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Abstract

In this paper, we present two classes of lopsided systems and discuss their ana-
lytic integrability. The analytic integrable conditions are obtained by using the
method of inverse integrating factor and theory of rotated vector field. For the
first class of systems, we show that there are n+4 small-amplitude limit cycles
enclosing the origin of the systems for n ≥ 2, and 10 limit cycles for n = 1.
For the second class of systems, we prove that there exist n+4 small-amplitude
limit cycles around the origin of the systems for n ≥ 2, and 9 limit cycles for
n = 1.

Keywords: Nilpotent Poincaré systems; analytic integrability; Lyapunov
constant; Rotated vector field.

1. Introduction

Integrability is one of the most important and difficult problems in studying
ordinary differential systems. To explain the problem, consider a planar analytic
differential system, described by

u̇ = −v + U(u, v),

v̇ = u+ V (u, v),
(1.1)

where dot indicates differentiation with respect to time t, U and V are real
analytic functions whose series expansions in a neighborhood of the origin start
at least from second-order terms. By the Poincaré-Lyapunov theorem, system
(1.1) has a center at the origin if and only if there exists a first integral, given
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in the form of

φ(u, v) = u2 + v2 +
∞
∑

k+j=3

φkju
kvj , (1.2)

where the series converges in a neighborhood of the origin. Determining whether
the origin of system (1.1) is a center or focus is called center problem. Another
important problem in study of system (1.1) is the existence of analytical first
integral in a small neighborhood of the origin of system (1.1). If there exists such
an analytical first integral, the origin of system (1.1) is a center, in particular,
called an analytic center, see [1].

It is well known that it is difficult to distinguish focus from center when the
singular point is degenerate. Many research works have been done in this di-
rection. For example, analytic systems having a nilpotent singular point at the
origin were studied by Andreev [2] in order to obtain their local phase portraits.
However, Andreev’s results do not distinguish focus from center. Takens [3]
provided a normal form for nilpotent center of foci. Later, Moussu [4] found the
C∞ normal form for analytic nilpotent centers. Further, Berthier and Moussu
[5] studied the reversibility of nilpotent centers. Teixeria and Yang [6] analysed
the relationship between reversibility and the center-focus problem, expressed
in a convenient normal form, and studied the reversibility of certain types of
polynomial vector fields. Han et al. considered polynomial Hamiltonian sys-
tems with a nilpotent singular point, and they obtained necessary and sufficient
conditions for quadratic and cubic Hamiltonian systems with a nilpotent sin-
gular point which may be a center, a cusp or a saddle, see [7]. In particular,
the local analytic integrability for nilpotent centers was investigated [8], for the
differential systems in the form of

ẋ = y + P3(x, y),

ẏ = Q3(x, y),

which has a local analytic first integral, where P3 and Q3 represent homoge-
neous polynomials of degree three. For third-order nilpotent singular points of
a planar dynamical system, the analytic center problem was solved by using the
integrating factor method, see for example [9].

The Kukles system, as a well-known example, has been investigated inten-
sively on the existence of its limit cycles as well as its integrability. For the
following particular Kukles system,

ẋ = y,

ẏ = −x+ a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3,

the conditions under which the origin of the system is a center have been exam-
ined in [10, 11, 12, 13, 14, 15, 16]. More details about the Kukles system can
be found in [17]. The so-called extended Kukles system,

ẋ = y(1 + kx),

ẏ = −x+ a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3,
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has also been considered to obtain the center conditions [18, 19]. Recently,
center problem for some more generalized Kukles type systems have been studied
[20, 21, 22]. A kind of Liénard systems of type (n, 4) for 3 ≤ n ≤ 27 was
investigated and they obtained the lower bound of the maximal number of limit
cycles for this kind of system in [23].

Research on Hilberts sixteenth problem in general usually proceeds by the
investigation on specific classes of polynomial systems, much effort has been
devoted in recent years to the investigation of various systems such as poincare
system, Able equation, lopsided system and so on. The Kukles system is perhaps
the earliest example of lopsided systems which have the following forms

ẋ = −y,

ẏ = x+ P (x, y),

or
ẋ = −y + P (x, y),

ẏ = x.

Since then, lopsided systems have drawn more and more attention to researchers.
Lopsided quartic and quintic polynomial vector fields have been studied and
center conditions were obtained [24, 25]. Furthermore, Gine [26] proved that
there is exactly one isochronous system for lopsided quartic system, and the
origin never can be an isochronous center for lopsided quintic system. For
seventh-degree lopsided system Soriano and Salih [27] showed that the origin is
a center if and only if the system is time-reversible and if it is not, no more than
seven local limit cycles can bifurcate from the origin under certain conditions.
However when the origin is a degenerate singular point, there are fewer results
because it is difficult to compute the Lyapunov constants. The cubic lopsided
system with a nilpotent singular point has been investigated intensively. For
example, Alvarez and Gasull [28] proved that three limit cycles can bifurcate
from a nilpotent singular point of the following system:

ẋ = −y,

ẏ = a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3,
(1.3)

via an analysis based on normal forms. Then, Liu and Li [29] showed that by
making a small perturbation to the linear terms of (1.3), it can exhibit four
small-amplitude limit cycles. Bifurcation of limit cycles and center conditions
for the following two families of lopsided systems with nilpotent singularities,

ẋ = −y + P4(x, y),

ẏ = −2x3,

and
ẋ = −y + P5(x, y),

ẏ = −2x3,

have been considered by Li et al. [30], where P4(x, y) and P5(x, y) represent
homogeneous polynomials in x and y of degree four and five, respectively. Their
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results show that it is more difficult to distinguish focus from center when the
singular point is degenerate. As far as analytic center of lopsided system is
concerned, it is more challenging to distinguish it from focus. So, in this paper,
we shall discuss analytic center conditions and bifurcation of limit cycles for two
classes of lopsided systems with a cubic-order nilpotent singular point, given by

ẋ = y +H3(x, y) +H2n+3(x, y),

ẏ = −2x3,
(1.4)

and
ẋ = y,

ẏ = −2x3 +H3(x, y) +H2n+3(x, y),
(1.5)

where Hk(x, y) represent a kth-degree homogeneous polynomial in x and y.
The main goal of this paper is to apply the method of integrating factor and

theory of rotating vector fields to distinguish analytic integrability conditions
and to find the conditions for analytic centers. This work is a continuation of
that for the Kukles system with a degenerate singular point. In next section,
we present some known results which are necessary for proving the main result.
We derive the analytic center conditions for the centers of systems (1.4) and
(1.5) in Sections 3 and 4, respectively. Finally, conclusion is drawn in Section
5.

2. Preliminary results

In this section, we present some relative notions and results taken from [31, 32],
which will be used in the following sections. A system whose origin is a cubic-
order monodromic singular point can be written as

ẋ = y + µx2 +
∞
∑

i+2j=3

aijx
iyj = X(x, y),

ẏ = −2x3 + 2µxy +
∞
∑

i+2j=4

bijx
iyj = Y (x, y).

(2.1)

Theorem 2.1. For any positive integer s and a given number sequence {c0β}, β ≥
3, a formal series can be constructed successively in terms of the coefficients cαβ
(α 6= 0) as

M(x, y) = y2 +

∞
∑

α+β=3

cαβx
αyβ =

∞
∑

k=2

Mk(x, y), (2.2)

satisfying

(

∂X

∂x
+

∂Y

∂y

)

M − (s+ 1)

(

∂M

∂x
X +

∂M

∂y
Y

)

=

∞
∑

m=3

ωm(s, µ)xm, (2.3)

where Mk(x, y) is a kth-degree homogeneous polynomial in x and y, satisfying
sµ = 0 for all k.
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Theorem 2.2. For α ≥ 1, α + β ≥ 3 in (2.2) and (2.3), cαβ can be uniquely
determined by the recursive formula,

cαβ =
1

(s+ 1)α
(Aα−1,β+1 +Bα−1,β+1). (2.4)

For m ≥ 1, ωm(s, µ) can be uniquely determined by the recursive formulae:

ωm(s, µ) = Am,0 +Bm,0, (2.5)

λm =
ω2m+4(s, µ)

2m− 4s− 1
. (2.6)

where

Aαβ =
α+β−1
∑

k+j=2

[k − (s+ 1)(α− k + 1)]akjcα−k+1,β−j ,

Bαβ =
α+β−1
∑

k+j=2

[j − (s+ 1)(β − j + 1)]bkjcα−k,β−j+1.

(2.7)

Theorem 2.3. The origin of system (2.1) is an analytic center if and only if
the origin of system (2.1) is a center of ∞-class, namely, the origin of system
(2.1) is a center for any natural number s.

3. Analytic centers of system (1.4)

Now, we discuss the analytic centers of system (1.4) in two cases.

3.1. Case 1: n = 1.

For this case, system (1.4) can be written as

ẋ = y + a30x
3 + a21x

2y + a12xy
2 + a03y

3 + a50x
5 + a41x

4y

+a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,

ẏ = −2x3.

(3.1)

According to Theorem 2.1, we can find a formal series M(x, y) = x4 + y2 +
o((x2 + y2)2) for system (3.1), such that (2.3) holds. Applying the recursive
formulae in Theorem 2.2 to system (3.1), with the help of Mathematica, we
obtain

ω3 = ω4 = ω5 = 0,

ω6 = (4s− 1)a30,

ω7 = 3(a+ 1)c03,

ω8 = −
1

5
(4s− 3)(2a12 + 5a50),

ω9 = 0,

ω10 = −
1

7
(4s− 5)(2a32 + 3a21a50),
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ω11 =
15

4
(s+ 1)c05,

ω12 = −
1

45
(4s− 7)(12a14 + 30a03a50 + 5a41a50),

ω13 = 0,

ω14 = −
3 a50
77

(4s− 9)(6a23 + a21a41 − 10a250),

ω15 =
35

8
(s+ 1)c07,

ω16 = −
a50

117
(4s− 11)(60a05 + 10a03a41 + a241 − 3a21a

2
50),

ω17 = 0,

ω18 =
a50

1155
(4s− 13)(2a21a

2
41 + 300a03a

2
50 + 9a221a

2
50 + 100a41a

2
50),

ω19 =
315

64
(s+ 1)c09,

ω20 = −
a50

895050
(4s− 15)(28a21a

4
41 + 252a221a

2
41a

2
50 + 800a341a

2
50 + 567a321a

4
50

+ 3600a21a41a
4
50 + 4500a650),

ω21 = 0,

ω22 = −
4 a50
235125

(4s− 17)(4a221a
4
41 + 36a321a

2
41a

2
50 + 100a21a

3
41a

2
50 + 81a421a

4
50

+ 450a221a41a
4
50 − 125a241a

4
50),

ω23 =
693

128
(s+ 1)c011,

ω24 =
a50

42089726250000(s+ 1)
f1,

(3.2)

where

f1 =− 15174868212a621a
4
41 − 84454927200a421a

5
41 + 22768748000a221a

6
41 − 136573813908a721a

2
41a

2
50

− 1193662008000a521a
3
41a

2
50 − 2087643726000a321a

4
41a

2
50 + 651216400000a21a

5
41a

2
50

− 307291081293a821a
4
50 − 3661266760200a621a41a

4
50 − 9313504335000a421a

2
41a

4
50

+ 5946721200000a221a
3
41a

4
50 + 23826000000a441a

4
50 − 17785962180a621a

4
41s

− 98929404000a421a
5
41s+ 26934900000a221a

6
41s− 160073659620a721a

2
41a

2
50s

− 1398534984000a521a
3
41a

2
50s− 2442981870000a321a

4
41a

2
50s+ 18810000000a441a

4
50s

+ 770106000000a21a
5
41a

2
50s− 360165734145a821a

4
50s+ 6998670000000a221a

3
41a

4
50s

− 4290086997000a621a41a
4
50s− 10903637205000a421a

2
41a

4
50s+ 4967473392a621a

4
41s

2

+ 27628675200a421a
5
41s

2 − 7529168000a221a
6
41s

2 + 44707260528a721a
2
41a

2
50s

2

+ 390585888000a521a
3
41a

2
50s

2 + 682203816000a321a
4
41a

2
50s

2 − 215262400000a21a
5
41a

2
50s

2

+ 100591336188a821a
4
50s

2 + 1198155823200a621a41a
4
50s

2 + 3044973060000a421a
2
41a

4
50s

2

− 1955419200000a221a
3
41a

4
50s

2 − 5016000000a441a
4
50s

2.
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Based on (2.6) and (3.2), it is easy to find the first ten quasi-Lyapunov constants
of system (3.1).

Theorem 3.1. The first ten quasi-Lyapunov constants at the origin of system
(3.1) are given by

λ1 = a30,

λ2 =
1

5
(2a12 + 5a50),

λ3 =
1

7
(2a32 + 3a21a50),

λ4 =
1

45
(12a14 + 30a03a50 + 5a41a50),

λ5 =
3 a50
77

(6a23 + a21a41 − 10a250),

λ6 = −
a50

117
(60a05 + 10a03a41 + a241 − 3a21a

2
50),

λ7 = −
a50

1155
(2a21a

2
41 + 300a03a

2
50 + 9a221a

2
50 + 100a41a

2
50),

λ8 = −
a50

895050
(28a21a

4
41 + 252a221a

2
41a

2
50 + 800a341a

2
50 + 567a321a

4
50

+ 3600a21a41a
4
50 + 4500a650),

λ9 = −
4 a50
235125

(4a221a
4
41 + 36a321a

2
41a

2
50 + 100a21a

3
41a

2
50 + 81a421a

4
50

+ 450a221a41a
4
50 − 125a241a

4
50),

λ10 = −
a50

42089726250000(s+ 1)(4s− 19)
f1,

(3.3)

where λk−1 = 0 for k = 2, · · · , 10 have been used in the computation of λk.

It follows from Theorem 3.1 that the following assertion holds.

Proposition 3.1. For n = 1, the origin of system (3.1) is an analytic center
if and only if the following conditions are satisfied:

a30 = a12 = a32 = a14 = a50 = 0. (3.4)

Proof. By setting λ1 = λ2 = · · · = λ10 = 0, it is easy to get the conditions in
(3.4). Assume a50 6= 0, and denote

f2 =28a21a
4
41 + 252a221a

2
41a

2
50 + 800a341a

2
50 + 567a321a

4
50 + 3600a21a41a

4
50 + 4500a650,

f3 =4a221a
4
41 + 36a321a

2
41a

2
50 + 100a21a

3
41a

2
50 + 81a421a

4
50 + 450a221a41a

4
50 − 125a241a

4
50.

(3.5)
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Then, we have

R1 = Resultant[f2, f3, a21]

= 252226880859375a2850(37a
6
41 + 36000a341a

4
50 + 864000a850),

R2 = Resultant[f2, f1, a21]

= − 750785873641864353168750000000000000000a4450(−879390304066912a1241

+ 47983547106994035360a941a
4
50 + 49445533255803715842660a641a

8
50

+ 1456057532744172471928500a341a
12
50 + 6498810664995012399669375a1650

− 2759277767198304a1241s+ 169297706825726316960a941a
4
50s

+ 173470743593716632941700a641a
8
50s+ 5108374765584631369552500a341a

12
50s

+ 22851124455468570581840625a1650s− 2080601609429376a1241s
2

+ 151804543373289707520a941a
4
50s

2 + 154422423262500291638820a641a
8
50s

2

+ 4547533910484627929569500a341a
12
50s

2 + 20400917084512169654885625a1650s
2

+ 610343850576768a1241s
3 − 33200851039501326720a941a

4
50s

3

− 34214947244661526011900a641a
8
50s

3 − 1007536381850376947992500a341a
12
50s

3

− 4496729306788344912103125a1650s
3 + 573878672057856a1241s

4

− 49876076993258065920a941a
4
50s

4 − 50424620011202182011120a641a
8
50s

4

− 1484973484158264557562000a341a
12
50s

4−6678213700042142946607500a1650s
4

− 217264690435584a1241s
5 + 18276082133674805760a941a

4
50s

5

+ 18496906029642804955200a641a
8
50s

5 + 544720023506226322440000a341a
12
50s

5

+ 2448661869754899507450000a1650s
5 + 19914634381312a1241s

6

− 1701986627481384960a941a
4
50s

6 − 1721646399680525295360a641a
8
50s

6

− 50701299015707667936000a341a
12
50s

6 + 227963727065799050760000a1650s
6).

With the aid of Mathematica, we obtain for ∀s ∈ Z+

G1 = Resultant[R1, R2, a41]

= − 182848672642886912449902102931881129741668701171875a9650(1 + s)6(−19 + 4s)6

× (12242160594943288477497249258950767957

+ 57187190996418911124243473597501985540s

+ 84210057837841105190444817587559944702s2

+ 22053341878592957414426973876225026580s3

− 34746447450361087057581921863631440523s4

− 7190180552428847800895138514692327280s5

+ 8952012886140489676856041653019558112s6

− 1982180847477328550724618213150339840s7

+ 138354459536790840295491820367594752s8)3 6= 0.

So there are no solutions for the set of equations, f1 = f2 = f3 = 0, implying
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that there do not exist other analytic center conditions for system (3.1) if a50 6=
0.

Under the conditions in (3.4), system (3.1) becomes

ẋ = y + a21x
2y + a03y

3 + a41x
4y + a23x

2y3 + a05y
5,

ẏ = −2x3.
(3.6)

Obviously, system (3.6) is symmetric with the y-axis. According to Theorem 11
in [9], the origin is an analytic center of system (3.1).

Proposition 3.1 implies that

Theorem 3.2. The necessary and sufficient conditions for the origin of system
(3.1) being an analytic center are determined from vanishing of the first ten
quasi-Lyapunov constants, that is, the conditions given in Proposition 3.1 are
satisfied.

When the cubic-order nilpotent singular point, O(0, 0) is a 10th-order weak
focus, it is easy to show that the perturbed system of (3.1), given by

ẋ = δx+ y + a30x
3 + a21x

2y + a12xy
2 + a03y

3 + a50x
5 + a41x

4y

+ a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,

ẏ = δy − 2x3,

(3.7)

can generate ten limit cycles enclosing an elementary node at the origin of
system (3.9).

Theorem 2.2 in [32] implies the following result,

Theorem 3.3. If the origin of system (3.7) is a 10th-order weak focus, then
within a small neighborhood of the origin, for 0 < δ ≪ 1, perturbing the co-
efficients of system (3.7) can yield ten small-amplitude limit cycles bifurcating
from the elementary node O(0, 0).

Proof. The origin of system (3.7) is a 10th-order weak focus if and only if

a30 = 0; a12 = −
5a50
2

; a32 = −
3a21a50

2
;

a14 = −
5

12
(6a03a50 + a41a50);

a23 =
1

6
(−a21a41 + 10a250);

a05 =
1

60
(−10a03a41 − a241 + 3a21a

2
50);

a03 =
1

(300a250)
(−2a21a

2
41 − 9a221a

2
50 − 100a41a

2
50).
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and

J0 =
∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9)

∂(a30, a12, a32, a14, a23, a05, a03, a21, a41)

= −
2048a350

56772622027996875
(224a221a

7
41 + 3024a321a

5
41a

2
50 + 11000a21a

6
41a

2
50

+ 13608a421a
3
41a

4
50 + 108900a221a

4
41a

4
50 + 123500a541a

4
50

+ 20412a521a41a
6
50 + 311850a321a

2
41a

6
50 + 783000a21a

3
41a

6
50

+ 200475a421a
8
50 + 1022625a221a41a

8
50 + 450000a241a

8
50).

Furthermore,

R5 = Resultant[f2,
J0

a350
, a21]

= 97384a941 − 98391600a641a
4
50 + 24582976875a341a

8
50 + 80858250000a1250,

Resultant[R5, R1, a21]

= 1928337060674939567063811915624524516160347438902935330714052761390000

00000000000000000000000a7250 6= 0.

So Theorem 2.2 in [32] yields the conclusion holds.

3.2. Case 2: n ≥ 2.

For this case, system (1.4) can be written as

ẋ = y + x(a30x
3 + a21x

2y + a12xy
2 + a03y

3 + a2n+3,0x
2n+3

+ a2n+2,1x
2n+2y + a2n+1,2x

2n+1y2 + · · ·+ a1,2n+2xy
2n+2

+ a0,2n+3y
2n+3) ≡ X1(x, y),

ẏ = − 2x3.

(3.8)

Theorem 3.4. For n ≥ 2, the origin of system (3.8) is at most a (n+4)th-order
weak focus. If the origin of system (3.8) is a (n+4)th-order weak focus, then
within a small neighborhood of the origin, perturbing the coefficients of system
(3.8) can yield n + 4 small-amplitude limit cycles around the elementary node
O(0, 0).

Proof. For a nilpotent system, in order to study the dynamical behavior in
the neighborhood of the origin, we could consider y and x2 to be infinitesimal
equivalence in the neighborhood of the origin, see [32]. Construct a comparison
system,

ẋ = y + x(a21x
2y + a03y

3 + a2n+2,1x
2n+2y + · · ·+ a1,2n+2xy

2n+2)

≡ X2(x, y),

ẏ = −2x3,

(3.9)

which shows that the system is symmetric with the x-axis, and so the origin
O(0, 0) is a center.

10



Next, we compute the determinant of system (3.7) to obtain

J1 = det

[

X1(x, y) −2x3

X2(x, y) −2x3

]

= −2x4(a30x
2 + a12y

2 + a2n+3,0x
2n+2

+a2n+1,2x
2ny2 + · · ·+ a3,2nx

2y2n + a1,2n+2y
2n+2).

By treating the y and x2 as infinitesimal equivalence in the neighborhood of the
origin, we have

J1 = −2x4(a30x
2 + a12x

4 + a2n+3,0x
2n+2 + a2n+1,2x

2n+4

+ · · ·+ a3,2nx
4n+2 + a1,2n+2x

4n+4),
(3.10)

which implies that a30, a12, a2n+3,0, a2n+1,2, · · · , a3,2n, a1,2n+2 could be taken
as the focus values of system (3.7). So for n ≥ 2, the origin of system (3.8)
is at most an (n+4)th-order weak focus. According to Theorem 4.1.5 in [31],
within a small neighborhood of the origin, perturbing the coefficients of system
(3.8) can yield n + 4 small-amplitude limit cycles around the elementary node
O(0, 0).

Furthermore, similar to Proposition 3.1, we have the following result.

Theorem 3.5. For n ≥ 2, the origin of system (3.8) is an analytic center if
and only if

a30 = a12 = a2n+3,0 = a2n+1,2 = · · · = a3,2n = a1,2n+2 = 0. (3.11)

Proof. When a30 = a12 = a2n+3,0 = a2n+1,2 = · · · = a3,2n = a1,2n+2 = 0,
system (3.8) could be rewritten as

ẋ = y + a21x
2y + a03y

3 + a41x
4y + a23x

2y3 + a05y
5

+ · · ·+ a2n+2,1x
2n+2y + · · ·+ a0,2n+3y

2n+3,

ẏ = −2x3.

(3.12)

Obviously, system (3.12) is symmetric with the y-axis. According to Theorem
11 in [9], the origin is an analytic center of system (3.8).

4. Analytic centers of system (1.5)

Now we turn to discuss the analytic center conditions for system (1.5). It also
has two cases.

4.1. Case A: n = 1.

For this case, system (1.5) can be written as

ẋ = y,

ẏ = −2x3 + a21x
2y + a12xy

2 + a03y
3 + a50x

5 + a41x
4y

+ a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,

(4.1)

11



for which we can find a formal series M(x, y) = x4+y2+o((x2+y2)2) according
to Theorem 2.1, provided that (2.3) holds. Carrying out calculations with help
of Mathematica and applying the recursive formulae in Theorem 2.2 to system
(4.1), we obtain

ω3 = ω4 = ω5 = 0,

ω6 = −
1

3
(4s− 1)a21,

ω7 = 3(s+ 1)c03,

ω8 = −
1

5
(4s− 3)(6a03 + a41),

ω9 = 0,

ω10 = −
1

7
(4s− 5)(2a03a12 − 2a23 + 3a03a50),

ω11 =
15

4
(s+ 1)c05,

ω12 =
1

30
(4s− 5)(40a05 − 4a03a32 − 2a03a12a50 − 5a03a

2
50),

ω13 = 0,

ω14 =
a03

154
(4s− 9)(48a203 − 40a14 + 12a12a32 + 6a212a50

+ 12a32a50 + 21a12a
2
50 + 18a350).

Then, for a12 + 2a50 6= 0,

ω15 =
35

8
(s+ 1)c07,

ω16 =
a03

520
(4s− 11)(64a203a12 + 16a232 + 128a203a50 + 16a12a32a50

+ 4a212a
2
50 + 32a32a

2
50 + 20a12a

3
50 + 23a450),

ω17 = 0,

ω18 = −
a03

61600(a12 + 2a50)
(4s− 13)(4a32 + 2a12a50 + 5a250)(112a

2
12a32 − 432a232

+ 56a312a50 − 96a12a32a50 + 200a212a
2
50 − 640a32a

2
50

+ 120a12a
3
50 − 85a450),

ω19 =
315

64
(1 + s)c09,

ω20 = −
a03

40840800(a12 + 2a50)2
(4s− 15)(4a32 + 2a12a50 + 5a250)(14372996a

4
12a32

− 63894256a212a
2
32 + 34076160a332 + 7186498a512a50 − 10734116a312a32a50

− 12772032a12a
2
32a50 + 28572751a412a

2
50 − 99036264a212a32a

2
50

+ 45544768a232a
2
50 + 26958196a312a

3
50 − 39087216a12a32a

3
50),

ω21 = 0,

(4.2)
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ω22 =
a03

11639628000(a12 + 2a50)2
(4a32 + 2a12a50 + 5a250) f4;

and for a12 + 2a50 = 0,

ω16 =
a03

520
(4s− 11)(−4a32 + a250)(4a32 + a250),

ω17 = 0,

and in addition if a32 =
a2

50

4
,

ω18 =
9 a03
7700

(4s− 13)(4a32 + a250)(24a
2
03 + a350),

ω19 =
315

64
(s+ 1)c09,

ω20 = −
7 a03
13260

(4s− 15)a650,

ω21 = 0,

ω22 = −
a03a

7
50

13856700(1+ s)
(5391− 205861s+ 66718s2);

if a32 = −
a2

50

4
,

ω18 = 0,

ω19 =
315

64
(s+ 1)c09,

ω20 =
2 a03
5525

(4s− 15)(16a203 + a350)(27a
2
03 + 2a350),

ω21 = 0,

ω22 = −
4 a03a50

1154725(1+ s)
(16a203 + a350)(27a

2
03 + 2a350),

where

f4 =− 175151884140096a512a32 + 900479057104608a312a
2
32 − 870691837997952a12a

3
32

− 87575942070048a612a50 + 191710117401504a412a32a50 + 108696440458488a212a
2
32a50

− 135343772601984a332a50 − 348204560750520a512a
2
50 + 1449441463187484a312a32a

2
50

− 1227387674864544a12a
2
32a

2
50 − 328545834076764a412a

3
50 + 705733010157654a212a32a

3
50

− 180965555611680a232a
3
50 − 196530256579516a512a32s+ 956545497558256a312a

2
32s

− 775708121404800a12a
3
32s− 98265128289758a612a50s+ 188198718433828a412a32a50s

− 92031891970176a332a50s− 390699835897045a512a
2
50s+ 1519172249991516a312a32a

2
50s

− 1080068393470816a12a
2
32a

2
50s− 368634374118786a412a

3
50s+ 690504693129726a212a32a

3
50s

− 123060065895200a232a
3
50s+ 80500800862640a512a32s

2 − 396831061224512a312a
2
32s

2

+ 336523546570752a12a
3
32s

2 + 40250400431320a612a50s
2 − 79597335692936a412a32a50s

2

− 56511998888512a212a
2
32a50s

2 + 43311880631808a332a50s
2 + 160035098537960a512a

2
50s

2

− 632261525950008a312a32a
2
50s

2 + 470151299998208a12a
2
32a

2
50s

2 + 150997488382038a412a
3
50s

2
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+ 142715605813496a212a
2
32a50s− 292287689531688a212a32a

3
50s

2 + 57905489716480a232a
3
50s

2.

Based on (2.6) and (4.2), it is easy to find the first nine quasi-Lyapunov constants
of system (4.1).

Theorem 4.1. The first nine quasi-Lyapunov constants evaluated at origin of
system (4.1) are given by

λ1 = −
1

3
a21,

λ2 = −
1

5
(6a03 + a41),

λ3 = −
1

7
(2a03a12 − 2a23 + 3a03a50),

λ4 =
1

30
(40a05 − 4a03a32 − 2a03a12a50 − 5a03a

2
50),

λ5 =
a031

154
(48a203 − 40a14 + 12a12a32 + 6a212a50 + 12a32a50 + 21a12a

2
50 + 18a350).

Then, for a12 + 2a50 6= 0,

λ6 =
a03

520
(64a203a12 + 16a232 + 128a203a50 + 16a12a32a50 + 4a212a

2
50 + 32a32a

2
50

+ 20a12a
3
50 + 23a450),

λ7 = −
a03

61600(a12 + 2a50)
(4a32 + 2a12a50 + 5a250)(112a

2
12a32 − 432a232 + 56a312a50

− 96a12a32a50 + 200a212a
2
50 − 640a32a

2
50 + 120a12a

3
50 − 85a450),

λ8 = −
a03

40840800(a12 + 2a50)2
(4a32 + 2a12a50 + 5a250)(14372996a

4
12a32

− 63894256a212a
2
32 + 34076160a332 + 7186498a512a50 − 10734116a312a32a50

− 12772032a12a
2
32a50 + 28572751a412a

2
50 − 99036264a212a32a

2
50

+ 45544768a232a
2
50 + 26958196a312a

3
50 − 39087216a12a32a

3
50),

λ9 =
a03

11639628000(a12 + 2a50)2
(4a32 + 2a12a50 + 5a250) f4;

while for a12 + 2a50 = 0,

λ6 =
a03

520
(−4a32 + a250)(4a32 + a250),

and in addition if a32 =
a2

50

4
,

λ7 =
9 a03
7700

(4a32 + a250)(24a
2
03 + a350),

λ8 = −
7 a03
13260

a650,

λ9 = −
a03a

7
50

13856700(1+ s)
(5391− 205861s+ 66718s2);
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if a32 = −
a2

50

4
,

λ7 = 0,

λ8 =
2 a03
5525

(16a203 + a350)(27a
2
03 + 2a350),

λ9 = −
4 a03a50

1154725(1+ s)
(16a203 + a350)(27a

2
03 + 2a350),

where λk−1 = 0 for k = 2, · · · , 9 have been used in computing λk.

Furthermore, the following result can be easily obtained.

Proposition 4.1. For n = 1, origin of system (4.1) is an analytic center if and
only if one of the following conditions holds:

a21 = a03 = a41 = a23 = a05 = 0; (4.3)

a21 = a14 = a05 = 0, a41 = −6a03,

a23 = 1

2
(2a12 + 3a50)a03, a203 = − 1

16
a350;

(4.4)

a21=a05=0, a41=−6a03, a12=−2a50, a23=− 1

2
a03a50,

a32=
1

4
a250, a203=−

2

27
a350, a14=−

1

72
a350.

(4.5)

Proof. It is easy to get the conditions (4.3)-(4.5) by setting λ1 = λ2 = · · · =
λ9 = 0. When a50 6= 0, let

f5 = 112a212a32 − 432a232 + 56a312a50 − 96a12a32a50 + 200a212a
2
50 − 640a32a

2
50

+ 120a12a
3
50 − 85a450,

f6 = 14372996a412a32 − 63894256a212a
2
32 + 34076160a332 + 7186498a512a50

− 10734116a312a32a50 − 12772032a12a
2
32a50 + 28572751a412a

2
50

− 99036264a212a32a
2
50 + 45544768a232a

2
50

+ 26958196a312a
3
50 − 39087216a12a32a

3
50.

Then, we obtain

R3 = Resultant[f4, f5, a32]

=− 200206652313600a350(a12 + 2a50)
4(72a512 + 652a412a50 + 2694a312a

2
50

+ 6043a212a
3
50 + 7092a12a

4
50 + 3463a550),

R4 = Resultant[f4, f6, a32]

=− 289298612593152000a350(a12 + 2a50)
4(278734084992a712+ 3588989330016a612a50

+ 21026493958464a512a
2
50 + 71854303647672a412a

3
50 + 152324731255716a312a

4
50

+ 197669760539760a212a
5
50 + 144211704399495a12a

6
50 + 45502270176438a750

+ 1651136278704a712s+ 18838630495800a612a50s+ 98153819816532a512a
2
50s

+ 294846821571666a412a
3
50s+ 534120897148782a312a

4
50s+ 565346904516561a212a

5
50s

− 310952885702031a12a
6
50s+ 62534145621954a750s+ 1859553268056a712s

2
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+ 17577034105268a612a50s
2 + 76054378966082a512a

2
50s

2 + 181916843290105a412a
3
50s

2

+ 238094684972342a312a
4
50s

2 + 147267056136244a212a
5
50s

2 + 19507558179230a12a
6
50s

2

− 6987410240074a750s
2 − 1714957345728a712s

3 − 17270801713568a612a50s
3

− 80278393721648a512a
2
50s

3 − 212296048411048a412a
3
50s

3 − 328607615124608a312a
4
50s

3

− 285216632755972a212a
5
50s

3 − 121914622605938a12a
6
50s

3 − 19568176640258a750s
3

+ 301352777088a712s
4 + 3072037299008a612a50s

4 + 14465726297408a512a
2
50s

4

+ 38896515312256a412a
3
50s

4 + 61684793716376a312a
4
50s

4 + 55602984609100a212a
5
50s

4

+ 25319000517368a12a
6
50s

4 + 4451109045332a750s
4).

Further, with the aid of Mathematica, we obtain for ∀s ∈ Z+

G2 = Resultant[R3, R4, a12]

= 30984189289342953910272000a3550(1 + s)5(−17 + 4s)5

× (−123287750793562256929839075859953216

− 33902812452688795016920021129342044624s

− 180855325034978657368019444342423080236s2

− 1067066959204615961659004741488392865575s3

− 3328343437962444375340762099992891472110s4

− 4773196954655562390848005555854946921459s5

+ 14241540803784759916727236436410335714320s6

− 10732088467496096467063502795815305475120s7

+ 3721436248399857364295558363131840668032s8

− 625676462230475741935920059840273863168s9

+ 41454785818979861302571809000901003264s10) 6= 0.

The above calculations indicate that the equations f4 = f5 = f6 = 0 do not
have real solutions, namely, there do not exist other analytic center conditions
for system (4.1) if a50 6= 0.

When the conditions in (4.3) hold, system (4.1) becomes

ẋ = y,

ẏ = −2x3 + a12xy
2 + a50x

5 + a32x
3y2 + a14xy

4.
(4.6)

Obviously, this system is symmetric with the y-axis, implying that the origin of
system (4.6) is an analytic center due to Theorem 11 in [9].

When the conditions in (4.4) are satisfied, system (4.1) becomes

ẋ = y,

ẏ =
1

4
(−8x3 + 4a50x

5 − 24a03x
4y + 4a12xy

2 − 2a12a50x
3y2

− 5a250x
3y2 + 4a03y

3 + 4a03a12x
2y3 + 6a03a50x

2y3).

(4.7)
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Introducing the transformation,

x = x, y =
(−2 + a50x

2)z

2(−2 + a50x2 + a03xz)
,

and time scaling,

T =
2(−2 + a50x

2)3t

−2 + a50x2 − 2a03xy
,

into system (4.7) results in

dx

dT
= z(a50x

2 − 2)2,

dz

dT
=−

1

4
x
(

128x2 − 192a50x
4 + 96a250x

6 − 16a350x
8 − 16a12z

2

+ 24a12a50x
2z2 + 20a250x

2z2 − 96a203x
4z2 − 12a12a

2
50x

4z2

− 20a350x
4z2 + 48a203a50x

6z2 + 2a12a
3
50x

6z2 + 5a450x
6z2

+ 32a303x
5z3 + 2a03a

3
50x

5z3),

(4.8)

which is symmetric with the z-axis because a203 = −
a3

50

16
. Thus, according to

Theorem 11 in [9], the origin of system (4.7) is an analytic center.
Similarly, when the conditions in (4.5) hold, system (4.1) becomes

ẋ = y,

ẏ =
1

72
(−144x3 + 72a50x

5 − 432a03x
4y − 144a50xy

2 − 18a250x
3y2

+ 72a03y
3 − 36a03a50x

2y3 − a350xy
4),

(4.9)

for which there exists an analytic integrating factor,

u(x, y) =
e−

3

8
a2

50
x4

(1 − 1

2
a50x2 + 3

4
a50xy)4

,

indicating that the origin of system (4.9) is an analytic center.
Therefore, Proposition 4.1 implies the following result.

Theorem 4.2. The necessary and sufficient conditions for the origin of system
(4.1) being an analytic center are given by the vanishing of the first nine quasi-
Lyapunov constants, that is, one of the conditions in Proposition 4.1 is satisfied.

Similarly, when the cubic-order nilpotent singular point O(0, 0) is a 9th-order
weak focus, it is easy to prove that the perturbed system of (4.1), given by

ẋ = δx+ y,

ẏ = δy − 2x3 + a21x
2y + a12xy

2 + a03y
3 + a50x

5 + a41x
4y

+ a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,

(4.10)

can generate nine limit cycles enclosing an elementary node at the origin. The
proof is similar to that for Theorem 6.
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Theorem 4.3. If the origin of system (4.10) is a 9th-order weak focus, then
within a small neighborhood of the origin, for 0 < δ ≪ 1, system (4.10) can
yield nine small-amplitude limit cycles around the elementary node O(0, 0).

Proof. The origin of system (4.10) is a 9th-order weak focus if and only if

a21 = 0;

a41 = −6a03;

a23 =
1

2
a03(2a12 + 3a50);

a05 =
1

40
(4a03a32 + 2a03a12a50 + 5a03a

2
50);

a14 =
3

40
(16a203 + 4a12a32 + 2a212a50 + 4a32a50 + 7a12a

2
50 + 6a350);

a203 =
1

64(a12 + 2a50)
(−16a232 − 16a12a32a50 − 4a212a

2
50 − 32a32a

2
50 − 20a12a

3
50 − 23a450).

and

J2 =
∂(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)

∂(a21, a41, a23, a05, a14, a03, a32, a12)

= −
(4a32 + 2a12a50 + 5a250)

38846808000(a12+ 2a50)3
(16a232 + 16a12a32a50 + 4a212a

2
50 + 32a32a

2
50 + 20a12a

3
50 + 23a450)

2

× (9658653312a612a
2
32 − 94084036480a412a

3
32 + 233154747648a212a

4
32

− 58883604480a532 + 9658653312a712a32a50 − 65797494336a512a
2
32a50 + 14579296576a312a

3
32a50

+ 288547550208a12a
4
32a50 + 2414663328a812a

2
50 + 28912166304a612a32a

2
50

− 406316235904a412a
2
32a

2
50 + 936674204416a212a

3
32a

2
50 − 127467869184a432a

2
50

+ 19144952176a712a
3
50 − 109760863872a512a32a

3
50 − 244778217136a312a

2
32a

3
50

+ 1036308069632a12a
3
32a

3
50 + 49040513184a612a

4
50 − 522094417624a412a32a

4
50

+ 985367488400a212a
2
32a

4
50 − 6731934720a332a

4
50 + 18296999196a512a

5
50

− 545453749756a312a32a
5
50 + 1124651917440a12a

2
32a

5
50 − 114440868400a412a

6
50

+ 131607099120a212a32a
6
50 + 107989619520a232a

6
50 − 173404183515a312a

7
50

+ 352746916240a12a32a
7
50 − 62864473110a212a

8
50 + 39921858880a32a

8
50 + 12556768140a12a

9
50).

Furthermore,

R6 = Resultant[f5, J2, a32]

= (49a312 + 196a212a50 + 357a12a
2
50 + 466a350)

2 × (225792a912 + 3214400a812a50

+ 21345968a712a
2
50 + 87227792a612a

3
50 + 246151320a512a

4
50 + 509498952a412a

5
50

+ 785491407a312a
6
50 + 864775852a212a

7
50 + 601885864a12a

8
50 + 196001002a950),

Resultant[R6, R3, a12]

= − 110020282897692638814502001588125819626479649518678944188134258621907

66734966784000000a1550 6= 0.
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So Theorem 2.2 in [32] yields the conclusion holds.

4.2. Case B: n ≥ 2.

For this case, system (1.5) can be written as

ẋ = y,

ẏ =− 2x3 + (a21x
2y + a12xy

2 + a03y
3 + a2n+3,0x

2n+3

+ a2n+2,1x
2n+2y + a2n+1,2x

2n+1y2 + · · ·+ a1,2n+2xy
2n+2

+ a0,2n+3y
2n+3)

≡ Y1(x, y).

(4.11)

Theorem 4.4. For n ≥ 2, the origin of system (4.11) is at most a (n+4)th-order
weak focus. If the origin of system (4.11) is a (n+4)th-order weak focus, then
within a small neighborhood of the origin of its perturbed system,, perturbing
the coefficients of system (4.11) can yield n + 4 small-amplitude limit cycles
enclosing the elementary node O(0, 0).

Proof. The proof is similar to that for Theorem 3.4. We construct a comparison
system for system (4.1),

ẋ = y,

ẏ = −2x3 + x(a12xy
2 + a2n+3,0x

2n+3 + · · ·+ a2,2n+1x
2y2n+1)

≡ Y2(x, y).

(4.12)

It is easy to see that system (4.12) is symmetric with the x-axis, and so O(0, 0)
is a center.

Next, we compute the determinant of system (4.12), yielding

J3 = det

[

y Y1(x, y)
y Y2(x, y)

]

= a21x
2y2 + a03y

4 + a2n+2,1x
2n+2y2 + a2n,3x

2ny4

+ · · ·+ a2,2n+1x
2y2n+2 + a0,2n+3y

2n+4.

Similarly, we take the y and x2 as infinitesimal equivalence in the neighborhood
of the origin in order to study the dynamical behavior of (4.11) around the
origin. So, J2 becomes

J3 =x4(a21x
2 + a03x

4 + a2n+2,1x
2n+2 + a2n,3x

2n+2

+ · · ·+ a2,2n+1x
4n+2 + a0,2n+3x

4n+4),
(4.13)

implying that a21, a03, a2n+2,1, a2n,3, · · · , a2,2n+1, a0,2n+3 could be considered
as the focal values of the system. Therefore, for n ≥ 2, the origin of system
(4.11) is at most a (n+4)th-order weak focus. According to Theorem 2.2 in [32],
within a small neighborhood of the origin, one can perturb the coefficients of
system (4.11) to obtain n+4 small-amplitude limit cycles around the elementary
node O(0, 0).

Moreover, we have a similar theorem for this case.
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Theorem 4.5. For n ≥ 2, the origin of system (4.11) is an analytic center if
and only if

a21 = a03 = a2n+2,1 = a2n,3 = · · · = a2,2n+1 = a0,2n+3 = 0. (4.14)

Proof. When a21 = a03 = a2n+2,1 = a2n,3 = · · · = a2,2n+1 = a0,2n+3 = 0,
system (4.11) can be rewritten as

ẋ = y,

ẏ =− 2x3 + a12xy
2 + a2n+3,0x

2n+3 + a2n+1,2x
2n+1y2 + · · ·+ a1,2n+2xy

2n+2,

(4.15)
Obviously, system (4.15) is symmetric with the y-axis. According to Theorem
11 in [9], the origin is an analytic center of system (4.11).

5. Conclusion

In this paper, two classes of lopsided systems have been studied on their analytic
integrable conditions and bifurcation of limit cycles. We have obtained some
analytic integrability conditions for each class of the systems for case n = 1.
By using certain transformations or integrating factors, we have proved that all
conditions are sufficient and necessary. For case n ≥ 2, we have constructed
different comparison systems for each class of the systems and shown that n+4
limit cycles may bifurcate from the origin of each system. In addition, conditions
for the origin being an analytic center are obtained simultaneously.

6. Appendix

Detailed recursive MATHEMATICA code to compute the quasi-Lyapunov
constants at the origin of system (13): c [0,0]=0, c [1, 0]=0, c [0, 1]=0, c [2,
0]=0, c [1, 1]=0, c [0, 2]=1; when k¡0 or j¡0, c [k,j]=0; else

c[k, j] = −
1

k(1 + s)
(−10a50c[−5 + k, 1 + j] + a50kc[−5 + k, 1 + j]− 5a50sc[−5 + k, 1 + j]

+ a50ksc[−5 + k, 1 + j]− 8a41c[−4 + k, j] + a41kc[−4 + k, j]− 4a41sc[−4 + k, j]

+ a41ksc[−4 + k, j]− 4c[−4 + k, 2 + j]− 2jc[−4 + k, 2 + j]− 4sc[−4 + k, 2 + j]

− 2jsc[−4 + k, 2 + j]− 6a32c[−3 + k,−1 + j] + a32kc[−3 + k,−1 + j]

− 3a32sc[−3 + k,−1 + j] + a32ksc[−3 + k,−1 + j] + a30ksc[−3 + k, 1 + j]

− 6a30c[−3 + k, 1 + j] + a30kc[−3 + k, 1 + j]− 3a30sc[−3 + k, 1 + j]

− 4a23c[−2 + k,−2 + j] + a23kc[−2 + k,−2 + j]− 2a23sc[−2 + k,−2 + j]

+ a23ksc[−2 + k,−2 + j]− 4a21c[−2 + k, j] + a21kc[−2 + k, j]− 2a21sc[−2 + k, j]

+ a21ksc[−2 + k, j]− 2a14c[−1 + k,−3 + j] + a14kc[−1 + k,−3 + j]

− a14sc[−1 + k,−3 + j] + a14ksc[−1 + k,−3 + j]− 2a12c[−1 + k,−1 + j]

+ a12kc[−1 + k,−1 + j]− a12sc[−1 + k,−1 + j] + a12ksc[−1 + k,−1 + j]

+ a05kc[k,−4 + j] + a05ksc[k,−4 + j] + a03kc[k,−2 + j] + a03ksc[k,−2 + j]).
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w[m] = 9a50c[−4 +m, 0]− a50mc[−4 +m, 0] + 4a50sc[−4 +m, 0]− a50msc[−4 +m, 0]

+ 7a41c[−3 +m,−1]− a41mc[−3 +m,−1] + 3a41sc[−3 +m,−1]

− a41msc[−3 +m,−1] + 2c[−3 +m, 1] + 2sc[−3 +m, 1] + 5a32c[−2 +m,−2]

− a32mc[−2 +m,−2] + 2a32sc[−2 +m,−2]− a32msc[−2 +m,−2]

+ 5a30c[−2 +m, 0]− a30mc[−2 +m, 0] + 2a30sc[−2 +m, 0]− a30msc[−2 +m, 0]

+ 3a23c[−1 +m,−3]− a23mc[−1 +m,−3] + a23sc[−1 +m,−3]− a23msc[−1 +m,−3]

+ 3a21c[−1 +m,−1]− a21mc[−1 +m,−1] + a21sc[−1 +m,−1]− a21msc[−1 +m,−1]

+ a14c[m,−4]− a14mc[m,−4]− a14msc[m,−4] + a12c[m,−2]− a12mc[m,−2]

− a12msc[m,−2]− a05c[1 +m,−5]− a05mc[1 +m,−5]− a05sc[1 +m,−5]

− a05msc[1 +m,−5]− a03c[1 +m,−3]− a03mc[1 +m,−3]− a03sc[1 +m,−3]

− a03msc[1 +m,−3]− c[1 +m,−1]−mc[1 +m,−1]− sc[1 +m,−1]−msc[1 +m,−1].

Detailed recursive MATHEMATICA code to compute the quasi-Lyapunov
constants at the origin of system (24): c [0,0]=0, c [1, 0]=0, c [0, 1]=0, c [2,
0]=0, c [1, 1]=0, c [0, 2]=1; when k¡0 or j¡0, c [k,j]=0; else

c[k, j] = −
1

k(1 + s)
(2a50c[−6 + k, 2 + j] + a50jc[−6 + k, 2 + j] + 2a50sc[−6 + k, 2 + j]

+ a50jsc[−6 + k, 2 + j] + a41jc[−5 + k, 1 + j] + a41sc[−5 + k, 1 + j]

+ a41jsc[−5 + k, 1 + j]− 2a32c[−4 + k, j] + a32jc[−4 + k, j] + a32jsc[−4 + k, j]

− 4c[−4 + k, 2 + j]− 2jc[−4 + k, 2 + j]− 4sc[−4 + k, 2 + j]− 2jsc[−4 + k, 2 + j]

− 4a23c[−3 + k,−1 + j] + a23jc[−3 + k,−1 + j]− a23sc[−3 + k,−1 + j]

+ a23jsc[−3 + k,−1 + j] + a21jc[−3 + k, 1 + j] + a21sc[−3 + k, 1 + j]

+ a21jsc[−3 + k, 1 + j]− 6a14c[−2 + k,−2 + j] + a14jc[−2 + k,−2 + j]

− 2a14sc[−2 + k,−2 + j] + a14jsc[−2 + k,−2 + j]− 2a12c[−2 + k, j] + a12jc[−2 + k, j]

+ a12jsc[−2 + k, j]− 8a05c[−1 + k,−3 + j] + a05jc[−1 + k,−3 + j]

− 3a05sc[−1 + k,−3 + j] + a05jsc[−1 + k,−3 + j]− 4a03c[−1 + k,−1 + j]

+ a03jc[−1 + k,−1 + j]− a03sc[−1 + k,−1 + j] + a03jsc[−1 + k,−1 + j]).

w[m] = −a50c[−5 +m, 1]− a50sc[−5 +m, 1] + a41c[−4 +m, 0] + 3a32c[−3 +m,−1]

+ a32sc[−3 +m,−1] + 2c[−3 +m, 1] + 2sc[−3 +m, 1] + 5a23c[−2 +m,−2]

+ 2a23sc[−2 +m,−2] + a21c[−2 +m, 0] + 7a14c[−1 +m,−3] + 3a14sc[−1 +m,−3]

+ 3a12c[−1 +m,−1] + a12sc[−1 +m,−1] + 9a05c[m,−4] + 4a05sc[m,−4]

+ 5a03c[m,−2] + 2a03sc[m,−2]− c[1 +m,−1]−mc[1 +m,−1]

− sc[1 +m,−1]−msc[1 +m,−1].

References

[1] A. Algaba, C. Garcia, M. Reyes, [2012] A note on analytic integrability of
planar vector fields, Eur. J. Appl. Math. 3, 555-562.

21



[2] A. Andreev, [1958] Investigation of the behaniour of the integral curves of a
system of two differential equations in the neighborhood of a singular point,
Transl. Amer. Math. Soc. 8, 187-207.

[3] F. Takens, [1974] Singularities of vector fields, Inst. Hautes. Etudes Sci.
Publ. Math. 43, 47-100.

[4] R. Moussu, [1982] Symétrie et forme normale des centres et foyers dégénérés,
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