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Abstract

In this paper we investigate pattern formation in Keller–Segel chemotaxis models over a
multi–dimensional bounded domain subject to homogeneous Neumann boundary conditions. It
is shown that the positive homogeneous steady state loses its stability as chemoattraction rate
χ increases. Then using Crandall–Rabinowitz local theory with χ being the bifurcation param-
eter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate
from this homogeneous steady state. Stability of the bifurcating solutions is also established
through rigorous and detailed calculations. Our results provide a selection mechanism of stable
wavemode which states that the only stable bifurcation branch must have a wavemode number
that minimizes the bifurcation value. Finally we perform extensive numerical simulations on
the formation of stable steady states with striking structures such as boundary spikes, inte-
rior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop
through chemotactic movements in biological systems.

Keywords: pattern formation, steady state, bifurcation, chemotaxis model, lo-
gistic growth

1 Introduction

In numerous biological and ecological contexts, self–organized patterns can emerge and develop
through cellular chemotactic movements. During chemotaxis, bacteria or cellular organisms
sense the chemicals in their environment and orient their migration along the concentration
gradient of the chemical. Such directed movements are observed in many other living microor-
ganisms. For example, during the aggregation phase of slime molds, the amoebae are attracted
by cyclic AMP, a chemical produced by the cells and consumed by certain enzymes in the en-
vironment. Cellular chemotactic movements have also been observed in a wide range of other
phenomena, such as wound healing, embryonic development and cancer growth of tumour cells.
In 1970s, Keller and Segel [1971] initiated the mathematical modelling of chemotaxis and stud-
ied the traveling bands of E. coli. Since then, Keller–Segel chemotaxis model has attracted
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significant interest from numerous scholars over the past few decades and a variety of modifi-
cations have been proposed in light of the mathematical relevance to the biology. We refer to
the well–known survey papers [Horstmann, 2003] and [Hillen & Painter, 2009] as well as the
references therein for detailed discussions on chemotaxis models. In this paper, we study the
following Keller–Segel chemotaxis model with logistic cellular growth

ut = ∇ · (D1∇u− χφ(u, v)∇v) + µu(ū− u), x ∈ Ω, t > 0,
vt = D2∆v − αv + f(u), x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where ∆ =
∑N
i=1 ∂

2/∂x2
i is the Laplace operator; ∇ = (∂/∂x1, ..., ∂/∂xN ) is the gradient

operator; Ω ⊂ RN , N ≥ 1, is a bounded domain with piecewise smooth boundary ∂Ω. u(x, t)
and v(x, t) denote the cell population density and chemical concentration at space–time (x, t)
respectively. D1 > 0 is the so–called cellular motility and it measures the tendency of cells to
move randomly over the habitat. D2 > 0 is the diffusion rate of the chemical; the constant
χ measures the attraction rate of the chemical gradient on the directed cellular movement;
moreover χ > 0 if the chemical is attractive to the cells and χ < 0 if the chemical is repulsive.
We will focus on chemoattractive chemical and assume that χ > 0 throughout this paper. φ(u, v)
is called the sensitivity function and it reflects the variation of cellular sensitivity with respect
to the cell population density and levels of chemical concentration. The positive constants
µ and ū measure the intrinsic growth rate and the carrying capacity of the habitat for cells
respectively; α > 0 models the phenomenon that the chemical is consumed by certain enzymes
in the environment; f(u) is the creation and degradation rate of the chemical with respect to
the cell population. For the sake of mathematical modeling, we assume that the function φ is
C3–smooth and f is C2–smooth such that

φ(u, v) > 0, f(u) > 0, for u > 0, v > 0.

The non–flux boundary conditions in (1.1) represent an enclosed environment.
One of the most interesting phenomena in chemotaxis is the cellular aggregation in which

spatially homogeneously distributed cells move to combine with each other and eventually form
a stable concentrated fruiting body. This can be modeled by the spatial–temporal pattern
formation in the time–dependent system (1.1), i.e., solutions (u(x, t), v(x, t)) exist globally in
time and converge to bounded nonconstant steady states as t→∞. Positive steady states with
spiky or concentration structures can be used to model the aggregation of cells.

For N = 1, it is well known that the solution to (1.1) exists globally and is uniformly bounded
in time–see [Osaki & Yagi, 2001] for example. For N = 2, Osaki, et al. [2002] proved the global
existence of (1.1); moreover, they obtained a globally exponential attractor when the sensitivity
function φ(u, v) is smooth and has uniformly bounded derivatives up to the second order. For
N ≥ 3, Winkler [2010a] established the unique global solutions (1.1) for all smooth initial data if
µ is sufficiently large. See [Horstmann, 2011] and the references therein for more works. In loose
terms, the literature suggests that blow–ups (finite time or infinite time) in chemotaxis systems
can be inhibited by suitable degradation in the cellular kinetics, however, whether or not it
is sufficient when chemo–attraction rate χ is large is not completely understood, in particular
over high space dimensions. For example, Winkler [2011] studied a parabolic–elliptic system

similar as (1.1), with µu(ū−u) being replaced by a term µu(ū−uκ), −αv by m(t) =
∫
Ω
u(x,t)dx

|Ω|
and f(u) = u. It is shown that when N ≥ 5, κ < 3

2 + 1
2N−2 and vt = 0, (1.1) has smooth

local–in–time solution that blows up in finite time for properly imposed initial data. Global
existence or blow–ups of (1.1) for all parameters remains open so far and we refer to [Xiang,
2015] for some new results.

In contrast to the global existence of (1.1), it is the main purpose of our paper to study
the existence and stability of its nonconstant positive stationary solutions which satisfy the
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following equations
∇ · (D1∇u− χφ(u, v)∇v) + µu(ū− u) = 0, x ∈ Ω,
D2∆v − αv + f(u) = 0, x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.
(1.2)

In particular, we are interested in the effect of chemotaxis rate on the existence of its nonconstant
positive solutions. System (1.2) has been studied by various authors. For D1 = D2 = α = 1,
φ(u, v) = f(u) = u and, Tello and Winkler [2007] obtained infinitely many branches of local
bifurcation solutions to (1.2) with µ > 0 if N ≤ 4 and with µ > N−4

N−2χ if N > 4. For
φ(u, v) = f(u) = u, Kuto et al. [2012] constructed local bifurcation branches of strip and
hexagonal steady states when the domain Ω is a rectangle in R2. Ma et al. [2012] studied
the model with a volume-filling effect with φ(u, v) = u(1 − u) and f(u) = βu, β being a
positive constant. They applied degree method to obtain nonconstant positive steady states
and established a selection mechanism of the wave modes for Ω being an interval in R1. They
also showed that the nontrivial solution is stable only at the first branch and its principal wave
mode must be a positive integer that minimizes the bifurcation parameter χ. The existence
and stability of nonconstant positive solutions of (1.2) over one–dimensional finite domain is
rigorously investigated in [Wang et al., 2015] through bifurcation analysis. In [Tsujikawa et
al. 2015], the authors studied a shadow system of (1.2) in the limiting case that a diffusion
coefficient and chemotactic intensity grow to infinity through bifurcation, singular perturbation
and a level set analysis. In this paper, we study the existence and stability of nonconstant
positive solutions of (1.2) over general domain Ω ⊂ RN , N ≥ 2. Compared to the previous
works, our work is featured with the rigorous stability analysis of the nontrivial patterns over
general multi–dimensional domains.

Our paper is organized as follows. In section 2, we establish the existence of nonconstant
positive solutions of (1.2) by local bifurcation theory–see Theorem 2.1. It is shown that the
positive homogeneous solution loses its stability as the chemo–attraction rate passes a threshold
value. Our results indicate that chemotaxis drives the formation of positive nontrivial patterns
of the system. In section 3, we proceed to investigate stability of the bifurcating solutions–see
Theorem 3.1. Section 4 is devoted to numerical simulations of pattern formations in the time–
dependent system (1.1). Stable steady states with striking structures such as spikes, stripes etc.
are obtained to model the aggregations of cells. Finally, we include some concluding remarks
and propose questions for future studies in section 5.

2 Existence of nonconstant positive steady states

Pattern formation is a ubiquitous phenomenon observed in natural sciences such as chemistry,
physics and biology, etc. Diffusion–driven instability in reaction–diffusion systems is widely ac-
cepted as a mechanism for spatial patterns throughout a wide range of biological and ecological
systems–see [Benson et al., 1989], [Okubo, 1980], [Segel & Jackson, 1977] and the references
therein. All these works are based on Turing’s 1952 seminal work ”the chemical basis of mor-
phogenesis” [Turing, 1952]. Turing’s pioneering idea was that diffusion, which is a smoothing
process for single equation, can destabilize constant equilibrium through chemical reactions, then
spatially inhomogeneous solutions may emerge and form stable nontrivial patterns. The phe-
nomenon of Turing’s instability (diffusion–driven instability) has been observed in the Gierer–
Meinhardt model, Lengyel-Epstein model, as well as diffusive predator–prey models.

System (1.2) has a unique positive constant solution

(ū, v̄) = (ū, f(ū)/α)

and we shall see that the instability of this equilibrium is driven by the chemotactic attraction.
To this end, we first show that no Turing’s instability occurs for (1.2) with χ = 0. Actually, it is
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shown in [Ma et al., 2013] that (ū, v̄) is a globally attractor of (1.1) if χ = 0, therefore, system
(1.2) without chemotaxis does not have any nonconstant steady state. Moreover, this conclusion
also holds for χ > 0 being small from standard dynamics theory. For example, similar to the
arguments in Theorem 4.3 of [Tello & Winkler, 2007], one can show that there exists a positive
number χ∗ such that (1.1) has no nonconstant positive solution if χ ∈ (0, χ∗).

2.1 Linearized stability analysis of the homogeneous solution (ū, v̄)

It is well known that random movements (diffusions) tend to stabilize spatially homogeneous so-
lutions for single equations and for reaction–diffusion systems when there is no Turing’s instabil-
ity, however directed movements (chemotaxis) have the effect of destabilizing the homogeneous
solutions in general. Then spatially inhomogeneous solutions may arise through bifurcation as
the homogeneous one becomes unstable.

To study the regime of χ under which spatial patterns of (1.1) arises, we shall perform
bifurcation analysis on (1.2) by taking χ as the parameter and to this end we start with the
instability analysis of the homogeneous state (ū, v̄). First of all, we recall the following Neumann
eigenvalue problem {

−∆Φ = λΦ, x ∈ Ω,
∂Φ
∂n = 0, x ∈ ∂Ω.

(2.1)

It is well known that the Neumann Laplacian has a discrete spectrum of infinitely many non-
negative eigenvalues which form a strictly increasing sequence

0 = λ0 < λ1 < λ2 < ... < λk < ...→∞;

moreover, the eigenvalues are given by the variational structures

λ0 = inf
u∈H1,

∫
Ω
u6=0

∫
Ω
|∇u|2dx∫
Ω
u2dx

and

λk = inf
u∈H1,u⊥Φi,i=1,..k−1

∫
Ω
|∇u|2dx∫
Ω
u2dx

,

where Φi is an eigenfunction corresponding to λi; furthermore, {Φk}∞k=1 form a complete or-
thogonal basis of L2(Ω). Through the rest of this paper, we denote {(λk,Φk)}∞k=0 as eigen–pairs
to (2.1) such that λk is simple and Φk is normalized with∫

Ω

Φ2
kdx = 1, k ∈ N+.

Let (u, v) = (ū, v̄) + (U, V ), where U and V are spatially inhomogeneous perturbations of (ū, v̄)
in the H2(Ω) norm, then (U, V ) satisfies

Ut ≈ D1∆U − χφ(ū, v̄)∆V − µūU, x ∈ Ω, t > 0,
Vt ≈ D2∆V − αV + f ′(ū)U, x ∈ Ω, t > 0,
∂U
∂n = ∂V

∂n = 0, x ∈ ∂Ω, t > 0.

We have the following results on the linearized instability of (ū, v̄). Here the stability or insta-
bility refers that of the homogeneous solution viewed as an equilibrium of (1.1).

Proposition 1. Suppose that φ(ū, v̄) > 0 and f ′(ū) 6= 0. Then the homogeneous solution (ū, v̄)
is unstable if and only if

χ > χ0 = min
k∈N+

(D1λk + µū)(D2λk + α)

f ′(ū)φ(ū, v̄)λk
. (2.2)
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Proof. According to the standard linearized stability analysis–see [Simonett, 1975] e.g., the
stability of (ū, v̄) is determined by the eigenvalues of the following matrix,

Hk =

(
−D1λk − µū χφ(ū, v̄)λk

f ′(ū) −D2λk − α

)
, (2.3)

where λk is the k–th eigenvalue of −∆ over Ω under the Neumann boundary conditions. In
particular, (ū, v̄) is stable if eigenvalue of each Hk has negative real part and is unstable if Hk
has an eigenvalue with positive real part for some k ∈ N+. The characteristic polynomial of
(2.3) takes the form

pk(λ) = λ2 − Trkλ+ Detk,

where
Trk = (D1 +D2)λk + µū+ α > 0,

and
Detk = (D1λk + µū)(D2λk + α)− χφ(ū, v̄)f ′(ū)λk,

therefore pk(λ) has a positive root if and only if Detk < 0. Then (2.2) readily follows through
simple calculations and this finishes the proof of the proposition. �

Proposition 1 states that (ū, v̄) changes its stability as χ crosses χ0. It also indicates
that chemo–attraction can destabilizes the homogeneous steady state while chemorepulsion (i.e.
when χ < 0) stabilizes the constant equilibrium. We also note that χ0 given by (2.2) is always
positive if f ′(ū) > 0.

2.2 Bifurcation of steady states

As we have shown above, chemotactic movement has the effect of destabilizing (ū, v̄) which
becomes unstable as χ surpasses the minimum value χ0. The linearized instability of (ū, v̄) in
(1.1) is insufficient to guarantee the existence of spatially inhomogeneous steady states. We are
concerned with the formation of stable spatially inhomogeneous steady states of (1.1) through
bifurcations as χ increases. Clearly, the emergence of such spatially inhomogeneous solution is
due to the effect of large chemotaxis rate χ. We refer this as chemotaxis–induced pattern in the
sense of Turing’s instability.

In this section, we apply the local bifurcation theory in [Crandall & Rabinowitz, 1971] to
seek non-constant positive solutions to the stationary reaction–advection–diffusion system of
(1.2). In order to carry out the bifurcation analysis, we first introduce Sobolev space

X = {w ∈W 2,p(Ω) |∂nw = 0, x ∈ ∂Ω}, (2.4)

where p > N . Taking χ as the bifurcation parameter, we rewrite (1.2) into the following abstract
form

F(u, v, χ) = 0, (u, v, χ) ∈ X × X × R,

where

F(u, v, χ) =

(
∇ · (D1∇u− χφ(u, v)∇v) + µu(ū− u)

D2∆v − αv + f(u)

)
. (2.5)

It is easy to see that F(ū, v̄, χ) = 0 for any χ ∈ R and F : X × X × R → Lp(Ω) × Lp(Ω)
is analytic. For any fixed (û, v̂) ∈ X × X , we have from straightforward calculations that the
Fréchet derivative of F is given by

D(u,v)F(û, v̂, χ)(u, v) =


∇ ·
(
D1∇u− χ

(
(φu(û, v̂)u+ φv(û, v̂)v

)
∇v̂

+φ(û, v̂)∇v
))

+ µ(ū− 2û)u

D2∆v − αv + f ′(û)u

 ; (2.6)
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moreover it is easy to see that D(u,v)F(û, v̂, λ) is continuously differentiable with respect to
(u, v) and χ in X × X × R.

To apply the Crandall–Rabinowitz bifurcation theory, we need to verify thatD(u,v)F(ū, v̄, χ)(u, v)
is Fredholm with index 0 and it has zero as a simple eigenvalue. Before showing this, we want to
remark that the arguments developed by [Shi & Wang, 2009] make the original bifurcation the-
ory applicable in the Sobolev spaces above (and also in Hölder spaces thanks to elliptic Sobolev
embeddings).

For local bifurcations to occur at (ū, v̄, χ), the following nontriviality condition is needed for
the null space of D(u,v)F(ū, v̄, χ) to hold

N
(
D(u,v)F(ū, v̄, χ)

)
6= {(0, 0)}.

To verify this condition, we first take (û, v̂) = (ū, v̄) in (2.6) and have that Fréchet derivative of
F there reads

D(u,v)F(ū, v̄, χ)(u, v) =

(
D1∆u− χφ(ū, v̄)∆v − µūu

D2∆v − αv + f ′(ū)u

)
, (2.7)

hence the nontriviality condition implies that there exists some nontrivial solutions (u, v) to the
following system 

D1∆u− χφ(ū, v̄)∆v − µūu = 0, x ∈ Ω,
D2∆v − αv + f ′(ū)u = 0, x ∈ Ω,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω.
(2.8)

We expand the u and v into their eigen–expansions

u(x) =

∞∑
k=1

tkΦk, v(x) =

∞∑
k=1

skΦk,

where tk and sk are constants to be determined. Substitute the series into (2.8) and we obtain−D1λk − µū λkχφ(ū, v̄)

f ′(ū) −D2λk − α

tk
sk

 =

0

0

 , (2.9)

where λk is the k–th eigenvalue of (2.1). k = 0 can be easily ruled out if (2.7) admits nonzero
solutions since λ0 = 0. For each k ∈ N+, the coefficient matrix in (2.9) is singular and one has
that

χ = χ̄k =
(D1λk + µū)(D2λk + α)

f ′(ū)φ(ū, v̄)λk
, k ∈ N+; (2.10)

moreover the null space N (D(u,v)F(ū, v̄, χ̄k)) is one–dimensional and it has a span

N (D(u,v)F(ū, v̄, χ̄k)) = span {(ūk, v̄k)} ,

where
ūk = QkΦk, v̄k = Φk, (2.11)

with Φk being the k–th Neumann Laplace eigenfunction and

Qk =
D2λk + α

f ′(ū)
, k ∈ N+. (2.12)

Now it follows from Corollary 2.11 in [Shi & Wang, 2009] that D(u,v)F(û, v̂, χ) is a Fredholm
operator with index 0–see also the statements of Theorem 3.3 and Remark 3.4 in that paper.
Therefore we have that codim R(D(u,v)F(û, v̂, χ)) = 1. Having the potential bifurcation values
in (2.10), we now verify in the following theorem that local bifurcation does occur at (ū, v̄, χ̄k)
for each k ∈ N+, which establishes nonconstant positive solutions to (1.2).
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Theorem 2.1. Let λi be the i–th simple eigenvalue of (2.1) and assume that D1D2λiλj 6= αµū
for all i 6= j ∈ N+. Then the solutions of (1.2) around (ū, v̄, χ̄k) consists precisely of the
continuous curve Γk(s) = (uk(s), vk(s), χk(s)), s ∈ (−δ, δ), where

χk(s) = χ̄k + o(s), (uk(s, x), vk(s, x)) = (ū, v̄) + s(Qk, 1)Φk + o(s), (2.13)

and (uk(s, x), vk(s, x))−(ū, v̄)−s(Qk, 1)Φk in the closed complement of the null space N (D(u,v)F(ū, v̄, χ̄k))
which is explicitly given by

Z =
{

(u, v) ∈ X × X
∣∣ ∫

Ω

uūk + vv̄kdx = 0
}

(2.14)

with (ūk, v̄k) given by (2.11).

Proof. In order to apply the local theory of Crandall and Rabinowitz [1971], we have verified
all but the following transversality condition,

d

dχ

(
D(u,v)F(ū, v̄, χ)

)
(ūk, v̄k)|χ=χ̄k

/∈ R(D(u,v)F(ū, v̄, χ̄k)). (2.15)

We argue by contradiction. If not, there must exist a nontrivial solution (ũ, ṽ) to the following
problem 

D1∆ũ− χ̄kφ(ū, v̄)∆ṽ − µūũ = −λkφ(ū, v̄)Φk, x ∈ Ω,
D2∆ṽ − αṽ + f ′(ū)ũ = 0, x ∈ Ω,
∂ũ
∂n = ∂ṽ

∂n = 0, x ∈ ∂Ω.
(2.16)

Multiplying both equations in (2.16) by Φk and then integrating them over Ω by parts, we have
that −D1λk − µū λkχ̄kφ(ū, v̄)

f ′(ū) −D2λk − α

∫Ω ũΦkdx∫
Ω
ṽΦkdx

 =

−λkφ(ū, v̄)

0

 , (2.17)

where we have used the fact that
∫

Ω
Φ2
kdx = 1. Since λk > 0 for k ∈ N+, (2.17) leads to a

contradiction in light of (2.10). This proves (2.15) and the statements of this theorem follows
from Theorem 1.7 in [Crandall & Rabinowitz, 1971]. �

We assume that D1D2λiλj 6= αµū for all i 6= j ∈ N+ in order to make sure that χi 6= χj .
The bifurcation branch Γk(s) is local as presented in Theorem 2.1. It is actually a global one
according to Theorem 6.1 in [Pejsachowicz & Rabier, 1998] (See also Remark 4.2 in [Shi &
Wang, 2009]). From the global bifurcation theory of Crandall and Rabinowitz [1971] and its
extended version in [Shi & Wang, 2009], one can assert that for V being an open connected
subset of X × X × R, each curve Γk(s) is contained in C which is a connected component of
S̄, the closure of solution set S = {(u, v, χ) ∈ V : F(u, v, χ) = 0, (u, v) 6= (ū, v̄)}; moreover,
C satisfies one of the follows: (i) it is not compact in V; (ii) it intersects with (ū, v̄, χ∗) with
χ∗ 6= χ̄k; or (iii) it contains a point (ū+ u, v̄ + v, χ), with (0, 0) 6= (u, v) ∈ Z. Here C being not
compact means that it either intersects ∂V or it is unbounded.

As pointed out in [Shi & Wang, 2009], the global bifurcation results have very useful appli-
cations in the study of positive (and monotone) solutions to elliptic PDEs. However, we want
to add that very few mathematical techniques are available in rigorously characterizing these
alternatives. The methodology recently developed by Wang et al. in [Chertock et al. 2012]
and [Xu & Wang, 2012] turns out to be very useful and user friendly in dealing with certain
one–dimensional chemotaxis systems with special structures. In loose terms, the ideas there can
be summarized as follows. Consider the first bifurcation branch and show that the solutions
on the continuum C must be monotone by maximum principles. Therefore the continuum of
the first branch must be unbounded. Then, by deriving a–prior estimates of positive solutions,
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one can show the continuum C extends to infinity and its project onto the χ–axis must be an
interval that contains [χ1,∞). Hence, the first bifurcation branch extends to infinity in the
positive direction of χ–axis. One can then study the behaviors of positive solutions as χ → ∞
that has spikes or transition layers. However, the methodology there does not apply to multi–
dimensional domains since the monotonicity argument becomes technically difficult in this case
and this is beyond the scope of our paper. We refer to the recent paper [Ma & Wang, 2015] on
the global bifurcation analysis of (1.1) in 1D.

3 Stability of bifurcating solutions

Now we proceed to investigate the stability of the bifurcating solution of (1.2) established in
Theorem 2.1. Here the stability is that of (uk(s, x), vk(s, x)) viewed as an equilibrium of system
(1.1). To this end, we first determine the type of each bifurcation branch Γk(s), k ∈ N+.
The operator F defined in (2.5) is C4–smooth if φ is C5–smooth, hence by Theorem 1.7 from
[Crandall & Rabinowitz 1971], (uk(s, x), vk(s, x), χk(s)) is a C3–smooth function of s and we
have the following asymptotic expansions for s ∈ (−δ, δ): uk(s, x) = ū+ sQkΦk + s2ψ1(x) + s3ψ̃1(x) +O(s4),

vk(s, x) = v̄ + sΦk + s2ψ2(x) + s3ψ̃2(x) +O(s4),
χk(s) = χ̄k + sχ′k(0) + 1

2s
2χ′′k(0) +O(s2),

(3.1)

where Qk is given by (2.12) and Φk(x) is the k–th eigenfunction of the Neumann problem (2.1).
ψi and ψ̃i, i = 1, 2, belong to Z as defined in (2.14) and O(s4) in the first two equations of (3.1)
are taken in W 2,p-topology. As we shall see later on, the sign of χk(s) around χ̄k determines
the stability of the bifurcating solutions. To this end, we first evaluate χ′k(0) and χ′′k(0) in the
following propositions.

Proposition 2. Let (λk,Φk) be an eigen–pair of −∆. Then χ′k(0) is given by

χ′k(0)λkφ(ū, v̄) =
(
µQ2

k −
λkχ̄k

2

(
φu(ū, v̄)Qk + φv(ū, v̄)

)) ∫
Ω

Φ3
kdx. (3.2)

Proof. First of all, we have the following facts from Taylor expansions

φ(u, v) =φ(ū, v̄) + sΦk
(
φu(ū, v̄)Qk + φv(ū, v̄)

)
+ s2

(
φu(ū, v̄)ψ1 + φv(ū, v̄)ψ2

+
1

2

(
φuu(ū, v̄)Q2

k + φvv(ū, v̄) + 2φuv(ū, v̄)Qk
)
Φ2
k

)
+ o(s2)

(3.3)

and

µu(ū− u) = −µ
(
ū+ sQkΦk + s2ψ1 +O(s3)

)(
sQkΦk + s2ψ1 +O(s3)

)
= s(−µūQkΦk) + s2(−µūψ1 − µQ2

kΦ2
k) +O(s3).

(3.4)

Substituting (3.1)–(3.4) into the u–equation of (1.2) and equating the s2-terms, we collect
that

D1∆ψ1 − µūψ1 − µQ2
kΦ2

k + χ′k(0)φ(ū, v̄)λkΦk

=χ̄k

(
φ(ū, v̄)∆ψ2 +

(
φu(ū, v̄)Qk + φv(ū, v̄)

)(
|∇Φk|2 − λkΦ2

k

))
.

(3.5)

Similarly, substituting the expansions into the v–equation and equating the s2–terms there, we
obtain that

D2∆ψ2 − αψ2 + f ′(ū)ψ1 = 0. (3.6)
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Multiplying (3.5) and (3.6) by Φk and integrating them over Ω by parts, we have

χ′k(0)φ(ū, v̄)λk =(D1λk + µū)

∫
Ω

ψ1Φkdx+ µQ2
k

∫
Ω

Φ3
kdx− λkχ̄kφ(ū, v̄)

∫
Ω

ψ2Φkdx

+ χ̄k
(
φu(ū, v̄)Qk + φv(ū, v̄)

)( ∫
Ω

Φk|∇Φk|2dx− λk
∫

Ω

Φ3
kdx

)
.

(3.7)

and

− (D2λk + α)

∫
Ω

ψ2Φkdx+ f ′(ū)

∫
Ω

ψ1Φkdx = 0 (3.8)

respectively; on the other hand, since (ψ1, ψ2) ∈ Z, we have from (2.14) that

Qk

∫
Ω

ψ1Φkdx+

∫
Ω

ψ2Φkdx = 0 (3.9)

where Qk = D2λk+α
f ′(ū) . It is easy to see that the coefficient matrix of (3.8) and (3.9) is nonsingular

from (2.12), therefore we must have that∫
Ω

ψ1Φkdx =

∫
Ω

ψ2Φkdx = 0, for all k ∈ N+; (3.10)

moreover, it follows from the Neumann eigenvalue problem (2.1) and the straightforward calcu-
lations that ∫

Ω

Φk|∇Φk|2dx =
1

2

∫
Ω

∇Φk∇Φ2
kdx = −1

2

∫
Ω

Φ2
k∆Φkdx =

λk
2

∫
Ω

Φ3
kdx; (3.11)

then (3.2) follows from (3.7), (3.10) and (3.11). �

Proposition 2 indicates that χ′k(0) = 0 if ‖Φk‖L3 = 0. This is the case when Ω is a one–
dimensional finite interval or multi–dimensional rectangle and then the bifurcation is of pitch–
fork type hence we need to evaluate χ′′k(0) for the stability analysis. We have the following result
from straightforward calculations.

Proposition 3. If χ′k(0) = 0, then χ′′k(0) satisfies

1

2
φ(ū, v̄)λkχ

′′
k(0) =χ̄k

(
φu(ū, v̄)Qk

∫
Ω

ψ2|∇Φk|2dx− φu(ū, v̄)

∫
Ω

ψ1|∇Φk|2dx

− λk
6

(
φuu(ū, v̄)Q2

k + φvv(ū, v̄) + 2φuv(ū, v̄)Qk
) ∫

Ω

Φ4
kdx

− λk
(
φu(ū, v̄)Qk + φv(ū, v̄)

) ∫
Ω

ψ2Φ2
kdx

)
+ 2µQk

∫
Ω

ψ1Φ2
kdx.

(3.12)

Proof. Equating s3 terms in (1.2), together with the fact that χ′k(0) = 0, we arrive at the
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following system

D1∆ψ̃1 − µūψ̃1 − 2µQkψ1Φk +
1

2
χ′′k(0)φ(ū, v̄)λkΦk

=χ̄k

((
φu(ū, v̄)Qk + 2φv(ū, v̄)

)
∇ψ2∇Φk + φu(ū, v̄)∇ψ1∇Φk

+
(
φuu(ū, v̄)Q2

k + φvv(ū, v̄) + 2φuv(ū, v̄)Qk
)(

Φk|∇Φk|2 −
1

2
λkΦ3

k

)
+ φ(ū, v̄)∆ψ̃2 +

(
φu(ū, v̄)Qk + φv(ū, v̄)

)
∆ψ2Φk

− λkφu(ū, v̄)ψ1Φk − λkφv(ū, v̄)ψ2Φk

)
,

D2∆ψ̃2 − αψ̃2 + f ′(ū)ψ̃1 = 0,

∂ψ̃1

∂n
=
∂ψ̃2

∂n
= 0.

(3.13)

Multiplying the first equation of (3.13) by Φk, we have from the integration by parts that

1

2
φ(ū, v̄)λkχ

′′
k(0) =−D1

∫
Ω

∆ψ̃1Φkdx+ µū

∫
Ω

ψ̃1Φkdx+ 2µQk

∫
Ω

ψ1Φ2
kdx

+ χ̄k

((
φu(ū, v̄)Qk + 2φv(ū, v̄)

) ∫
Ω

∇ψ2∇ΦkΦkdx+ φu(ū, v̄)

∫
Ω

∇ψ1∇ΦkΦkdx

+
(
φuu(ū, v̄)Q2

k + φvv(ū, v̄) + 2φuv(ū, v̄)Qk
)( ∫

Ω

Φ2
k|∇Φk|2dx−

1

2
λk

∫
Ω

Φ4
kdx

)
+ φ(ū, v̄)

∫
Ω

∆ψ̃2Φkdx+
(
φu(ū, v̄)Qk + φv(ū, v̄)

) ∫
Ω

∆ψ2Φ2
kdx

− λkφu(ū, v̄)

∫
Ω

ψ1Φ2
kdx− λkφv(ū, v̄)

∫
Ω

ψ2Φ2
kdx

)
.

(3.14)
By the same arguments that lead to (3.10), we can show that∫

Ω

ψ̃1Φkdx =

∫
Ω

ψ̃2Φkdx = 0,∀k ∈ N+,

and it gives rise to (3.12) in light of (3.14). �

In order to evaluate χ′′k(0), we need to calculate the followings integrals:∫
Ω

ψ1Φ2
kdx,

∫
Ω

ψ2|∇Φk|2dx,
∫

Ω

ψ1|∇Φk|2dx,
∫

Ω

ψ2Φ2
kdx.

Similar as the calculations above, we can have from some straightforward but lengthy calcula-
tions 

−2D1λk − µū 2D1 2χ̄kλkφ(ū, v̄) −2χ̄kφ(ū, v̄)
2D1λ

2
k −2D1λk − µū −2χ̄kλ

2
kφ(ū, v̄) 2χ̄kλkφ(ū, v̄)

f ′(ū) 0 −2D2λk − α 2D2

0 f ′(ū) 2D2λ
2
k −2D2λk − α




∫
Ω

Φ2
kψ1dx∫

Ω
|∇Φk|2ψ1dx∫
Ω

Φ2
kψ2dx∫

Ω
|∇Φk|2ψ2dx



=


(

2
3 χ̄k

(
φu(ū, v̄)Qk + φv(ū, v̄)

)
λk + µQ2

k

)(
2
3λ

2
kχ̄k

(
φu(ū, v̄)Qk + φv(ū, v̄)

)
+ 1

3λkµQ
2
k

)
0
0


∫

Ω

Φ4
kdx.
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(a) Supercritical bifurcation (b) Subcritical bifurcation

(c) Supercritical bifurcation (d) Subcritical bifurcation

Figure 1: Bifurcation branches Γk0(s) around (ū, v̄, χ̄k0). Transcritical bifurcation branches in
(a)–(b) and pitch–fork type bifurcation branches Γk0(s) in (c)–(d). The solid curve represents
stable bifurcating solution (uk0(s, x), vk0(s, x)) and the dashed curve represents unstable solution.
Solution on the bifurcation branch changes its stability each time the curve turns its direction.

The calculations for these integrals are straightforward but very complicated, therefore we skip
the details here.

Now we are ready to present the following result on the stability of the bifurcating solutions.

Theorem 3.1. Suppose that all conditions in Theorem 2.1 hold. Assume that χk0
= mink∈N+ χk,

then for all k 6= k0 the bifurcating solution (uk(s, x), vk(s, x)) is always unstable for s ∈ (−δ, δ).
The bifurcating solution (uk0(s, x), vk0(s, x)) is asymptotically stable for s ∈ (0, δ) and unstable
for s ∈ (−δ, 0) if χ′k0

(0) > 0 in (3.2), (uk0
(s, x), vk0

(s, x)) is unstable for s ∈ (0, δ) and asymp-
totically stable for s ∈ (−δ, 0) if χ′k0

(0) < 0. If χ′k0
(0) = 0, (uk0

(s, x), vk0
(s, x)) is asymptotically

stable for s ∈ (0, δ) if χ′′k0
(0) > 0 and unstable if χ′′k0

(0) < 0.

It is easy to see that
∫

Ω
Φ3
kdx plays an essential role in determining the stability of the bifur-

cation branch Γk(s). Transcritical and pitch bifurcation branches are schematically presented
in Figure 3 to illustrate the results in Theorem 3.1.

Proof. Our proof follows that of Theorem 3.2 in [Wang et al., 2015]. To prove the instability of
solutions (uk(s, x), vk(s, x)) on bifurcation branch Γk(s) for k 6= k0, it is equivalent to show that
the real part of each eigenvalue of D(u,v)F(uk(s, x), vk(s, x), χk(s)) to the following eigenvalue
problem is positive

D(u,v)F(uk(s, x), vk(s, x), χk(s))(u, v) = σ(u, v), (u, v) ∈ X × X . (3.15)
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Indeed, for s = 0 the linearized stability matrix of (3.15) becomes (2.3) which always has a
positive eigenvalue if k 6= k0. Therefore (3.15) always has a positive eigenvalue for s being small
in light of the standard eigenvalue perturbation theory in [Kato, 1996].

Applying the same arguments that lead to the Fredholmness in Theorem 2.1, we can show
that 0 is a K–simple eigenvalue of D(u,v)F(ū, v̄, χ̄k0

)–see Definition 1.2 in [Crandall & Rabi-
nowitz, 1973]. From Corollary 1.13 in [Crandall & Rabinowitz, 1973], there exist a small interval
I containing χ̄k0

and continuously differentiable functions (γ(χ), σ(s)) : I × (−δ, δ) → R2 such
that γ = γ(χ) is a real eigenvalue of

D(u,v)F(ū, v̄, χ)(u, v) = γ(χ)(u, v), (u, v) ∈ X × X (3.16)

such that γ(χ̄k0) = 0 and σ = σ(s) is an eigenvalue of (3.15) with σ(0) = 0 ; moreover γ(χ)
is the only eigenvalue of (3.16) for any fixed neighbourhood of the origin in the complex plane;
furthermore, the eigenfunction of (3.16) corresponding to γ(χ) depends on χ smoothly which can
be written as (u(χ, x), v(χ, x)) and is uniquely determined by (u(χ̄k0

, x), v(χ̄k0
, x)) = (ūk0

, v̄k0
)

and (u(χ, x), v(χ, x))− (ūk0
, v̄k0

) ∈ Z.
According to 1.17 in Theorem 1.16 of [Crandall & Rabinowitz, 1973], functions σ(s) and

−sχ′k0
(s)γ̇(χ̄k0) have the same zeros and the same sign near s = 0 and for σ(s) 6= 0,

lim
s→0

−sχ′k0
(s)γ̇(χ̄k0

)

σ(s)
= 1,

where the dot sign denotes the derivative taken respect to χ. We now proceed to determine the
sign of σ(s) for s ∈ (−δ, δ). To this end, we differentiate (3.16) with respect to χ and then take
χ = χ̄k0

, then we have that{
D1∆u̇− φ(ū, v̄)∆Φk0

− χ̄k0
φ(ū, v̄)∆v̇ − µūu̇ = γ̇(χ̄k0

)Qk0
Φk0

, x ∈ Ω,
D2∆v̇ − αv̇ + f ′(ū)u̇ = γ̇(χ̄k0

)Φk0
, x ∈ Ω,

(3.17)

where u̇ = ∂u(χ,x)
∂χ |χ=χ̄k0

and v̇ = ∂v(χ,x)
∂χ |χ=χ̄k0

. Now we multiply (3.17) by Φk0
and integrate

it over Ω by parts, then it follows from straightforward calculations and the fact
∫

Ω
Φ2
k0
dx = 1

that −D1λk0
− µū λk0

χ̄k0
φ(ū, v̄)

f ′(ū) −D2λk0
− α

∫Ω u̇Φk0
dx∫

Ω
v̇Φk0

dx

 =

γ̇(χ̄k0
)Qk0

− λk0
φ(ū, v̄)

γ̇(χ̄k0
)

 . (3.18)

We recall from (2.10) that the coefficient matrix in (3.18) in singular. This implies that

−D1λk0
− µū

f ′(ū)
=
γ̇(χ̄k0

)Qk0
− λk0

φ(ū, v̄)

γ̇(χ̄k0)

and consequently

γ̇(χ̄k0) =
λf ′(ū)φ(ū, v̄)

(D1 +D2)λ+ µū+ α
> 0,

there it follows from Theorem 1.6 in [Crandall & Rabinowitz, 1973] and the discussions above
that

sgn(σ(s)) = sgn(−χ′k0
(0)), (3.19)

if χ′k0
(0) 6= 0. When χ′k0

(0) = 0, we can easily have from (3.19) and L′Hôpital’s rule that
sgn(σ(s)) = sgn(−χ′′k0

(0)), hence Theorem 3.1 readily follows from the analysis above. �

The bifurcation branches are transcritical if
∫

Ω
Φ3
kdx 6= 0 or χ′k(0) 6= 0. If domain Ω is an

interval or multi–dimensional rectangle, the eigenfunction Φk is cosine or a product of cosine
functions, therefore

∫
Ω

Φ3
kdx = 0 and χ′k(0) = 0, and the bifurcation branch is of pitchfork type,

i.e., being one sided.
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4 Numerical simulations in 2D

This section is devoted to the numerical studies of development of spatially inhomogeneous
solutions to the time–dependent system (1.1) over 2D domains. In particular, we choose Ω =
(0, L)× (0, L). In this special case, the Neumann eigenvalue problem (2.1) has eigen–pairs

λmn = (m2 + n2)π2/L2,Φmn(x, y) = cos
mπx

L
cos

nπy

L
, m, n ∈ N+.

Each eigenvalue gives rise to bifurcation point χmn, with λk being replaced by λmn in (2.10).
Though the boundary of the square is not smooth at the corners, one can interpret the boundary
condition in the weak sense via Green’s identity–see the discussions in [Chertock, et al., 2012].
We also want to mention that numerical studied in 1D model with volume filling effect has been
performed in [Ma, et al., 2012]. We are interested in patterns with concentrating properties in

Figure 2: Emergence of single boundary spike at corner (1, 1).

contrast to the small amplitude bifurcating solutions established in Theorem 2.1. Our numerical
studies suggest that for properly chosen parameters and initial data, the stable steady states
can develop quite complicated structures such as spikes, stripes, etc. These patterns with
concentrating structures can be realistic modelings of cellular aggregations, though rigorous
analysis is needed to fully understand the initiation, development and evolution of these striking
structures. In particular, in order to illustrate the effect of system parameters D1, D2, χ and
the initial data on the pattern formations, we restrict α = 1 and f(u) = u in this section.

First of all, we numerically study (1.1) that develops a boundary spike at the corner (1, 1) of
Ω = (0, 1)× (0, 1) in Figure 2. We choose D1 = χ = 5, D2 = 0.01, ū = 3 and µ = 1; the initial
data are chosen to be u0 = ū+ cos 2πx cosπy and v0 = v̄+ cosπx cosπy. Our numerical studies
suggest that small chemical diffusion rate D2 supports steady states with spikes. Numerical
results in Figure 2 also suggest that spikes are usually expected to develop and stabilize at the
location where initial data maximize. This is also supported by results in Figures 4 and Figure
5.

In Figure 3, we study (1.1) with cell diffusivity being D2 relatively small with Ω = (0, 1)×
(0, 1). In particular, we choose D1 = 0.0625, D2 = 1, χ = 19, µ = 8 and ū = 1; the initial data

13



are taken to be u0 = ū + e−(x2+y2) and v0 = 2ū + 0.01 cosx. It is presented in Figure 3 that
stripes develop at t ≈ 3 and break down at t ≈ 18; then the stripes lose stability to steady state
with hexagon blocks, which stabilizes for t being large enough. We want to mention that the
hexagon steady states are also numerically presented in [Osaki, et al., 2002], which motivates our
results in Figure 3. In Figure 4, we investigate the effect of system parameters on the formations

Figure 3: Emergence of hexagon steady states through unstable stripes.

of stable steady states. For this purpose, we fix D1 = 1 and µ = 10 and choose the initial data to
be small spatial perturbations from (ū, v̄) = (3, 3), then we perform extensive numerical studies
of (1.1) as D2 and χ vary. In Figures 4A, 4B and 4C, (D2, χ) are selected to be (0.1, 5), (0.1, 20)
and (0.005, 5) respectively. We observe that both small D2 and large χ create spikes; Figure
4A and Figure 4B suggest that large χ drives spikes to concentrate at corners; Figure 4A and
Figure 4C indicate that small D1 supports the emergence of stable boundary and interior spikes.
These results also indicate that large chemotactic rate χ shrinks the region where the spike is
supported. It is quite reasonable to predict that the spike concentrates at a single point or
multiple points as χ→∞, however our numerical experiments suggest that blow–up may occur
in (1.1) if χ is sufficiently large. Rigorous proof is needed to support this observation. All the
numerical results demonstrate that small spatial perturbations of homogeneous equilibrium can
lead to stable patterns with various complicated and interesting structures. We observe that, by
reflecting and periodically extending steady state with a single spike, one can construct multi–
spike solutions thanks to the homogeneous Neumann boundary conditions. This motivates us
to investigate the formations of stable steady states in larger square domains. In Figure 5, we
plot stable spiky steady states as the domain size L increases. The parameters are chosen to be
D1 = χ = 5, D2 = 0.1, µ = 1 and ū = v̄ = 3; initial data are u0 = ū + cos(2x + 1) cos(2y + 1)
and v0 = v̄+cos(2x) cos(2y). For Ω = (0, 2)× (0, 2), two spikes emerge on the opposite diagonal
corners; for Ω = (0, 4)×(0, 4), three more stable spikes develop, with two on the corners and one
in the center; for Ω = (0, 10) × (0, 10) and (0, 15) × (0, 15), we see more interior spikes emerge
over the habitat. It is realistic to claim that infinitely many spikes can emerge if Ω expands to
the whole domain, however, rigorous analysis of the mechanism that drives the formations of
spikes is an interesting but also challenging question that deserves future explorations. Finally,
we present some stable numerical solutions with multi–spikes and/or multi–stripes in Figure
6. These patterns are heuristic in understanding the dynamics of system (1.1) with logistic
growth, demonstrating that it can develop many other complicated and interesting structures
besides those established in previous numerical experiments. The numerical results and choice
of system parameters in this figure are motivated by those obtained in [Kuto, et al., 2012]. For

all plots in Figure 6, the initial data are taken to be u0 = ū+0.05e−
x2+y2

2 , v0 = v̄+0.05e−
x2+y2

2 .
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Figure 4: Stable steady states with boundary/interior spikes with the same initial data, but different
sets of system parameters.

Figure 5: Stable steady states with boundary and interior spikes as domain size increases, with
parameters and initial data being fixed. This experiment indicates that large domain supports the
emergence of spikes.

In (i), we choose that D1 = D2 = 0.25, µ = 5, ū = 3, χ = 10; stable steady solution emerge
with multi–spikes, boundary and interior. In (ii), we slightly change the diffusion rates to be
D1 = 0.125 and D2 = 0.5 and keep the rest parameters the same as those in (i), then stable
multi–spikes also develop, which form a stable strip–like patterns. This motivates us to set D1

smaller in plot (iii). We set D1 = 0.0625, D2 = 1, µ = 6, ū = 1 in plot (iii), then we see that
regularized stripes form a stable pattern. Plot (iv) is obtained numerically by enlarging the
domain size in plot (iii), while the parameters in both plots are set to be the same.

5 Conclusion and discussion

In this paper, we study positive steady states of Keller–Segel chemotaxis system (1.2) with
logistic growth over multi–dimensional bounded domain. We show that the homogeneous solu-
tion (ū, v̄) loses its stability as chemo–attraction rate χ surpasses a threshold value χ0. Local
bifurcation analysis is performed to establish the existence of nonconstant positive solutions
(uk(s, x), vk(s, x)) of (1.2) in Theorem 2.1. It is shown that the first steady state bifurcation
occurs at the same location where (ū, v̄) loses its stability. Our results indicate that chemotaxis
is a leading mechanism that drives the formation of these small amplitude bifurcating solutions.
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Figure 6: Stable steady states with spikes, dotted–stripes, stripes etc. emerge.

We also investigate stability of the bifurcating solutions around (ū, v̄, χk) in Theorem 3.1.
Our result states that the only stable bifurcation branch must have a wavemode number k0 which
minimizes the bifurcation value χ̄k in (2.10) over N+. This provides a selection mechanism of
stable wavemode to which the homogeneous solution (ū, v̄) loses its stability. The same results
have been obtained in [Ma, et al. , 2012] for chemotaxis system with volume–filling effect over
1D (though it is easy to see that their results carry over for more general systems). On one
hand, our existence and stability results extend theirs to multi–dimension. On the other hand,
we show that the sign of

∫
Ω

Φ3
kdx determines the shape of the transcritical bifurcation branches if

the integral is not zero. If the domain has a geometry such that
∫

Ω
Φ3
kdx = 0, for example when

it is an interval or is a multi–dimensional rectangle, then the bifurcation branch is of pitch–fork
type in this case. Furthermore, we evaluate χ′′k(0) in terms of several integrals which can be
computed involving system parameters. Finally, we present numerical simulations of formation
of patterns with stable structure such as with boundary spikes, interior spikes, stripes, etc.
Our computational results also suggest that the logistic growth chemotaxis system (1.1) can
develop many striking structures which can model cellular aggregations that emerge in realistic
biological systems.

There are also some interesting questions that deserve future explorations on system (1.1)
and its stationary counterpart (1.2). The appearance of the logistic growth is an important
mechanism to inhibit solutions from blowing up in finite or infinite time, however, whether
or not this is sufficient remains an open problem, in particular when both χ and the space
dimension N are large. Further questions can be asked about the global existence of (1.1) with
cellular kinetics different from the logistic type. According to the global bifurcation theory
in [Crandall & Rabinowitz, 1971] and [Shi & Wang, 2009], the continuum of each bifurcation
branch satisfies one of three alternatives, and rigorous characterization is very important for
the analysis of positive solutions of elliptic systems, however, highly nontrivial mathematical
techniques are required to deal with this problem for multi–dimensional domains.

Our numerics illustrate the emergence and development of spatial patterns with spiky and
other concentrating properties. It is suggested in literature that both large chemo–attraction
rate χ and small chemical diffusion rate D2 support the emergence and stability of these nontriv-
ial patterns. Rigorous construction and/or mathematical analysis of solutions with concentrat-
ing structures is an interesting and challenging problem to work on, even over one–dimensional
finite domain. Moreover, rigorous stability analysis of these patterns is apparently another
delicate problem that deserves probing in the future.
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