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This paper addresses a systematic characterization of saddle-node bifurcations in nonlinear 
electrical and electronic circuits. Our approach is a circuit-theoretic one, meaning that the 
bifurcation is analyzed in terms of the devices' characteristics and the graph-theoretic properties 
of the digraph underlying the circuit. The analysis is based on a reformulation of independent 
interest of the saddle-node theorem of Sotomayor for semiexplicit index one differential-algebraic 
equations (DAEs), which define the natural context to set up nonlinear circuit models. The 
bifurcation is addressed not only for classical circuits, but also for circuits with memristors. The 
presence of this device systematically leads to non-isolated equilibria, and in this context the 
saddle-node bifurcation is shown to yield a bifurcation of manifolds of equilibria; in cases with 
a single memristor, this phenomenon describes the splitting of a line of equilibria into two, with 
different stability properties. 
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1. Introduction 
Bifurcations of equilibria are a key element in the analysis of the local behavior of nonlinear dynamical 
systems. Broadly speaking, in a parameterized setting a bifurcation of an equilibrium point describes a 
qualitative change in the local phase portrait of the system when the parameter undergoes a critical value. 
In nonlinear circuit theory, such bifurcations correspond to qualitative changes in the local dynamics around 
a given operating point, and their characterization is important since they may result in a loss of stability; 
they may also be relevant as an auxiliary tool in the analysis of other qualitative phenomena involving 
e.g. periodic solutions. Many qualitative properties of nonlinear electrical and electronic circuits have been 
addressed in the literature; find references in the books [Choma, 1985; Chua et al, 1987; Fosséprez, 1992; 
Hasler and Neirynck, 1986; Riaza, 2008]. Milestones in this field are of course Van der Pol's and Chua's 
circuits; find the 1920 papers by Van der Pol in [Van der Pol, 1920] and exhaustive analyses of Chua's 
circuit in [Fortuna et al, 2009; Madan, 1993] and references therein. Other key papers addressing qualitative 



properties in the context of classical nonlinear circuits are [Brayton and Moser, 1964; Chua, 1980; Mees 
and Chua, 1979; Smale, 1972]; we use the term "classical" to denote circuits without memristive devices. 

The main local bifurcation of equilibria is the so-called saddle-node bifurcation, in which an equilibrium 
point depicting a simple zero eigenvalue (in the linearization of the vector field defining the dynamics) at a 
critical parameter value bifurcates into two different equilibria as the parameter varies. These two equilibria 
differ in the sign of a real eigenvalue and, in the particular case of two-dimensional dynamics, they are 
necessarily a saddle point (that is, an equilibrium point with two nonzero, real eigenvalues with opposite 
sign) and a node (namely an equilibrium with two nonzero, real eigenvalues with the same sign). The 
latter may be stable or unstable, depending on the sign of the eigenvalue which stays away from the origin. 
Moreover, this behavior is generic in the set of smooth, one-parameter vector fields with an equilibrium 
having a simple zero eigenvalue, according to the fundamental work of Sotomayor [Sotomayor, 1973a,b]. 
Find detailed discussions in [Guckenheimer and Holmes, 1983; Perko, 1991]. Saddle-node bifurcation points 
are a particular instance of so-called turning points, which are important in numerical continuation theory 
[Allgower and Georg, 2003; Goovaerts, 2000]; preliminary results of our research, regarding quadratic 
turning points, can be found in [García de la Vega and Riaza, 2014]. In this context, the goal of the present 
work is to address systematically the existence of saddle-node bifurcations in dynamical systems modelling 
nonlinear circuits, both in a classical setting and also in the presence of memristors. The latter device 
has had a great impact in electrical and electronic engineering since the announcement of the design of a 
nanoscale memristor in [Strukov et al, 2008] (see also [Chua, 1971; Kavehei et al, 2010; Pershin and Di 
Ventra, 2011; Tetzlaff, 2014] and additional references in Section 5), and our results should be also relevant 
in this field of active research. 

Time-domain descriptions of electrical and electronic circuits are usually defined in terms of so-called 
semistate models based on differential-algebraic equations (DAEs). This is due to the fact that deriving 
state models based on explicit ODEs is usually not feasible in practice: additionally, from an analytical 
point of view, a state-space derivation often involves strong theoretical assumptions which are not really 
needed in a qualitative analysis such as the one addressed in the present work. For this reason, our approach 
necessarily involves a reformulation of Sotomayor conditions in DAE terms. General background on DAE 
theory can be found in [Brenan et al., 1996; Kunkel and Mehrmann, 2006; Lamour et al., 2013; Rabier 
and Rheinboldt, 2002; Riaza, 2008], and DAE-based circuit modelling is extensively discussed in [Estévez-
Schwarz and Tischendorf, 2000; Giinther and Feldmann, 1995; Günther and Rentrop, 1996; Lamour et al, 
2013; Riaza, 2008; Tischendorf, 1999, 2003]. DAEs are nowadays pervasive in circuit simulation programs, 
such as SPICE, which set up the circuit equations using Modified Nodal Analysis (MNA) techniques. 

The DAE approach makes it possible to address the saddle-node bifurcation in circuit-theoretic terms, 
at least for a broad class of nonlinear circuits. This means that the conditions characterizing the bifurca­
tion can be formulated in terms of both the electrical features of the circuit devices (passivity, linearity, 
coupling effects, etc.) and the topological properties of the digraph underlying the circuit. The origin of 
this graph-theoretic or topological approach can be traced back to the state-space formulation problem in 
the 1960s and 1970s [Brown, 1963; Bryant and Tow, 1972], and has been successfully applied to qualitative 
analyses of nonlinear circuits [Chua, 1980; Fosséprez, 1992; Haggman and Bryant, 1984, 1986] and to the 
characterization of the index of DAE circuit models [Estévez-Schwarz and Tischendorf, 2000; Giinther and 
Feldmann, 1995; Günther and Rentrop, 1996; Riaza, 2008; Tischendorf, 1999, 2003]. 

The paper is structured as follows. We compile background material in Section 2. In Section 3 we 
extend the saddle-node bifurcation theorem to the context of semiexplicit index one DAEs; although this 
result is mainly intended for later use, it is also believed to be of independent interest. Our main goal is 
addressed in Section 4, where we present a graph-theoretic characterization of the saddle-node bifurcation 
for a broad family of classical circuits. We then extend this approach to the context of memristive circuits 
in Section 5; the systematic presence of manifolds of non-isolated equilibria transforms the saddle-node 
bifurcation into a bifurcation of manifolds of equilibria, or lines of equilibria in the presence of only one 
memristor. Finally, Section 6 compiles some concluding remarks. 



2. Background 

2.1. The saddle-node bifurcation theorem for explicit ODEs 

The reader is referred to [Guckenheimer and Holmes, 1983; Perko, 1991] and to the original papers [So-
tomayor, 1973a,b] for detailed discussions of the saddle-node bifurcation theorem. As shown by Sotomayor, 
given a parameterized explicit ODE 

x' = f(x,fx), (1) 

with I É E ' and / € C00(R r x R, R r) . Note that smoothness requirements can be relaxed if needed, and 
that the analysis can be carried out in an open subset of Rr or, locally, in terms of germs; the setting above 
is kept deliberately simple in order to make the results accessible to a broader audience. An equilibrium 
point (x*,fj,*) of (1) yields a saddle-node bifurcation if the conditions below are met. We use a subscript 
to denote partial differentiation, that is, fx and /M are the matrices of partial derivatives of / with respect 
to x and /x, respectively. 

(1) The matrix fx(x* ,¡i*) has a simple zero eigenvalue, and the remaining eigenvalues are away from the 
imaginary axis. 

(2) If w is a left eigenvector of the null eigenvalue of fx(x*, / / ) , then wTf^(x*, ¡JL*) / 0. 
(3) If v is a right eigenvector of the null eigenvalue of fx(x*,/j,*), then wTfxx(x*,/j,*)(v,v) / 0. 

Note that v and w are simply non-vanishing vectors in the kernel of fx(x*,/j,*) and (fx(x*,¡J,*))T, respec­
tively. Under conditions 1-3 above, a smooth curve of equilibria passes through (x*, //*), in a way such that 
for ¡JL < ¡JL* (or, conversely, for ¡JL > ¡JL*) system (1) has no equilibria, whereas for ¡j, > ¡JL* (resp. ¡JL < ¡JL*) there 
are two equilibrium points. Both equilibria are hyperbolic, that is, all eigenvalues have non-vanishing real 
parts, and the number of eigenvalues with positive (or negative) real part differ in one from one equilibrium 
to another; this means that one real eigenvalue crosses the origin and changes sign at (X*,/J,*) as we move 
along the equilibrium branch. 

For later use, we note that condition 1 implies rkfx(x*,/j,*) = r — 1, and this allows for different 
restatements of conditions 2 and 3. Specifically, condition 2 above can be equivalently recast as 

Mx*,»*) £im fx(x*,ti,*), (2) 

and also as the maximal rank condition 

rkf'(x*,ii*) = r, (3) 

where / ' is the full matrix of partial derivatives of / , that is, / ' = (fx f ^ ) . From (3) it follows that the 
equation f(x,/j.) = 0 describes indeed a curve of equilibria locally around (a;*,//*), and one can check that 
this curve is tangent to the hyperplane ¡JL = ¡JL* . 

Analogously, condition 3 can be rewritten as 

fxx(x*,fx*)(v,v) <£ \mfx(x*,tx*). (4) 

Another reformulation of this condition comes from singularity theory. Indeed, x* is a fold (see e.g. [Golubit-
sky and Guillemin, 1973; Martinet, 1982]) and (4) expresses, within the hyperplane // = //*, the transversal 
intersection at x = x* of the so-called singular manifold, defined by det fx(x,/j,*) = 0, and the space 
ker fx(x*,fj,*). This means that condition 3 can be also expressed as 

(detfx)x(x*,/i*)v^0, (5) 

for some (hence any) v € ker fx(x*, ¡JL*) — {0}. This reformulation makes it also possible to express condition 
3 as 

rk( fx{x*,il*) \ _ ( 

At several points in our analysis we will make use of the alternative descriptions of conditions 2 and 3 
above given by (2)-(6). 



2.2. Elementary properties of digraphs 

In Section 4 we will make systematic use of several properties of directed graphs (digraphs); these properties 
are compiled below. Find more detailed discussions of this material in [Andrásfai, 1991; Bollobás, 1998; 
Diestel, 2010; Riaza, 2008]. 

Kirchhoff laws will be described in terms of the so-called reduced cutset and loop (or cycle) matrices. 
A subset K of the set of branches of a digraph is a cutset if the removal of K increases the number of 
connected components of the digraph, and this set is minimal with respect to this property, that is, the 
removal of any proper subset of K does not increase this number. A cutset is oriented just by directing 
it from one of the connected components resulting from the cutset deletion towards the other. A loop or 
cycle denotes the branches in a closed path without self-intersections, and an orientation is defined after 
choosing a sense in which this path is traversed. 

After choosing an orientation for every cutset, the entries of the so-called cutset matrix Q = (qij) are 
given by 

{ 1 if branch j is in cutset i with the same orientation 
—1 if branch j is in cutset i with the opposite orientation 

0 if branch j is not in cutset i. 

This matrix is known to have rank n — k, provided that n and k are the number of nodes and connected 
components. Any set of (n — k) linearly independent rows of Q yields a reduced cutset matrixQ € R(ra-fc)xm

) 

where m is the number of branches. 
Similarly, by choosing an orientation for every loop one gets the loop or cycle matrix B = (pij) with 

entries 

{ 1 if branch j is in loop i with the same orientation 
— 1 if branch j is in loop i with the opposite orientation 

0 if branch j is not in loop i. 

The rank of this matrix equals the cyclomatic number m — n + k, and the choice of any set of (m — n + k) 
linearly independent rows of B defines a reduced loop matrix B e ]̂ («i-"-+fc)x«i_ 

The rows of the cutset and loop matrices define the so-called cut space and cycle space, respectively, 
and choosing n — k and m — n + k rows in the corresponding matrices amount to choosing two bases in these 
spaces, which can be therefore described as imQT (cut space) and im£>T (cycle space). Details, including 
also Lemma 1, can be found e.g. in [Bollobás, 1998]. 

Lemma 1. The cut- and cycle-spaces are orthogonal to each other. 

Using the identity ( i m M 1 ) 1 = kerM (holding for any matrix M) this property can be expressed as 
im!3T = keiQ and imQT = kerB. This implies QBT = 0 and BQT = 0. 

By a -fi-loop (resp. K-cutset) we mean a loop (resp. cutset) defined only by elements of a given set 
of branches K. The existence of K-loops and K-cutsets in a given digraph can be described in terms of 
the matrices Q and B, as stated below. Find details e.g. in [Andrásfai, 1991; Bollobás, 1998; Riaza, 2008]. 
By QK (resp. Bj¿) we mean the submatrix of Q (resp. B) defined by the columns which correspond to 
branches in K. 

Lemma 2. A set K of branches of a given digraph does not contain loops if and only if the identity 
keiQx = {0} holds. It does not contain cutsets if and only if kei BK = {0}. 

Moreover, a non-vanishing entry in the position corresponding to a given branch e within a vector of 
kerQ (resp. ker£>) indicates the existence of a loop (resp. a cutset) which includes e. From this remark 
and Lemma 2 one easily gets the following. 

Corollary 1. A branch e forms a loop (resp. a cutset) together with some branches from a given set K 
(not including e) if and only if Qe € irnQx (resp. Be e imBx). 

Indeed, the existence of such a loop indicates that there is a vector (va Vb) in ker (QK Qe) with 
U ¡ , G R - {0}. This yields Qe = —^-QRVU- The same holds for cutsets. 



We will also make use of the following result. Its proof is straightforward and can be found in [Riaza, 
2012]. 

Lemma 3. Split the branches of a given digraph in four pairwise disjoint sets K\, K2, K¡, K4, and denote 
by Bi, Qi the submatrices of B and Q defined by the columns which correspond to branches in Ki. Assume 
that P is a positive definite matrix and write 

M=(B1 0 B3 

V ° ^2 Q3P 

Then the identity kerM = ker£>i x kerQ2 x {0} holds. In particular, the kernel of M is trivial if and only 
if the digraph has neither K\-cutsets nor K2-loops. 

With Ks = {e}, K4 = 0 and P = (1), from Lemma 2 (or Corollary 1) and Lemma 3 one gets the 
following result, which will also be used in Section 4. 

Corollary 2. Split the branches of a given digraph in three pairwise disjoint sets K\, K2 and K3 = {e}. 
If e forms a cutset (resp. a loop) with some branches from K\, then it does not form a loop (resp. a cutset) 
with branches from K2. 

This is actually part of the colored branch theorem [Minty, 1960; Vandewalle and Chua, 1980] according 
to which, in a three-color graph with just one blue branch, this branch either forms a cutset exclusively 
with green branches or a loop exclusively with red branches, but not both. We will only use the latter (that 
is, the fact that one configuration precludes the other), as stated in Corollary 2. Its proof is very simple; 
just notice that a cutset (resp. a loop) including e and some branches from K\ (resp. K2) yields a vector 
in ker (B\ B3) (resp. ker (Q2 Q3))', the last entries of both vectors do not vanish and rescaling one of them 
we would construct a vector in kerM but not in ker£>i x kerQ2 x {0}, against Lemma 3. 

2.3. Schur complements 

At several points in our analysis we will make use of the notion of the Schur complement [Horn and 
Johnson, 1985] of a square submatrix D of a given matrix 

with M not necessarily square. If D is non-singular, the Schur complement of D in M is defined as 

(M/D) = A-BD~lC. (8) 

Lemma 4. Assume that the blocks in the matrix M in (7) have dimensions A e M.rxq, B e R r x p , C € Wxq, 
D e Rpxp , and that D is non-singular. Then 

rkM = ik(M/D)+p. 

In particular, if A (and therefore M) is also square (i.e. if r = q), then 

det M = det(M/D) detD. 

Both claims follow immediately from the identity 

I -BD~l\ f A B\ f I 0 \ _ (A-BD~lC 0 
0 I )\C D) y-D-tC IJ ~ \ 0 D 

Recall that the corank of a matrix M € ^mxn is m — rkM (that is, the codimension of the image space) 
and the nullity is n — rkM (namely, the dimension of the kernel). The rank identity in Lemma 4 says that 
the Schur reduction defining (M/D) preserves the rank deficiency of M which, more precisely, stands for 
the corank if m < n or the nullity if m > n. It is easy to check that both the corank and the nullity of M 
equal those of the Schur complement (M/D). 



3. Saddle-node bifurcations in semiexplicit index one D A E s 

We now address the problem of unfolding the saddle-node bifurcation theorem to the setting of semiexplicit 
DAEs, focusing on index one problems. This is a step (of independent interest) towards our main goal 
which is to address saddle-node bifurcations in DAE circuit models. Note that the literature on bifurcation 
theory for DAEs has mainly focused on so-called singularity-induced bifurcations, stemming from the 
work of Venkatasubramanian et al. [Venkatasubramanian, 1992; Venkatasubramanian et al., 1995]; see also 
[Beardmore, 2001; Llibre et al., 2002; Riaza, 2010]. A reformulation of the Hopf bifurcation theorem for 
DAEs can be found in [Rabier and Rheinboldt, 2002]. 

In this direction, consider a parameterized semiexplicit differential-algebraic equation 

x' = h(x,y,fj,) (9a) 

0 = g(x,y,fx), (9b) 

with h € C°°(W xW xR,W),g £ C°°(W x f f x R , W); as in Subsection 2.1 above, the C°°-smoothness 
assumption can be relaxed if necessary. We will focus on an equilibrium point of (9), that is, a point 
(x*,y*,fj,*) which annihilates the right-hand sides of both (9a) and (9b). 

We will work under a (local) index one assumption: this means that the matrix of partial derivatives 
gy{x*, y*, ¡JL*) is assumed to be non-singular [Brenan et al, 1996; Kunkel and Mehrmann, 2006; Lamour et 
al., 2013; Rabier and Rheinboldt, 2002; Riaza, 2008]. This implies, in light of the implicit function theorem, 
that the manifold g(x, y,¡j) = 0 can be locally described as 

y = ip(x,fx) (10) 

for a (locally defined) map ip(x,/j,). The local dynamical behavior of the DAE (9) can be hence described 
in terms of the so-called reduced ODE 

x' = f{x, ¡JL) = h(x, ip(x, ¡JL), ¡JL). (11) 

Additionally, the implicit function theorem yields the expression ipx = —{gy)~
lgx for the partial derivatives, 

and therefore 

fx = hx- hy(gy)~
lgx, (12) 

the left-hand side holding for {X,¡J) on a neighborhood of {X*,¡JL*), and the right-hand side being evaluated 
at (x,ip(x,fj,),iJ,). 

Locally, equilibria (x, y, ¡JL) of the DAE (9) are in one-to-one correspondence with equilibrium points 
(x,fj.) of the reduction (11) via the relation y = ip(x,/j,). Therefore, a saddle-node bifurcation for the 
DAE (9) will occur at a given equilibrium (x*,y*,/j,*) if and only if (x*, ¡i*) is a saddle-node bifurcation 
point for the reduction (11). For this reason, driving the saddle-node bifurcation theorem to the context 
of semiexplicit index requires a reformulation of the conditions 1-3 in Subsection 2.1 in terms of the maps 
h and g arising in (9). This task is performed in Theorem 1 below. 

In this regard, notice that linearization properties of DAEs of the form (9) are better framed in the 
context of matrix pencil theory [Gantmacher, 1959] and, accordingly, condition 1 in Subsection 2.1 will be 
restated in matrix pencil terms within Theorem 1. Specifically, linear stability properties of an equilibrium 
(x* ,¡i*) of the reduction (11) can be examined in terms of the matrix pencil XA — B*, with 

where the identity block in the first matrix has order r x r, and y* = ip(x*,/j,*). If gy(x*, y*, ¡JL*) is non-
singular, then the matrix pencil is regular with Kronecker index one (find details in [Rabier and Rheinboldt, 
2002; Riaza, 2008]), and the eigenvalues of the pencil are the (complex) values of A which make XA — B* 
a singular matrix. 

Theorem 1. Consider an equilibrium (x*,y*,/j,*) of the DAE (9), and assume that the matrix of partial 
derivatives gy(x*,y*, ¡JL*) is non-singular. Let the following conditions be met. 



(1) The matrix pencil XA — B*, with A, B* given in (13), has a simple zero eigenvalue, and the remaining 
eigenvalues are away from the imaginary axis. 

(2) The matrix 

has maximal rank r + p at (x*,y*, ¡JL* 

(3) The matrix 

B = i hx hy hfj, * ^ ^ 

K9x 9y 9/J, 

llx fly 

B= | 9x 9y \ (15) 
. ( d e t 5 ) x ( d e t 5 ) j 

has maximal rank r +p at (x*,y*,¡JL* 

Then the DAE (9) undergoes a saddle-node bifurcation at (x*,y*,/j,*); that is, it exhibits a smooth curve of 
equilibria passing through (x*,y*,/j,*), in a way such that either for ¡JL < ¡JL* or, respectively, for ¡JL > ¡J,*, the 
DAE has no equilibria, whereas for ¡JL> ¡JL* (resp. for ¡JL < ¡JL*) it has two hyperbolic equilibria; the number 
of eigenvalues with positive (or negative) real part differ in one from one equilibrium to another. 

Proof. As indicated above, we need to check that conditions 1-3 in the statement of Theorem 1 imply that 
conditions 1-3 in Subsection 2.1 hold for (11). 

Note first that the eigenvalues of the matrix pencil XA — B* are the values of A which make the matrix 

A /I (A _ íhX hy\ = ÍXI ~ hX ~hy\ 

Vo °y \9x 9yJ V ~9x -9yJ 

singular at (x*, y*, /J,*). The matrix gy is non-singular at (x*,y*,/j,*) and therefore the matrix in the right-
hand side of (16) is singular if and only if so it is its Schur complement (cf. Lemma 4), that is 

XI -hx + hy(gy)~
lgx = XI - (hx - hy(gy)~

lgx), (17) 

evaluated again at (x*,y*,/j,*). According to (12), the values of A which make (17) singular at (x*,y*,/j,*) are 
exactly the eigenvalues of fx(x*,/j,*), and therefore the assumptions that the null eigenvalue is simple and 
that the remaining ones have non-zero real parts are transferred to (11), so that condition 1 in Subsection 
2.1 does hold for this reduced ODE. 

Condition 2 is directly transferred to the reduced ODE (11), since the Schur complement of 
gy(x*,y*,fi*) in 5 is 

(hx - hy{gy)-
lgx h^ - hy{gy)-

lg^ , (18) 

all derivatives being evaluated at (x*,y*,/j,*). Because of the implicit function theorem, the matrix in (18) 
is nothing but the derivative (fx f^) at (a;*,//), and therefore the maximal rank condition on (14) yields 
(3), which is in turn equivalent to condition 2 in Subsection 2.1, as we aimed to show. 

Analogously, the Schur complement of gy(x*,y*,/j,*) in B is 

/ hx-hy{gy)-
lgx \ 

\{áeXB)x-{áetB)y{gy)-lgx)
, 

derivatives being again evaluated at (x*,y*,/j,*). As before, the maximal rank condition on (15) is transferred 
to (19). But the problem is now slightly more involved, since the derivatives involved in the last row of (19) 
are those of det B and not of det fx, with / coming from (11). In this case we make use of the determinantal 
formula within Lemma 4, according to which 

det B = detgy det(hx - hy(gy)~
1gx) 



at a generic (x,y,/j,) near (x*, y*, ¡J,*) . Writing y = ip(x,/j,) we get, in particular, 

det B(x,ip(x, /J.), ¡J) = det gy(x,ip(x, ¡J,), ¡J) det fx(x,/j,), (20) 

on the manifold g = 0. By differentiating the product (20) with respect to x, and noting that fx is a 
singular matrix at (a;*,//) (so that det fx(x*,/j,*) = 0) because it has a null eigenvalue, we get 

( (de t i3) ; c - (de t J By^)- 1 ^)( a ;* ,y* , /x*)=det^( a ;* ,y* , /x*) (det f x ) x (x*,/i*), (21) 

with detij?/(a;*,y*,/x*) / 0 by hypothesis. This means that the matrix (19) reads as 

(' ° )( Wl*'"*) V (22) 

and therefore the maximal rank condition on (19) is transferred to the second factor in (22). This is exactly 
the matrix arising in the reformulation (6) of condition 3 in Subsection 2.1, so that this condition holds 
for the reduced ODE (11) and this completes the proof of Theorem 1. 

D 

This result will make it possible to perform a graph-theoretic analysis of the saddle-node bifurcation 
for DAE circuit models, as detailed in Section 4. 

4. Saddle-node bifurcations in classical nonlinear circuits 

As indicated in the Introduction, our main goal in this paper is to present a systematic circuit-theoretic 
analysis of saddle-node bifurcations in nonlinear circuits. This means that we look for conditions which 
can be stated, and verified in practice, in terms of the devices' characteristics and the graph-theoretic 
properties of the circuit. This can be done for a broad family of circuits in the terms detailed in Theorem 
2 below. 

Very close to our approach is the DAE index analysis of nonlinear circuit models carried out in 
[Estévez-Schwarz and Tischendorf, 2000; Gtinther and Feldmann, 1995; Günther and Rentrop, 1996; Riaza, 
2008; Tischendorf, 1999, 2003], and the qualitative properties examined e.g. in [Chua, 1980; Haggman and 
Bryant, 1986; Riaza, 2008; Riaza and Tischendorf, 2007]. Specifically, a graph-theoretic index analysis 
of DAE circuit models under passivity assumptions was developed in [Estévez-Schwarz and Tischendorf, 
2000; Tischendorf, 1999, 2003]. In these references, provided that the circuit conductance, capacitance and 
inductance matrices are everywhere positive definite (that is, assuming the circuit to be strictly locally 
passive), it is shown that the absence of VC-loops (loops defined by voltage sources and/or capacitors) and 
IL-cutsets (cutsets formed only by current sources and/or inductors) yields an index-one configuration in 
nodal analysis models; the same property holds for other families of circuit models (a detailed discussion 
can be found in [Riaza, 2008]). From a qualitative point of view, it is well-known and can be traced back 
at least to [Haggman and Bryant, 1986] the property that VL-loops and/or IC-cutsets are responsible for 
the presence of null eigenvalues in the linearized circuit dynamics. In the absence of these configurations, 
asymptotic stability of equilibria follows from a strict passivity assumption [Riaza and Tischendorf, 2007]. 

No changes of stability (in particular, no saddle-node bifurcations) can be then expected in a strictly 
passive setting. Therefore, we extend the approach in the aforementioned references by allowing a device 
(specifically, a nonlinear resistor) to become locally active beyond a given operating point. We will assume 
this device to be governed by a characteristic of the form in = ((vn) (we use the subscript n, from non-
passive, to distinguish this resistor from the remaining ones, which as usual in this setting will be denoted 
with a subscript g) and will work locally around a point where ('(vn) = 0 and ("(vn) / 0- This means 
that the characteristic becomes locally active (that is, ('(vn) < 0) either for vn < vn (if ("(vn) > 0) o r f° r 

vn > vn (if ("(vn) < 0). A tunnel diode is a classical example of this behavior, vn being anyone of the two 
critical values which delimit the tunnel effect region. 

Furthermore, we will assume that the bifurcating parameter is the current provided by a DC current 
source, which will drive the equilibrium through and beyond the critical operating value (vn,((vn)). In 
order to allow for a relatively simple characterization of the bifurcation phenomenon, this current source is 
assumed to be unique. The assumption that it defines a cutset together with the non-passive resistor and 



at least one capacitor will provide a minimal extension of the IC-cutset configuration which, as indicated 
above, is responsible for a null eigenvalue; this is the key assumption in Theorem 2. The other topological 
conditions are meant to guarantee that the remaining conditions in Theorem 1 do hold, but they are by no 
means unduly restrictive. In particular, to keep the discussion in an index-one context we need a minimal 
extension of the topological index properties stated above; namely, implicit in our assumptions we will have 
the requirement that the circuit displays neither ILN-cutsets (cutsets defined by current sources, inductors 
and/or the non-passive resistor) nor VC-loops; note that VC-loops are a particular case of VCL-loops. 

The circuit equations will be written in a semiexplicit form, specifically, 

C{vc)v'c = ic (23a) 

L(k)i[ = Vl (23b) 

0 = Bcvc + Bivi + BgVg + Bnvn + BjVj + BVV (23c) 

0 = Qcic + QlH + Qgl{Vg) + Qn((vn) + QJ/JL + Qviv. (23d) 

Besides the non-passive resistor and the sources, the circuit is assumed to be composed of (possibly) 
nonlinear capacitors (with incremental capacitance C(vc)), inductors (their incremental inductance being 
L(ii)) and strictly locally passive resistors; the latter are assumed to be governed by a voltage-controlled 
characteristic ig = ^{vg) and, for later use, we denote by G(vg) the incremental conductance matrix ^f'(vg). 
It is worth emphasizing that the results apply also to problems with charge-controlled capacitors and 
flux-controlled inductors; an example will be discussed in Subsection 5.3. The current source branch has 
voltage Vj (and current ¡J) and the DC voltage sources branches have currents iv and voltages V. Note that 
the subscripts c, I, g, n, j and v are used to denote capacitors, inductors, passive resistors, non-passive 
resistors, current sources and voltage sources, not only in the branch voltages v and currents i but also 
in the splitting by columns of the (reduced) loop and cutset matrices B, Q, which are used to express 
Kirchhoff laws in the form Bv = 0 and Qi = 0 in (23c) and (23d). Find additional details about these 
(so-called branch-oriented) models in [Riaza, 2008]. 

We will join together different branch variables into x = (vc, ii) and y = (ic, vi,vg, vn, Vj,iv); addition­
ally, Theorem 2 assumes the existence of an equilibrium point which will be denoted by (x*,y*,/j,*), with 
x* = (v*,i¡) and y* = (i*,v¡,v*, v*, v*, ¿*); here i* = 0, v* = 0. We will also make use of the notation 

«x>y>ri = {fmi:%) (24a) 

9(x,y,ri = (n
 BcVlX Bllln Bf\ 1 nnVX + ^ + Yn • V (2 4 b) 

yv ,y ,w \Qcic + Qlil+Qg7(yVg)+Qn((yvn)+QJii + QvivJ ' v ; 

and F = (h,g). Finally, / will denote the map arising in (11) with h and g given in (24). 

Theorem 2. Consider a circuit composed of the devices listed above. Fix an equilibrium point (x*,y*,/j,*) 
and assume that at this equilibrium the matrices G, C and L are positive definite, with C and L symmetric, 
and that C,'{vn) = 0? C"(vn) / 0- Assume that the circuit meets the following graph-theoretic assumptions. 

(1) It has a unique ICN-cutset, which includes the current source, the non-passive resistor and at least one 
capacitor. 

(2) It exhibits neither ILN-cutsets nor VCL-loops. 

Then the circuit experiences a saddle-node bifurcation as the parameter ¡J, undergoes the critical value ¡J,* . 

Proof. The expressions (24) defining the maps h and g for the circuit model (23) yield the following form 
for the derivatives at equilibrium: 

\ 0 0 / ' « = ( n T-l n n n n) ' (25a) 

3C ( 
0 Q, 

(c-1 

0 Bl 

Qc 0 

0 
L - 1 

0 0 
0 0 

Bg Bn 

QgG 0 

0 
0 

0 

2) 
0 

9X ~ n n , ' 9y — n n n ^ n n n > (25b) 



where C and L denote the capacitance and inductance matrices evaluated at equilibrium, and G = ^'(v*) 
is the conductance matrix of passive resistors evaluated as well at the equilibrium point. In particular, the 
expression for gy shows that it is indeed a nonsingular matrix, in the light of Lemma 3 and the identities 

ker (Bi Bn B3) = {0}, ker (Qc Qv) = {0}, 

which owe to the absence of ILN-cutsets and VC-loops (cf. Lemma 2); notice that VC-loops are a particular 
instance of VCL-loops. 

The spectrum of the matrix pencil XA — B* describes, as indicated in the proof of Theorem 1, the 
eigenvalues of the matrix of partial derivatives fx at equilibrium. Let us first note that this matrix has a 
null eigenvalue with geometric multiplicity one; this is just a consequence of the fact that, according to 
Lemma 4, the corank of fx equals that of 

/ 0 0 C" 1 0 0 0 0 0 \ 
0 0 0 L~l 0 0 0 0 

Bc 0 0 Bi Bg BnBj 0 
\ 0 Qi Qc 0 QgG 0 0 QVJ 

B* = (26) 

The corank of this matrix equals in turn that of 

Bc 0 Bg Bn Bj 0 
0 QiQgG 0 0 QV/ 

again as a consequence of Lemma 4. Because of the identities 

dim ker (Bc Bn B3) = 1, ker (Qt Qv) = {0}, 

the former coming from the assumed existence of a unique ICN-cutset, Lemma 3 implies that B* (and 
therefore fx) has indeed corank one, so that the null eigenvalue has geometric multiplicity one, as claimed. 

For the null eigenvalue to be simple, we need to prove, additionally, the condition 

kerfx n i m / , = {0} 

at (x*,fj,*) (in the sequel, all derivatives are evaluated at equilibrium without further explicit mention). To 
show this, we make use of the identity hx = 0 to write 

Jx = ~iiy{9y) 9x-

Assume that v € kerfx n imfx. Let us recast the identity v € kerfx = ker{hy{gy)~
1gx) as w € kerhy 

with w = {gy)~
1gxv. The expression for hy depicted above means that w must have the form (0,w), and 

therefore the identity w = {gy)~
1gxv1 that is, gyw = gxv amounts to gyw = gxv, where y stands for the 

variables (vg,vn,Vj,iv). In circuit-theoretic terms, this identity reads as 

BgW\ + BnW2 + BjW3 = Bcv\ (27a) 

QgGwi + QVW4 = Qiv2, (27b) 

where w is split as (wi,W2,ws,W4). Now, the orthogonality of the cut-space and the cycle-space implies 
that the vectors (—v\, 0, w\,W2,ws, 0), (0, — V2, Gw\,0,0,104) must be orthogonal to each other. This yields 
wjGwi = 0 and, because of the positive definiteness of G, we then have w\ = 0. In particular, this simplifies 
(27a) to 

-Bcvi + Bnw2 + BjW3 = 0 (28) 

and (27b) to QVW4 — Q1V2 = 0; the absence of VL-loops then yields V2 = 0 (and 104 = 0). 
In turn, the assumption v € imfx can be rewritten, using elementary properties of Schur complements, 

as 

0 / \gx gy>
 Ul 



for a certain vector u. From the expressions given in (25), this identity may be recasted as 

Cv\ = us (30a) 

Lv2 = U4 (30b) 

0 = Bcu\ + B1U4 + BgU5 + Bnue + BjU7 (30c) 

0 = Qiu2 + QCU3 + QgGu5 + Qvu8. (30d) 

Inserting (30a) into (30d) we get 

Qi^2 + QcCvi + QgGu5 + Qt,W8 = 0. (31) 

Again, the orthogonality of the cut-space and the cycle-space implies, in light of (28) and (31), the orthog­
onality of the vectors (—vi,0,0,W2,ws,0) and (Cvi,U2,Gu5,0,0,us). Therefore the identity vfCvi = 0 
holds and the positive definiteness of C yields v\ = 0. Together with the identity V2 = 0 shown above we 
get v = (v\,V2) = 0, so that the null eigenvalue of fx is indeed a simple one, as we aimed to show. 

The absence of purely imaginary eigenvalues amounts, essentially, to a result proved in [Riaza and 
Tischendorf, 2007], because of the fact that the non-passive resistor may be understood to yield an open-
circuit at equilibrium owing to the assumption ('(v^) = 0; note however that now there is a zero eigenvalue 
in the dynamics (contrary to the setting considered in [Riaza and Tischendorf, 2007]). The eigenvalue-
eigenvector equations for the pencil XA — B* can be easily checked to read as 

(vc\ 

(-XC 
0 

Bc 

V 0 

0 / 0 0 0 0 
-XL 0 I 0 0 0 
0 0 B¡ Bg Bn Bj 

Qi Qc 0 QgG 0 0 QVJ 

0 
0 

Jc 

k 
ic 

vi 
V9 

Vn 

V3 

\iv/ 

= 0 (32) 

and amount, for non-vanishing eigenvalues, to 

0 = \-lBcC~Hc + XBiLii + BgVn + Bnvn + Btv i%V] 
(33a) 

(33b) 

of (33b), namely 

0 = QJc + Qik + QgGVg + Qviv. 

We will make use of the complex conjugate (to be denoted with a superscript 

0 = Qci
c
c + Qiif + QgGv^ + Qvi

c
u. (34) 

Applying again the orthogonality of the cut and cycle spaces, in this case to the vectors arising in (33a) 
and (34), we get 

0 = \-H*cC-Hc + Xi¡Lit + v*gG
Tvg, (35) 

where * stands for the conjugate transpose. The semisum of (35) and its conjugate transpose is 

C + GT 

0 = Ke{X-l)i*cC-Hc + Be(X)ifLii + v*—^- v, 9- (36) 

Assume now that A is a non-zero, purely imaginary eigenvalue. The condition Re(A) = 0 implies 
Re(A_1) = 0 and simplifies the latter equation to 

<^^vg = 0 (37) 

and therefore vg = 0 since G is positive definite. From (33b) and the absence of VCL-loops we then get 
ic = %i = iv = 0. In turn, this simplifies (33a) to 

0 = Bnvn + BiVj. (38) 

Note that the absence if ILN-cutsets precludes, in particular, IN-cutsets and therefore (38) yields vn = 
Vj = 0 (cf. Lemma 2). Finally, vc = v¡ = 0 follow from the first two eigenvalue-eigenvector equations. 



Altogether, this means that all entries in the eigenvector within (32) do vanish, which is a contradiction in 
terms. This way, non-vanishing purely imaginary eigenvalues are ruled out and therefore all requirements 
on the spectrum of XA — B* stated in the first hypothesis of Theorem 1 are met. 

We still need to prove that conditions 2 and 3 in Theorem 1 hold for the circuit model (23). The matrix 
displayed in (14) has in this case the form 

B = 

/ 0 0 C" 1 0 0 0 0 0 
0 0 0 L~l 0 0 0 0 

Bc 0 0 Bi Bg BnB3 0 
V 0 Qi Qc 0 QgG 0 0 Qv 

(Bc 0 Bg Bn B3 0 0 \ 
V 0 Qi QgG 0 0 Qv Qj) • 

0 
0 

Qi) 
the nullity of which equals that of 

Following Lemma 3, non-null entries in the kernel of this matrix come from either ker [Bc Bn Bjj or 
ker (Qi Qv Qj). The kernel of the former is one-dimensional by hypothesis, owing to the assumed existence 
of a unique ICN-cutset. Regarding the second matrix, we make use of the colored branch theorem (cf. 
Corollary 2), according to which the existence of an ICN-cutset including (at least) the current source 
rules out loops defined by the current source and the remaining circuit devices; in other words, the circuit 
cannot exhibit IVLG-loops (in particular IVL-loops) including the current source. On the other hand, 
IVL-loops without the current source are VL-loops, the existence of which is precluded by the exclusion 
of VCL-loops. This means that ker (Q¡ Qv Qj) = {0}. It follows that dim ker B = 1, so that B has indeed 
maximal rank; this means that condition 2 of Theorem 1 holds. 

In order to show that condition 3 in Theorem 1 is also met, we make use of the fact that the maximal 
rank condition on the matrix B in (15) can be equivalently formulated as 

F"(x*,y*,fj,*)(v,v)<£imB*, (39) 

as indicated in Subsection 2.1. As defined above, F stands for the map (h,g), whereas v is any nontrivial 
vector in the kernel of B*. The form that B* takes for the circuit model (23) is depicted in (26), and proceed­
ing as above one can check that non-vanishing vectors in the kernel meet the pattern (v\, 0,0,0,0, ve, vj, 0), 
with non-trivial solutions to Bcv\ + Bnve + BjVj = 0 corresponding to the existence of an ICN-cutset; since 
the latter is assumed to include (in particular) the non-passive resistor, we have ve / 0. Note additionally 
that ve is scalar because the non-passive resistor is unique. 

Additionally, it is not difficult to see that the form for h and g depicted in (24) yields 

/ o \ 
F"{x*,y\n*){y,v) = 

0 
0 

(40) 

\Qn("K)v¡) 
Notice that the last entry is not null, because Qn cannot vanish (this column matrix would only vanish if 
the non-passive resistor defines a self-loop, a configuration which is ruled out in circuit modelling), and both 

C"«) 
\mB* 

and ve are not zero. Because of the expression shown in (40), the requirement F"(x*,y*,/j,*)(v,v) € 
(cf. (39)) would amount to the existence of a solution to 

/ 0 \ / 0 0 C"1 0 o o o o \ 
0 
0 

0 0 0 L~l 0 0 0 0 
Bc 0 0 Bi Bg BnBj 0 

\Qnt"K)v%) \0 Qi Qc 0 QgG 0 0 Qv) 

/u\\ 
U2 

-U3 

UA 

U5 

ue 
U-j 

[us) 

(41) 



From this system one easily gets U3 = 0, U4 = 0, the remaining entries yielding a solution to 

0 = Bcu\ + BgU5 + Bnue + BjUj (42a) 

0 = - Q n C » e + Q1U2 + Q9Gu5 + Q„u8. (42b) 

However, equation (42b) signals the existence of an NLGV-loop including the non-passive resistor; this 
follows from the fact that C"(V^)VQ / 0, so that Qn € im(Qi Qg Qv), and Corollary 1. This is in contradic­
tion with the assumed existence of an ICN-cutset including the non-passive resistor which, in light of the 
colored branch theorem (Corollary 2) rules out such a loop. Therefore, (39) also holds and this completes 
the proof. 

D 

5. A bifurcation of lines of equilibria in memrist ive circuits 

The memory-resistor or memristor is an electronic device defined by a nonlinear charge-flux characteristic. 
It has been the object of much recent attention in the literature on electrical circuits and electronics, coming 
from the report in 2008 of the design of a nanoscale device with a memristive characteristic [Strukov et al., 
2008]. The origin of the memristor can be tracked back to the work of Leon Chua in 1971, who predicted 
the existence of such a device for symmetry reasons [Chua, 1971]. The memristor is meant to be the fourth 
basic circuit element, in addition to resistors, capacitors and inductors, whose characteristics relate voltage 
and current, voltage and charge, and flux and current, respectively. Some recent references on this topic are 
[Adamatzky and Chua, 2014; Buscarino et al, 2012; Di Ventra et al., 2009; Itoh and Chua, 2008; Corinto, 
2011; García-Redondo et al, 2014; Itoh and Chua, 2011, 2014; Jansen et al, 2013; Kavehei et al, 2010; 
Messias et al, 2010; Muthuswamy and Chua, 2010; Pershin and Di Ventra, 2011, 2012; Vourkas et al, 
2015; Tetzlaff, 2014]. 

The characteristic of a memristor may have either a charge-controlled or a flux-controlled form. For 
the sake of simplicity we will focus on the latter (although analogous results hold for charge-controlled 
memristors), so that the device will be assumed to be defined by a characteristic 

Q = <f>(f), (43) 

for a smooth map <p. By differentiating this relation one gets 

i = W{tp)v, (44) 

with 

W(<p) = </%) 

being the incremental memductance. The key idea is that (44) shows that the device behaves as a resistor 
in which the conductance depends on tp(t) = J_00v{r)dT, hence the memory-resistor name. A memristor 
will be said to be strictly locally passive if W(<p) > 0 for all (p. This condition will be assumed throughout 
the analysis. 

As detailed below, memristors are known to yield systematically non-isolated equilibrium points (cf. 
[Messias et al, 2010; Riaza, 2012]). It is therefore expected that an extension of the saddle-node bifurcation 
theorem in the terms presented in the previous sections should result in a bifurcation of manifolds of 
equilibria. This is indeed the case, as detailed in what follows. 

5.1. Memristive circuit model 

We will extend the setting considered in Section 4 by assuming that the circuit includes a single flux-
controlled, strictly locally passive memristor. This entails the need to modify the circuit model in order to 



accommodate this device, as follows: 

C{vc)v'c = ic (45a) 

L(k)i[ = Vl (45b) 

¡p'm = vm (45c) 

0 = Bcvc + Bivi + Bgvg + Bmvm + Bnvn + BjVj + BVV (45d) 

0 = Qcic + Qz*z + Qgl(vg) + Q r o l f(ym)!)m + QnC(^n) + QjV + < 2 ^ , (45e) 

where the subscript m is used to denote the memristor. As above, for notational simplicity we will join 
together certain circuit variables into x = (vc,ii,<fm), y = (ic,vi,vg,vm,vn,Vj,iv); again, this model takes 
the semiexplicit differential-algebraic form depicted in (9). 

As before, equilibrium points are defined by the vanishing of the right-hand side of (45); from (45a)-
(45c) one gets the conditions ic = 0, v¡ = 0 and vm = 0, and from (45d)-(45e) the remaining equilibrium 
equations are 

0 = Bcvc + BgVg + Bnvn + BjVj + BVV (46a) 

0 = Qlk + Qgl{Vg) + Qn((vn) + Qj/J. + Qviv. (46b) 

Note that the memristive flux tpm does not enter these equations. This means that equilibrium points of 
these circuits can never be isolated; indeed, given an equilibrium point, by modifying tpm one unfolds it to 
a line of equilibria. Noteworthy, this implies that a zero eigenvalue is always present in the linearization 
of the circuit model (45) at any equilibrium point. Find a more detailed analysis in this regard in [Riaza, 
2012]. This means that, in this context, saddle-node bifurcations cannot be directly addressed in the terms 
considered in Sections 3 and 4, and that a somewhat different discussion is therefore needed. 

5.2. Saddle-node bifurcations of lines of equilibria 

It is reasonable to expect that appropriate conditions extending those presented in Subsection 2.1 might 
provide a saddle-node bifurcation theorem of lines of equilibria in dynamical systems which systematically 
exhibit non-isolated equilibrium points. Broadly speaking, this would characterize the splitting of a line 
of equilibria into two different ones in the presence of a second zero eigenvalue. Such a general analysis of 
saddle-node bifurcations of equilibrium lines is beyond the scope of the present paper. We focus on the 
characterization this phenomenon for memristive circuit models under a simplifying working assumption 
which requires an introductory digression; an example illustrating this behavior can be found in Subsection 
5.3 below. 

We will fix an equilibrium point, and assume in our analysis that the dynamics of (45) displays an 
invariant hypersurface which is transversal to the equilibrium line. This is reasonable in memristive circuit 
models (cf. Subsection 5.3) and means that there exists a codimension-one manifold, governed by an 
equation of the form 

a(vc, ii, ipm, ic, vi, vg,vm, vn, Vj, iv) = 0 (47) 

such that any initial point for the dynamics of (45) yields a trajectory which remains on this manifold; 
moreover, the transversality to the equilibrium line means that (locally) the manifold accommodates a 
single equilibrium. Analytically, the transversality condition reads as 

T— (v*c,i¡,tp*m,i*c,v¡,v*g,v*m,v*n,v*,i*u) / 0 , (48) 
OLpm 

a condition which locally allows one to describe the manifold as 

cithtci'VijVg, Vm, Vn, Vj, %v 

)• (49) 
In this context an extension of Theorem 2 reads as follows. 

Theorem 3. Consider a circuit with a single flux-controlled memristor and assume that the hypotheses 
of Theorem 2 are met at a given equilibrium. Moreover, let the memristor be strictly locally passive (i.e. 



suppose W (<£%„) > 0) and assume that there exists an invariant manifold of the form (47) including the 
equilibrium point and verifying the transversality assumption (48). 

Then, for ¡JL = ¡JL* the equilibrium set locally defines a line which splits into two as ¡JL undergoes the 
critical value ¡JL* , that is, either for ¡JL > ¡JL* or, respectively, for ¡JL < ¡JL* ; in the other case (¡JL < ¡JL* or, 
respectively, ¡JL > ¡JL*) the circuit displays no equilibria. 

We only sketch the proof since it parallelizes that of Theorem 2, once the dynamics is restricted to the 
manifold defined by (47). Indeed, the expression given in (49) makes it possible to eliminate <pm from the 
model (45), and then express the local dynamics on the invariant manifold (47) as 

C{vc)v'c = ic (50a) 

L(ii)i[ = vi (50b) 

0 = Bcvc + Bivi + Bgvg + Bmvm + Bnvn + BjVj + BVV (50c) 

0 = Qcic + Qlk + Qgl{Vg) + QmW((3(. . .))vm + Qn((vn) + Qj/jL + Qviv, (50d) 

where we skip the arguments of (3 for the sake of notational simplicity; the variables actually involved are 
in general those displayed in (49). 

The dynamical system (50) has an isolated equilibrium which meets the saddle-node requirements 
compiled in Theorem 1. Indeed, at equilibrium we have vm = 0 and therefore all first order derivatives of 
the term W{(3{.. .))vm in (50d) do vanish, except the derivative w.r.t. vm which equals the memductance 
W. This means that the matrix B* takes for the model (50) the form 

B*= X " " ^ ^ „" X ^ " , (51) 

\0 Qi Qc 0 Q9GQmW 0 0 QVJ 

which has exactly the structure depicted in (26): note that we may rewrite 

/ 0 0 C"1 0 
0 0 0 L~l 

Bc 0 0 Bi 

0 
0 

Bg 

0 
0 

J^m 

0 0 0 \ 
0 0 0 

Bn Bj 0 

{QgG QmW) = (Qg Qn 
G 0 
0 w 

and, since W is also positive by hypothesis, the second factor is positive definite. Therefore, all remarks 
concerning condition 1 of Theorem 1 apply exactly as in the proof of Theorem 2. The same happens with 
condition 2, just noticing that 

/ 0 0 C"1 0 
0 0 0 L~l 

Bc 0 0 B¡ 

0 
0 

Bg 

0 
0 

J^m 

0 0 
0 0 

Bn Bj 

0 0 \ 
0 0 
0 0 B = 

V 0 Qi Qc 0 QgG QmW 0 0 Qv Q3J 

so that the reasoning above applies again. 
The second order requirement expressed in condition 3 can be addressed similarly, in the terms shown 

in (40) and F coming now from (50). Vectors in the kernel of B* have the same form as in the proof of 
Theorem 2, that is, they meet the pattern (vi, 0,0,0,0,0, V7,vs, 0) (note that there is an additional entry 
due to the presence of an extra column corresponding to the memristor). It is not difficult to check that 
now 

/ 

F"(x*,y*,li*)(v,v) = 

0 
0 
0 

\ 

(52) 

\Q»C"(«>?/ 
where the last entry does not vanish. In this case (40) would yield a nontrivial solution to 

0 = -Qn("(v*n)v% + Q1U2 + QgGu5 + QmWu6 + QvUg. 



Now this would correspond to an NLGMV-loop including the non-passive resistor, but this would contradict 
the assumed existence of an ICN-cutset including as well the non-passive resistor. The colored branch 
theorem and Corollary 2 apply again. 

Altogether, this means that Theorem f applies to (50) and therefore this system has a single equilibrium 
which splits into two different ones as ¡JL undergoes / / . We just need to unfold such equilibria by letting 
(fm vary on a neighborhood of y>*m in order to get the line of equilibria which bifurcates into two different 
ones, as claimed. 

The example discussed in Subsection 5.3 below illustrates this phenomenon. 

5.3. Example 

We discuss below an example intended to illustrate the results above, not only the bifurcation phenomenon 
but also the ideas used in the proof of Theorem 3. It is also aimed at illustrating that the results also hold 
in the presence of flux-controlled inductors (or, in the dual case, charge-controlled capacitors). To this end, 
consider the circuit depicted on the left of Figure 1. 

y° c 
D 

W 

Wt-
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c 

Fig. 1. (a) Example (b) Equivalent circuit. 

The circuit displays a current source (labeled with an I), injecting a DC current ¡JL: the latter will be 
the bifurcation parameter. Additionally, the circuit includes a linear passive capacitor (with capacitance 
C), a diode (labeled with a D) and a Josephson junction (J). The diode is assumed to have a smooth 
characteristic of the form i¿ = C(f<¿), and we will work near a local extremum located at a given vd, 
describing e.g. the boundary of a tunnel effect region. To fix ideas, w.l.o.g. we will assume vd to be a local 
minimum, with (,'{v*d) = 0, ("(f¿) > 0. 

The Josephson junction consists of two superconducting films separated by an insulating layer, yielding 
a nonlinear current-flux relation of the form 

%i = I0 sm(ko<pi) (53) 

for certain physical constants IQ, ko'- cf. [Chua et al, 1987]. For equilibria to be well-defined we need 
to assume that |io| > IC(vd)l- As detailed in [Chua, 2004; Jeltsema et al, 2010], realistic models of this 
junction should take into account not only the inductive relation (53) but also the presence of a small 
memristive effect (besides additional parasitic effects not relevant to our analysis). This memristive effect 
is well described by a flux-controlled memristor, governed by a relation of the form 

W(<pn (54) 

We will focus on cases in which W takes on positive values. The description of the Josephson junction in 
terms of a parallel connection of an inductor and a memristor (governed by (53) and (54), respectively) 
then leads to the equivalent circuit depicted on the right of Figure 1. 

The reader can easily check that the current source, the capacitor and the diode define an ICN-cutset, 
and that the circuit displays neither ILN-cutsets nor VCL-loops. This means that the topological conditions 
in Theorems 2 and 3 do hold. Additionally, we will focus on cases with positive L, W, so that the passivity 
assumptions also hold; note that C > 0 by the aforementioned passivity assumption on the capacitor. 



Elementary circuit theory makes it possible to describe the dynamics of this circuit in terms of the 
DAE 

Cv'c = -((vd) + n (55a) 

(p[ = vc- vd (55b) 

V'm ~ <Pi = 0 (55c) 
0 = C(vd) + W(tfm)(vd - vc) - I0 sm(k0<fi). (55d) 

Note that the flux-controlled form of the Josephson junction characteristic (53) leads naturally to a flux-
oriented model. 

To illustrate the bifurcation predicted by Theorem 3, we fix the parameter value ¡JL* = ((vd) (where, 
as indicated above, vd is assumed to be a minimum of (). Equilibria of (55) for this parameter value are 
defined by vc = vd = vd, whereas the values of <pi are defined by the identity IQ s\n(koLpi) = C(vd). Fix (p¡ as 
the (unique) solution to this equation in (—TT / (2ko), TT / (2ko)), an interval where the incremental inductance 
L can be easily checked to be positive. The system of equations (55) does not impose conditions on tpm for 
the right-hand side to vanish; this means that any vector of the form (v*,<p*,<pm, vd) yields an equilibrium 
for this system, equilibria hence defining a line. 

Since vd is assumed to be a local minimum of (, (55a) already shows that there is no equilibria for 
¡JL < ¡JL* (at least for ¡JL close enough to ¡J,*). By contrast, for ¡JL > ¡JL* (and sufficiently close to / / ) the 
equilibrium line indeed bifurcates into two; they are defined by the two solutions vd and vd to (55a). 

The values of vc at equilibrium are still governed by the identities Vc = vd (¿ = 1,2) and, as before, ipm 

can vary freely, unfolding the two lines of equilibria. Note that <pi is uniquely defined at each equilibrium 
branch by the relations Iosm(ko(p\ ) = ((vd) (again for i = 1,2): by continuity, these equations have a 
unique solution in the working interval (—ir/(2ko), ir/(2ko)) for ¡JL sufficiently close to / / . Moreover, one 
can actually check that one equilibrium is stable and the other one is unstable. 

To make things clearer, the reader can focus e.g. on the simple setting defined by the assumptions 
C,{vd) = vd, C = IQ = ko = 1; what follows is valid for any positive valued W(<pm) (think e.g. of W(<pm) = 
1 + tfm)- The bifurcation occurs at ¡JL* = 0, with v* = vd = <p* = 0. Note that locally around these values 
we can explicitly eliminate vd from (55d) as 

vd = - (-W(<pm) + V(W(¥m))2 + HW(vm)vc + s i n ^ ) ) , 

where we take the positive root because it defines the branch that accommodates the aforementioned 
equilibrium (that is, the solution v*d = 0 for v* = <p* = 0). Now, for ¡JL < 0 the system has no equilibria, 

whereas for small positive ¡i we get vd = vc = y/Jl, vd = vc = —y/Jl„ <£>\ = arc sin (y7^), <£>\ = 
arc sin (—-y/Jl); the variable <pm varies freely and parameterizes both equilibrium lines. 

Our choice of the parameter values and characteristics makes it also easy to examine the stability 
of both equilibrium branches; skipping some simple computations, eigenvalues at both equilibria can be 
checked to be defined by the roots of 

A ÍA2(2vJ) + W) + X(2vfw + cos ̂ ( i )) + 2vf cos Vf\ . 

As expected, there is a null eigenvalue owing to the presence of an equilibrium line; note also that W > 0 
and that cos ip¡ > 0 for sufficiently small ¡i: this implies that the coefficients of A2 and A in the quadratic 
polynomial defining the second factor above are positive (always for small /x), whereas the sign of the 

(i) 

independent term equals that of vd . Elementary analysis then implies that for the equilibrium branch 
defined by vd > 0 both eigenvalues are negative, whereas for vd<0 there is a positive and a negative 
eigenvalue. This means that the first bifurcating equilibrium branch is stable, whereas the second one is 
unstable. This extends the well-known behavior of classical saddle-node bifurcations of equilibria in planar 
dynamics. 



Finally, this example makes it also possible to illustrate some of the ideas used in the proof of Theorem 
3 and, specifically, the form that the invariant manifold (47) may take. Indeed, (55c) easily allows one to 
describe a family of invariant manifolds for the dynamics of (55), namely those described by the relations 

<fm = <fi+k (56) 

for a real constant k. Note that the transversality condition (48) holds trivially. In each of these invariant 
manifolds, the reduced dynamics (which depends on k) reads as 

Cv'c = -C(vd) + ii (57a) 

tf[=vc- vd (57b) 

0 = ((vd) + W(<pi + k) (vd - vc) - I0 sin(fco^). (57c) 

In particular, fixing tp*m (hence an equilibrium) and letting k = tp*m — tp* we get the invariant manifold 
arising in Theorem 3, (57) standing in this case for (50). Note however that is a theoretical recourse used 
to prove Theorem 3 in its generality, but the bifurcation of a line of equilibria in concrete cases can be 
described without recourse to the use of this invariant manifold, as detailed above. 

6. Concluding remarks 

This paper addresses a systematic circuit-theoretic characterization of local bifurcations in electrical and 
electronic circuits. The attention is focused on saddle-node bifurcations but our approach may well accom­
modate other phenomena such as transcritical of Hopf bifurcations. Regarding saddle-node bifurcations, 
we have presented an extension (of independent interest) of the theorem of Sotomayor to the context of 
semiexplicit index one DAEs. From the perspective of nonlinear circuit theory, bifurcations stemming from 
other circuit parameters, or those arising in more general settings (e.g. in distributed circuits leading to 
partial differential-algebraic equations (PDAEs)), may also be addressed in similar terms. A general anal­
ysis of bifurcations of manifolds of equilibria, extending the results of Section 5, is also a goal for future 
research. 
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