phase square.
Note that the resonances ω1 = ω3 and ω1 + ω3 = 2ω2

determine lines of symmetry on the parameter plane, see
Figs. 1 and 2. This is due to symmetry of these resonance
conditions in respect to permutation of the first and third
oscillators. Say, under the condition ω1 = ω3, i.e.∆2 = 0,
the equations (7) are transformed one to other under the
variable change θ ↔ −ϕ. As a result, the phase portraits
are symmetric about the line ϕ = −θ, see Fig. 3g,h.
Analogously, with the condition ∆2 = 2(∆1 + ε) the
equations are invariant in respect to the variable change
θ ↔ ϕ+ π.
A case is interesting of equality of all the partial fre-

quencies ω1 = ω2 = ω3 that corresponds to the sym-
metry center on the parameter plane ∆1 = −ε,∆2 = 0.
The phase portrait at this point is shown in Fig. 3g,
and at the point close to it at - in Fig. 3h. In this case
invariant curves of other kind arise, which are distinct
in their topological properties. The curves in Fig. 3g
may be called contractible, while those in diagrams (a)-
(f) are called rotational [31] (for the dissipative cou-
pling the second case is typical [22]). In the first case
we have a limit cycle going around the unstable equi-
librium point. Then, both the relative phases fluctuate
about some mean value. This mode may be characterized
as a partial mode-locking of all three oscillators. The fre-
quency spectrum produced by the system (1) will contain
not only the basic frequency, but also a set of components
associated with an additional new time scale, the period
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of travel of the representative point around the limit cycle
of the phase model.
Contractible limit cycles can occur, as we have already

noted, as a result of Andronov-Hopf bifurcation. In ad-
dition, the system can demonstrate nonlocal bifurcations
when the resulting limit cycle arises from the separatrix
loop of the saddle.
Note that several types of multistability are possi-

ble in the system with reactive coupling as seen from
Fig. 3. Diagrams (a)-(d) correspond to situation when
an equilibrium state in the phase space corresponding to
the complete synchronization coexists with an invariant
curve corresponding to a two-frequency quasi-periodic
regime[36]. In diagram (e) two regimes coexist (the in-
phase mode and the counter-phase mode) corresponding
to partial mode-locking of the first and second oscilla-
tors. In turn, in diagram (g) there coexist two regimes
of partial synchronization of all three oscillators.
Multistability affects the appearance of the Lyapunov

chart. Namely, when choosing different initial conditions
one can observe either periodic or quasi-periodic regimes,
as can be seen from a comparison of Figures 1 and 2.

III. DYNAMICS OF THE ORIGINAL SYSTEM

Let us illustrate the effectiveness of the phase model.
For this purpose we represent the results of the bifurca-
tion analysis of the original system (1) at λ = 0.1, Figure
5. In accordance with the renormalization rules (3) the
coupling parameter ε = 0.02 is selected, which allows to
compare Figure 5 for the original system and Figure 1
for the phase model. Now instead of a saddle-node bifur-
cation of equilibria there is a corresponding bifurcation
of limit cycles SNC, instead of the Andronov-Hopf bi-
furcation - Neimark-Sacker bifurcation NS, and instead
of Bogdanov-Takens points - points of 1:1 resonance R1.
From Figure 1 and Figure 5 we can see that the Figures
are similar to each other, which indicates the effectiveness
of the phase model for these values of coupling parame-
ter.
It should be noted that the effectiveness of the phase

model will increase with a decrease in the coupling pa-
rameter ε. With increasing of coupling parameter its effi-
ciency falls. Fig.6 illustrates this fact, demonstrating bi-
furcation lines of the phase model and the original system
(1). For the phase model we select coupling parameter
ε = 0.6, so for original system we have ε = 0.06 (taking
into account λ = 0.1 rescaled on (3)). Some common
features - the presence of four lobes - remain. However,
the pictures are different in details. Namely, external
boundaries of lobes now are mainly the Neimark-Saker
lines NS. Lines of saddle-node bifurcations of limit cy-
cles SNC form only small segments of the boundary of
complete synchronization area in the vicinity of the cusp
points CP associated with bistability areas. One more
new feature is the appearance of a double Neimark-Sacker
bifurcation points NS-NS.

FIG. 5: Bifurcation curves and points of the system (1), λ =
0.1, ε = 0.02.

FIG. 6: a) Bifurcation lines and dots of phase model (7),
ε = 0.6; b) the similar illustration for the original system (1),
λ = 0.1, ε = 0.06.

Chart of Lyapunov exponents of the original system (1)
is presented in Fig.7 for λ = 0.1, ε = 0.06. An enlarged
fragment of this chart in Fig.7b should be compared with
Fig.6b.
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FIG. 7: The chart of Lyapunov exponents and its magnified
fragment of the system (1), λ = 0.1, ε = 0.06.

With the growth of the λ control parameter both the
Landau-Stuart and phase model will work bad to worse.
In fig.8a the Lyapunov chart is shown for the system
(1) for the case λ=1, ε=0.6. Now the picture is much
more complex. Fig.8b shows a new effect: at the inter-
section of numerous bands of two-frequency modes there
are located regions of higher resonances, to which there
correspond periodic regimes. This is a characteristic res-
onance Arnold web [32]. Letter D denotes the area of the
trajectories’ escape to infinity.

IV. CONCLUSION

The results presented here may be of interest for sys-
tems such as ion traps [24], biophysical systems [25],
etc. At the same time, due to universality of our mod-
els, they are important as well in the general theory of
synchronization. The main result is that in the descrip-
tion of reactive coupling in the framework of the slow
amplitudes approach it is of principal importance to ac-
count the effects of the second order in the coupling con-
stant. The region of complete synchronization consists
of four ”islands” in which the synchronization modes are
observed corresponding to in-phase, counter-phase, and

mixed types of oscillations in the chain. The bifurcation

FIG. 8: The chart of Lyapunov exponents and its magnified
fragment of the system (1), λ=1, ε = 0.6.

picture of the model formulated in terms of phase vari-
ables is significantly different from the case of dissipative
coupling. In particular, Andronov – Hopf bifurcation is
possible responsible for occurrence of partial synchroniza-
tion regimes of all three oscillators. For the arrangement
of the parameter plane of the frequency detunings, res-
onances between the partial frequencies are important,
and for the reactive coupling the resonance conditions
appear to depend on the coupling strength. One more
feature is that the quasi-periodic modes of various types
can co-exist with complete synchronization, giving rise
to many kinds of multistability (coexistence of different
attractors).
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