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Abstract

Gibbs’ thermodynamic entropy is given by the logarithm of the phase volume, which itself re-

sponds to heat transfer to and from thermal reservoirs. We compare the thermodynamic dissipation

described by [ 1 ] phase-volume loss with [ 2 ] heat-transfer entropy production. Their equivalence

is documented for computer simulations of the response of an ergodic harmonic oscillator to ther-

mostated temperature gradients. In the simulations one or two thermostat variables control the

kinetic energy or the kinetic energy and its fluctuation. All of the motion equations are time-

reversible. We consider both strong and weak control variables. In every case the time-averaged

dissipative loss of phase-space volume coincides with the entropy produced by heat transfer. Linear-

response theory nicely reproduces the small-gradient results obtained by computer simulation.

The thermostats considered here are ergodic and provide simple dynamical models, some of them

with as few as three ordinary differential equations, while remaining capable of reproducing Gibbs’

canonical phase-space distribution and precisely consistent with irreversible thermodynamics.
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I. HISTORICAL BACKGROUND AND NOTATIONAL GLOSSARY

The Irish Physicist William Rowan Hamilton formulated mechanics in terms of a function

H(q, p) depending upon the coordinates { q } and momenta { p } describing a mechanical

system. The derivatives of this “Hamiltonian function” describe the system’s time evolu-

tion, reducing mechanics to the solution of 2N ordinary differential equations, one for the

coordinate and one for the momentum of each of the N (q, p) degrees of freedom :

{ q̇ = +(∂H/∂p) ; ṗ = −(∂H/∂q) } .

The English and German Scientists James Clerk Maxwell and Ludwig Boltzmann showed

that the thermodynamic temperature T of an idealized D-dimensional dilute gas composed

of N mass points ( mass m ) is a measure of the time averaged kinetic energy of the moving

points ,

〈 K(p)/N 〉 = 〈 mq̇2/2 〉 = 〈 p2/2m 〉 = (D/2)kT [ ideal gas ] .

The proportionality constant relating the average kinetic energy 〈 K 〉 to the temperature

T is “Boltzmann’s Constant” k and the most likely distribution of the momenta is given by

the “Maxwell-Boltzmann” distribution :

probability(p) = fMB(p) ∝ e−(p2/2mkT ) .

The three men showed that the most likely probability distribution for any Hamilto-

nian system which interacts weakly with a “heat reservoir” at temperature T has Gibbs’

“canonical” form. Gibbs’ “canonical distribution” is exponential in the system energy ( the

Hamiltonian ) . This exponential form for the probability maximizes the thermodynamic

entropy S :

fcanonical(q, p) = probability(q, p) ∝ e−H/kT ; S = k〈 ln f 〉 ,

where the average indicated by the angular brackets is carried out over all of the (q, p)

“states” available to the system. Entropy is the thermodynamic state function associated

with heat transfer.

In the present work we consider the simplest possible thermodynamic system, a one-

dimensional harmonic oscillator. For the oscillator, with force constant and mass both equal

to unity the Hamiltonian is H(q, p) = (q2/2)+ (p2/2) so that the motion is sinusoidal in the
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time t , q ∝ eit, the velocity distribution is Gaussian, f(p) ∝ e−p2/2T , and the entropy S has

a logarithmic dependence on the temperature.

Classical Hamiltonian mechanics traces out constant-energy constant-entropy orbits, el-

lipses in the oscillator’s (q, p) space. The more general mechanics described in the present

work seeks out two orbit types : [ 1 ] chaotic equilibrium orbits which trace out Gibbs’ Gaus-

sian distribution as well as [ 2 ] chaotic nonequilibrium orbits where temperature depends

upon the coordinate q leading to overall hot-to-cold heat transfer and to an increase of en-

tropy with time as is described by the Second Law of Thermodynamics, Ṡ ≥ 0 . Gibbs’ 1902

monograph “Elementary Principles of Statistical Mechanics” describes the usual classical

textbook approach. It is available free on the internet at archive.org .

In our novel approach to nonequilibrium processes Hamilton’s equations are modified

by adding time-reversible frictional forces representing the interaction of the system with

external thermostats. In a stationary nonequilibrium process the energy transferred to the

external thermostats from the system increases the thermostat entropy. The correspond-

ing entropy decrease is localized in the system and describes the collapse of system states

to a multifractal strange attractor. In irreversible thermodynamics the reservoirs’ entropy

increase is often attributed to an “entropy production” localized within the nonequilibrium

system and transferred to the external thermostat. The actual decrease of system states can

be described by its Lyapunov spectrum { λ } , making contact with the dyanmical systems

research literature. Despite the time reversibility of the motion equations the steady-state

nonequilibrium Lyapunov spectrum exhibits symmetry breaking. The spectrum is dissipa-

tive, with a negative sum,
∑

λi = −(Ṡ/k) where Ṡ is the (positive) entropy production.

II. INTRODUCTION

We discuss the time-reversibility and thermodynamic dissipation of several harmonic-

oscillator models, all of them extensions of the thermostated canonical-ensemble dynamics

pioneered by Shuichi Nosé in 19841,2. All the resulting extended models3–13 studied here

are chaotic and ergodic. They generate phase-space distributions matching Gibbs’ canoni-

cal distribution, Gaussian in the oscillator coordinate q and momentum p with halfwidths

corresponding to the kinetic temperature T .

Our nonequilibrium extensions of these equilibrium models result when the thermostat
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temperature has a spatial gradient with T = T (q) . All such nonequilibrium models dis-

cussed here generate heat flows obeying the Second Law of Thermodynamics. All these

nonequilibrium models generate fractal rather than smooth phase-space distributions. The

fractals’ time dependence chronicles the penetration of the fractal character to smaller and

smaller length scales with passing time, and is fully consistent with Gibbs’ phase-volume

definition of entropy.

We begin with a brief discussion of time reversibility and ergodicity in Section III. Section

IIII provides a historical sketch of time-reversible thermostat models from Nosé’s work to

the present. Section V illustrates the time-reversibility of the models in nonequililbrium

stationary flows and demonstrates the consistency of all the thermostat models with Gibbs’

statistical thermodynamics. Section VI illustrates the consistency of these steady flows with

Green and Kubo’s treatment of near-equilibrium linear-response theory. We consider the

details of the linear-response approach for two models7,11. Our Summary and Historical

Perspective Section VII includes our main conclusion from this work: useful computational

thermostats can be and should be chosen so that the thermodynamic dissipation away from

equilibrium is consistent with the Second Law of Thermodynamics where the entropy cor-

responds to Gibbs’ phase-volume definition. We relate this finding to the history of under-

standing microscopic systems through the computational study of small-system dynamics.

III. TIME-REVERSIBLE ERGODICITY AT AND AWAY FROM EQUILIBRIUM

Thirty years ago Nosé and Hoover developed two new mechanics formally consistent

with Gibbs’ canonical ensemble1–4. These modern mechanics share two fundamental char-

acteristics of their Hamiltonian ancestor, being both deterministic and time-reversible. Any

sequence of successive frames of a Nosé or Nosé-Hoover movie played “backward”, with

the frames in reversed order, shows a reversed motion described by exactly the same mo-

tion equations but with reversed velocities. Hamiltonian mechanics shares this same time-

reversibility property.

The harmonic oscillator provides the simplest example of reversibility. If we choose a

harmonic oscillator with unit mass and spring constant any “forward” orbit ( with −τ <

t < +τ ) can be paired with a time-reversed backward twin with the reversal occurring at
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time t = 0 . For instance :

{ q = ± sin(t) ; p = ± cos(t) } ←→ { q = ∓ sin(t) ; p = ∓ cos(t) } .

Both orbits satisfy Hamilton’s equations { q̇ = +p ; ṗ = −q } . In this simplest case the

reversed version is also a mirror image of the original, with both q and p changed in sign. In

both cases, forward and backward, time increases. This corresponds to a positive timestep

dt > 0 in a numerical simulation. We distinguish this physical version of “time reversibility”

from its mathematical cousin where dt changes sign while q and p do not.

Nosé sought out a dynamics which would explore the (q, p) phase space with a probability

density approaching Gibbs’ canonical distribution, f(q, p) ∝ e−H(q,p)/kT . Both the Nosé and

the simpler Nosé-Hoover thermostat algorithms lacked the ergodicity required to reproduce

all of Gibbs’ canonical distribution for the prototypical one-dimensional harmonic oscillator3.

About a decade later three more-complex algorithms, doubly-thermostated with four motion

equations rather than singly-thermostated with three, were developed. All three have been

shown to provide ergodicity for the oscillator5–8. How is this ergodicity demonstrated ?

First of all ergodic motion equations necessarily satisfy the stationary version of Liouville’s

continuity equation :

(∂f/∂t) = −∇r · (fv) ≡ 0 .

Abbreviate the Nosé-Hoover motion equations for an oscillator by a introducing a generalized

velocity v for the three-dimensional flow :

v = ṙ = (q̇, ṗ, ζ̇)←− { q̇ = +p ; ṗ = −q − ζp ; ζ̇ = (p2/T )− 1 } [ NH ] ,

where the stationary distribution f is proportional to e−q2/2T e−p2/2T e−ζ2/2 . The four non-

vanishing contributions to (∂f/∂t) are :

−q̇(∂f/∂q) = p(q/T )f ; −ṗ(∂f/∂p) = (−q − ζp)(p/T )f ;

−ζ̇(∂f/∂ζ) = [ (p2/T )− 1 ](ζ)f ; −f(∂ṗ/∂p) = fζ .

These four terms do sum to zero, showing that the motion equations are consistent with

the assumed Gaussian distribution. The Nosé-Hoover equations are not ergodic so that the

vanishing of (∂f/∂t) is not sufficient for ergodicity. In fact, numerical work shows that only

a bit less than six percent of the Gaussian oscillator measure is mixing and chaotic. The
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FIG. 1: Penetrations of the (q, p, 0) plane for the chaotic Nosé-Hoover oscillator with initial

condition (0, 5, 0), using points from a fourth-order Runge-Kutta integration with a timestep

dt = 0.001 . Red and blue correspond to the most positive and most negative Lyapunov

exponents. Notice the lack of symmetry about the horizontal axis despite the time-reversibility of

the equations of motion, showing that the Lyapunov exponents’ dependence on past history differs

from their relation to the unforseeable future. This cross section of the chaotic sea corresponds to

about six percent of the Nosé-Hoover oscillator’s Gaussian measure.

remaining 94 percent is made up of regular tori, showing that the Nosé-Hoover distribution

is not ergodic. See Figure 1 for a cross-sectional view of the Nosé-Hoover oscillator’s chaotic

sea.

We use the term “chaotic” in the usual sense here, to indicate that the maximum Lya-

punov exponent has a longtime positive average value. Numerical methods for measuring

Lyapunov exponents so as to characterize chaos make up a vast literature readily accessible

through Wikipedia.
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Ergodic motion equations must necessarily reproduce the canonical moments of the Maxwell-

Boltzmann velocity distribution. With mkT chosen equal to unity to set the temperature

scale, the values appropriate for Cartesian coordinates ,

〈 p2,4,6,... 〉MB = 1, 3, 15, . . .

can readily be verified from numerical simulations. But distributions which are “almost”

ergodic ( for some specific æsthetic examples see Figures 2-4 in Reference 13 ) can exhibit

deviations so small as to be masked by thermal fluctuations.

Two better checks of ergodicity have been implemented. Cross sections [ such as the

(q, p, 0) points shown in Figure 1 ], where ζ = 0 or where ζ = ξ = 0 if two thermostat

variables are used can be inspected visually for the tell-tale holes indicating regular toroidal

solutions within the chaotic sea.

Additionally, the mean value of the largest Lyapunov exponent λ1 ( the longtime averaged

rate of separation of two nearby trajectories, positive for chaos and zero for tori ) can be

estimated for simulations using millions or billions of randomly chosen initial conditions. For

an ergodic system the results cluster around a unique positive longtime average, 〈 λ1(t) 〉 ≃
λ1. For a toroidal system the averaged results instead cluster about zero.

The three criteria [ moments, telltale holes, Lyapunov exponent ] have been applied to the

thermostats described in the following Section leading to the conclusion that many different

one-thermostat and two-thermostat systems are ergodic. Let us detail four such systems

next.

IV. DETERMINISTIC TIME-REVERSIBLE THERMOSTATS (1984-2015)

As recently as early 2015 it was thought that four or more ordinary differential equations

were required for oscillator ergodicity. Reference 8 deals with techniques for demonstrating

ergodicity as applied to the Martyna-Klein-Tuckerman5, Ju-Bulgac6, and Hoover-Holian7

thermostated oscillators. For a more comprehensive treatment see References 9 and 10.

The three thermostat types, MKT, JB, and HH, produce chaotic dynamics (q̇, ṗ, ζ̇, ξ̇) which

pass visual ergodicity tests. All three of them also closely reproduce the Cartesian velocity

moments 〈 p2,4,6 〉 characterizing the equilibrium Maxwell-Boltzmann distribution. Let us

begin by reviewing the structure of these three thermostat types.
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A. The Martyna-Klein-Tuckerman “Chain” Thermostat (1992)

The Martyna-Klein-Tuckerman thermostat uses two control variables, ζ and ξ, with ζ

controlling 〈 p2 〉 and ξ controlling 〈 ζ2 〉 :

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = (p2/T )− 1− ξζ ; ξ̇ = ζ2 − 1 } [ MKT ] .

The steady-state distribution corresponding to these oscillator motion equations is an ex-

tension of Gibbs’ canonical one :

fMKT(q, p, ζ, ξ) ∝ e−q2/2T e−p2/2T e−ζ2/2e−ξ2/2 −→

(∂f/∂t) = −∇r · (fv) ≡ 0 where v = ṙ ≡ (q̇, ṗ, ζ̇, ξ̇) .

The stationarity test from the continuity equation, (∂f/∂t) = 0 , provides a necessary,

but not necessarily sufficient, condition that any set of motion equations must satisfy for

ergodicity. Martyna, Klein, and Tuckerman5 emphasized that any number of additional

control variables can be added to form a “chain” of thermostats.

B. The Ju-Bulgac Cubic Thermostat (1993)

The Ju-Bulgac thermostat6 likewise uses two control variables but includes cubic depen-

dences following the observation of Bauer, Bulgac, and Kusnezov that cubic terms enhance

chaos and ergodicity6,9,10 :

{ q̇ = p ; ṗ = −q − ζ3p− ξ(p3/T ) ; ζ̇ = (p2/T )− 1 ; ξ̇ = (p4/T 2)− 3(p2/T ) } [ JB ] .

The steady-state distribution here is Gaussian in ζ2 rather than ζ :

fJB(q, p, ζ, ξ) ∝ e−q2/2T e−p2/2T e−ζ4/4e−ξ2/2 −→ (∂f/∂t) ≡ 0.

At unit temperature T = 1 the rms rate | ṗ | at which the Ju-Bulgac momentum moves

through phase space is about three times faster than that of the simpler Martyna-Klein-

Tuckerman momentum :

√

〈 q2 + p2ζ6 + p6ξ2 〉 ≃
√
18.028 versus

√

〈 q2 + p2ζ2 〉 =
√
2 .

From the numerical standpoint cubic thermostat variables enhance chaos and mixing without

incurring the considerable stiffness associated with quintic controls.
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C. The Hoover-Holian Thermostat (1996)

Like the two preceding, the Hoover-Holian thermostat7 uses two control variables. The

first one is allocated to fixing the oscillator temperature ζ → 〈 p2 〉 while the second fixes

the fluctuation of the temperature ξ → 〈 p4 〉 :

{ q̇ = p ; ṗ = −q − ζp− ξ(p3/T ) ; ζ̇ = (p2/T )− 1 ; ξ̇ = (p4/T 2)− 3(p2/T ) [ HH ] .

At unit temperature the rms rate at which the Hoover-Holian momentum moves,
√

〈 q2 + p2ζ2 + ξ2p6 〉 =
√
17 , is nearly the same as the Ju-Bulgac speed. The Hoover-

Holian thermostat variables ζ and ξ exert what we term “strong” control of the temperature

and its fluctuation, in that longtime averages of the thermostat motion equations constrain

moments proportional to the kinetic energy and its fluctuation :

〈 ζ̇ 〉 = 0 −→ 〈 (p2/T ) 〉 ≡ 1 ; 〈 ξ̇ 〉 = 0 −→ 〈 (p4/T 2) 〉 ≡ 〈 3(p2/T ) 〉 .

These strong constraints can be applied equally well in nonequilibrium situations. Nonequi-

librium applications of the MKT thermostat typically lead to nonzero correlated values of the

thermostat variables, 〈 ζξ 〉 so that the definition of the kinetic temperature 〈 (p2/T ) 〉 ≡ 1

is violated.

At equilibrium the steady-state distribution corresponding to the HH motion equations

is exactly the same as the Martyna-Klein-Tuckerman four-dimensional Gaussian :

fHH(q, p, ζ, ξ) = fMKT(q, p, ζ, ξ) ∝ e−q2/2T e−p2/2T e−ζ2/2e−ξ2/2 −→ (∂f/∂t) ≡ 0 .

D. The Ergodic Single-Thermostat 0532 Model (2015)

Very recently11–13 a variety, both novel and wide, of singly-thermostated ergodic algo-

rithms has been developed and applied to the one-dimensional harmonic oscillator. The

simplest of them, the “0532 Model”, consists of only three ordinary differential equations

for the oscillator coordinate q , velocity p , and friction coefficient ζ at a thermostat tem-

perature T :

q̇ = p ; ṗ = −q − ζ [ 0.05p+ 0.32(p3/T ) ] ;

ζ̇ = 0.05[ (p2/T )− 1 ] + 0.32[ (p4/T 2)− 3(p2/T ) ] ; [ 0532 Model ] .
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We term this simultaneous control of the second and fourth moments, 〈 p2 and 4 〉, “weak”
because a linear combination of the moments is controlled rather than enforcing the separate

control of both moments, as in the earlier work in References 5-9 . Numerical solutions of

the 0532 oscillator model indicate that it is ergodic and corresponds to Gibbs’ canonical

ensemble multiplied by a Gaussian distribution for the thermostat control variable ζ :

f0532(q, p, ζ, ξ) =∝ e−q2/2T e−p2/2T e−ζ2/2 −→ (∂f/∂t) ≡ 0 .

Because the 0532 model motion occurs in just three dimensions rather than four, it is well-

suited to analysis. This model, like its three predecessors in this Section, is time-reversible,

even in the nonequilibrium case where the temperature varies in space, T = T (q) . Let us

review the reversibility property in that specific nonequilibrium case.

V. TIME REVERSIBILITY AWAY FROM EQUILIBRIUM – 0532 MODEL

At equilibrium the forward and backward trajectories for canonical oscillators, using any

of the four ergodic sets of motion equations, are qualitatively much the same. No holes in

the cross sections, good values for the even velocity moments, longtime averaged Lyapunov

exponent the same for any initial condition. In short – deterministic, time-reversible, ergodic.

Away from equilibrium, thermodynamic dissipation can be investigated, still time-

reversibly, by adding a localized temperature gradient (dT/dq) = [ ǫ/ cosh2(q) ] enabling

heat transfer through a nonzero average current (p3/2) :

1− ǫ < T < 1 + ǫ = T (q) = 1 + ǫ tanh(q) −→ 〈 (p3/2) 〉 < 0 −→ (Ṡ/k) < 0 .

Here ǫ is the maximum value of the temperature gradient, T ′(0) . The negative entropy

change, causing the phase volume to shrink onto a strange attractor is due to the net heat

loss from the oscillator to the coordinate-dependent 0532 thermostat temperature T (q) .

From the standpoint of steady-state irreversible thermodynamics the overall heat loss is

offset by an internal “entropy production” so that the net change of oscillator “entropy”

vanishes. We remind the reader that Gibbs’ entropy is minus infinity for fractal attractors

so that the irreversible-thermodynamics concept of nonequilibrium entropy is problematic.

The artificial entropy change could be also be viewed as the result of ongoing coarse-graining

( which would artificilly increase Gibbs’ entropy ) at the level of the computational roundoff

error ( in the sixteenth or seventeenth digit ).
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The temperature gradient destroys the “global [ overall ] reversibility” of the motion

equations. Although in principle reversible the chaotic instability of the dynamics, evidenced

by a positive Lyapunov exponent, makes this “irreversibility” possible. This irreversibility

is evidenced by a Lyapunov spectrum with a negative sum so that the longtime averaged

distribution is a fractal strange attractor with a reduced information dimension rather than

a smooth three-dimensional Gibbsian distribution.

Among the thermostats we have considered only the Nosé-Hoover equations show that a

fractal attractor is not inevitable. In the Nosé-Hoover case a majority of initial conditions

give rise to phase-space tori, orbits with no longtime tendency toward dissipation. All of the

ergodic thermostats invariably produce small-gradient dissipation rather than tori so that

their orbits exhibit what we call “global irreversibility”.

The equilibrium ( ǫ = 0 and unit temperature T = 1 ) Lyapunov spectrum for the 0532

model, { λ } = { +0.144, 0,−0.144 } sums to zero corresponding to the three-dimensional

Gaussian distribution, f ∝ e−q2/2e−p2/2e−ζ2/2 . The time-averaged growth rates of infinites-

imal one-, two-, and three-dimensional phase space volumes are given by

{ λ1, λ1 + λ2, λ1 + λ2 + λ3 } .

In the nonequilibrium case with ǫ = 0.50 the time-averaged spectrum becomes asymmetric,

{ +0.1135, 0,−0.1454 } , corresponding to the time-averaged growth of a length or an area in

phase space ≃ e+0.1135t but to shrinkage of an infinitesimal three-dimensional phase volume

⊗ :

(⊗̇/⊗) = 0.1135− 0.1454 = −0.0319 −→ DKY = 2 + (0.1135/0.1454) = 2.78 .

Kaplan and Yorke’s linear interpolation predicts a strange-attractor dimension of 2.78. Cross

sections of the equilibrium and nonequilibrium 0532 dynamics are shown in Figure 2 .

Just as at equilibrium the nonequilibrium strange-attractor’s motion equations are time-

reversible. Any forward-in-time sequence { +q,+p,+ζ } corresponds to a twin sequence

{ +q,−p,−ζ } with the order of the (q, p, ζ) points reversed. Locally this reversed se-

quence satisfies the same equations of motion with errors of order (dt5/120) for fourth-order

Runge-Kutta integration. But any attempt to generate such a reversed sequence numer-

ically fails because the Lyapunov spectrum of the reversed sequence would correspond to

{ +0.1454, 0,−0.1135 } . The positive exponent sum indicates an unstable repellor with a

11



FIG. 2: Penetrations of the (q, p, 0) plane for the chaotic and ergodic 0532 Model using

fourth-order Runge-Kutta integration with a timestep dt = 0.001 . The red and blue points

correspond to maximum and minimum values of the local Lyapunov exponent. The equilibrium

ζ = 0 cross section at the left shows inversion symmetry, corresponding to viewing the oscillator in

a mirror. The lack of symmetry about the horizonal p = 0 axis shows that the exponents depend

upon the past rather than the future. The nonequilibrium section ( ǫ = 0.50 ) shown to the right

displays no symmetry and is multifractal. The black-and-white inset shows the cross-sectional

density in the 2× 2 central region of the phase-plane section.

diverging phase volume, (⊗̇/⊗) = +0.0319 . Any attempt to follow the repellor numerically

will instead seek out the nearby attractor ( both are still ergodic, at least if ǫ is small ) which,

though unstable for a line or an area, is less so than the repellor. The repellor properties can

( only ) be observed by the expedient of storing and reversing a trajectory. The cross section

associated with a stored ten-billion-point attractor trajectory is illustrated in Figure 3 .

Note the lack of ±p symmetry in the coloring of the local Lyapunov exponent, λ1(t) .

12



FIG. 3: Penetrations of the (q, p, 0) plane for the chaotic and ergodic 0532 Model using a ten-

billion-point attractor reference trajectory ( denoted A ) and fourth-order Runge-Kutta integration

with a timestep dt = 0.001 for the satellite trajectory. This trajectory crosses the ζ = 0 plane 1 836

934 times. The signs of the largest Lyapunov exponent at each crossing are indicated for both the

attractor and the repellor ( denoted R ). By plotting the positive and negative points separately

the lack of any symmetry is clear. The repellor points are identical to those of the attractor by

are traced out in the opposite direction. For both the attractor and the repellor the separatiom of

the reference and satellite trajectories is
√

(qs − qr)2 + (ps − pr)2 + (ζs − ζr)2 = 0.000001 . Here

the maximum value of the nonequilibrium temperature gradient is ǫ = 0.5 .

This instructive problem illustrates two general principles : [ 1 ] the phase volume of the

steady-state attractor is zero and singular everywhere despite the time-reversibility of the

motion equations ; [ 2 ] any typical three-dimensional phase volume first expands and leaves

the vicinity of the ( ergodic ) fractal repellor and then shrinks in order to join its mirror-image

( and likewise ergodic ) fractal attractor exponentially fast. Both these features correspond
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to the paucity of nonequilibrium states and to the irreversibility described by the Second

Law of Thermodynamics.

There is more. Consider two additional equally-significant observations. First, the co-

moving shrinkage rate in phase space corresponds precisely and instantaneously to the loss

of Gibbs’ entropy for the system. To illustrate consider the 0532 model ,

q̇ = p ; ṗ = −q − ζ [ 0.05p+ 0.32(p3/T ) ] [ 0532 ] .

(Ṡ/k) = (⊗̇/⊗) ≡ (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) = 0− ζ [ 0.05 + 0.96(p2/T ) ] + 0 .

Second, this loss rate also corresponds precisely, when time-averaged, to the kinetic energy

( or heat Q) extracted by the thermostat forces, divided by the thermostat temperature T :

〈 (Q̇/T ) 〉 = −〈 ζ [ 0.05(p2/T ) + 0.32(p4/T 2) ] 〉 = 〈 (Ṡ/k) 〉 .

The time-averaged value 〈 ζ [ 0.05+0.96(p2/T ) ] 〉 , follows from the time-averaged evolution

equation for the squared thermostat variable (ζ2/2) :

〈 ζζ̇ = 0 = 0.05ζ [ (p2/T )− 1 ] + 0.32ζ [ (p4/T 2)− 3(p2/T ) ] 〉 .

The time-averaged phase-volume loss, equivalent to the dissipation seen in the heat Q

lost to thermal reservoirs divided by the reservoir temperature T ,

〈 (Q̇/T ) 〉 = 〈 k(⊗̇/⊗) 〉 = 〈 Ṡ 〉 ,

holds generally for all the thermostat models discussed here. This identity holds even for

the Nosé-Hoover model, which is not ergodic. It holds for other power laws. Suppose for

instance that the thermostat force is proportional to odd powers of ζ and p :

−Amnζ
2m+1(p2n+1/T n)

so that the equilibrium distribution is proportional to

f ∝ e−p2/2T e−ζ2m+2/(2m+2) .

Gibbs’ phase-space dissipation, from −(∂ṗ/∂p) gives a contribution to the system entropy :

(Ṡ/k) = −(2n+ 1)Amnζ
2m+1(p2n/T n)

14



The entropy change from the contribution of the same dissipative term to heat transfer is :

(Q̇/T ) = −Amnζ
2m+1(p2n+2/T n+1) .

A look at the equation of motion for the friction coefficient, multiplied by ζ2m+1 and time

averaged shows that (Ṡ/k) and (Q̇/T ) are equivalent :

〈 ζ2m+1ζ̇ 〉 = 〈 ζ2m+1Amn[ (p
2n+2/T n+1)− (2n+ 1)(p2n/T n) ] 〉 = 0,

This is a consequence of the vanishing of the longtime averaged value of a bounded quantity,

in this case (d/dt)[ ζ2m+2/(2m + 2) ] . Generalized models, like the 0532 model, can use

two or more power-law contributions to thermostat forces. This equivalence of Gibbs’ en-

tropy production with that from irreversible thermodynamics points the way forward toward

consistent theories of nonequilibrium steady states either near to or far from equilibrium.

In the past it has been pointed out that it is possible to develop thermostats for which

the phase-volume and heat-transfer rates are not closely related15–17. This potential loss of

a family relationship recalls Tolstoy’s thought: “All happy families are alike ; each unhappy

family is unhappy in its own way.” We emphasize here that the close relationship linking

phase volume to thermodynamics is to be celebrated rather than avoided.

We note that our dimensionless friction coefficients could be multiplied by relaxation

times or by powers of the temperature, changing their units. We have carefully chosen the

forms used here in order to guarantee the consistency of the motion equations with both

Gibbs’ canonical distribution and with thermodynamics. Dimensionless friction coefficients

seem to us the simplest approach to thermodynamic consistency.

In the 1950s Green and Kubo showed that their “linear-response” theory expresses

nonequilibrium transport coefficients in terms of equilibrium correlation functions. This

same theory can be applied to the various thermostats we have described. Next we illus-

trate this idea for two examples, the doubly-thermostated Hoover-Holian thermostat and

the singly-thermostated 0532 Model.

VI. LINEAR RESPONSE THEORY WITH A TEMPERATURE GRADIENT

We have celebrated the equivalence of two measures of dissipation, phase volume loss and

Gibbs’ entropy production when any one of our five of thermostat models [ NH, MKT, JB,
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HH, 0532 ] is time averaged. This equivalence guarantees their usefulness in simulations con-

sistent with dynamical equivalents of the canonical ensemble. Green-Kubo linear-response

theory is a perturbation theory based on Gibbs’ ensembles. Typically the energy is modified

by a perturbation, giving rise to a nonequilibrium flux. In our case both the energy and

the temperature are modified by introducing a temperature profile along with a stabilizing

frictional force. Let us demonstrate their theory’s usefulness for the Hoover-Holian (q, p, ζξ)

and the 0532 Model (q, p, ζ) oscillators as two concrete examples.

A. Hoover-Holian Oscillator with Temperature Gradient

We begin with the extended canonical distribution for the oscillator with energy E and

at a temperature T of unity :

f(qpζξ)HH ∝ e−H(q,p)/kT e−ζ2/2e−ξ2/2 = e−q2/2T e−p2/2T e−ζ2/2e−ξ2/2 .

Adding a temperature perturbation ,

T = 1 −→ T = 1 +∆T = 1 + ǫ tanh(q) ,

we wish to compute the responding current, (p3/2) as a function of time.

The simplest form of the Hoover-Holian motion equations is :

{ q̇ = p ; ṗ = −q − ζp− ξ(p3/T ) ; ζ̇ = (p2/T )− 1 ; ξ̇ = (p4/T 2)− 3(p2/T ) } [ HH ] .

The time-dependent change of the canonical weight e−∆(E/kT ) can be linearized in the ther-

mal perturbation ǫ with the result :

(fneq/feq) = 1 +
∫ t

0
[ ǫ tanh(q) ]0[ −ζp2 − ξ(p4/T ) ]t′dt

′ .

We can use this nonequilibrium perturbation to compute the current (p3/2) at time t from

the equilibrium correlation function ( which depends only on the time difference t′ ) :

〈 (p3/2) 〉neq =
∫ t
0〈 [ ǫ tanh(q) ]0[ −ζp2 − ξ(p4/T ) ]0(p

3/2)t′ 〉eqdt′ .

A highly-accurate equilibrium calculation can be based on the fact that the four-

dimensional equilibrium measure is ergodic, a Gaussian probability density known in

advance. To compute averages we begin with a grid of [ 100×100×100×100 ] equiprobable
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FIG. 4: Comparison of the linear-response correlation function ( blue ) with the measured

current ( red ) for the HH oscillator at a field strength ǫ = 0.10 . Results for T = 1 + 0.10 tanh(q)

( shown here) and T = [ 1− 0.10 tanh(q) ]−1 are very similar and confirm that ǫ = 0.10 is close to

the linear regime. The phase-space integration uses 1004 equally-probable Gaussian points as the

initial states for the averaged current 〈 (p3/2) 〉 and for the linear-response correlation integral.

points and use these as the initial conditions for computing both the nonequilibrium

current and the equilibrium correlation function. The excellent agreement shown in Figure

4 confirms the analysis showing that both the equilibrium distribution function and its

linear perturbation are well suited to numerical exploration. The figure compares the

linear-response expression for the current to that actually measured with nonequilibrium

molecular dynamics at the relatively small field strength ǫ = 0.10 . We conclude that simple

linear-response theory is a fringe benefit of our deterministic ergodic thermostat models.
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FIG. 5: Comparison of the linear-response correlation function with the measured current for the

0532 oscillator at a field strength ǫ = 0.10 . We show results for T = 1+0.10 tanh(q) which closely

resemble those for T = [ 1− 0.10 tanh(q) ]−1 confirming that ǫ = 0.10 is close to the linear regime.

The three-dimensional Gaussian phase-space integration uses 2003 equally-probable points as the

initial states for both the average current and the correlation integral.

The 0532 Model has only three phase-space dimensions rather than four so that the linear

response simulation is about three orders of magnitude, one thousand times, faster. The

agreement between the linear-response and directly measured current is likewise excellent, as

is shown in Figure 5. Evidently the ergodic thermostats reproduce both Gibbs’ canonical

distribution and linear nonequilibrium perturbations as described by Green-Kubo theory.
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VII. SUMMARY AND HISTORICAL PERSPECTIVE

A wide variety of time-reversible thermostats all generate Gibbs’ canonical ensemble

through deterministic chaos. When the kinetic temperature varies with coordinate, the

resulting heat current (p3/2) leads to dissipation, heat transfer, and entropy change. The

steady loss of comoving phase volume obeys Gibbs’ thermodynamic relations in the extended

phase space :

〈 (Ṡ/k) = (Q̇/kT ) = (⊗̇/⊗) 〉 ,

where the comoving phase volume includes extensions in the thermostat directions. These

time-averaged relations hold even for the nonergodic Nosé-Hoover oscillator :

〈 (⊗̇/⊗) 〉 = −〈 ζ 〉 = −〈 ζ(p2/T ) 〉 = 〈 (Ṡ/k) 〉 [NH ] .

Because the ergodic thermostats all generate Gibbs’ canonical distribution they also give

linear-response relations linking the nonequilibrium currents and thermal gradients. We be-

lieve that these observations are fundamental to a systematic exploration of nonequilibrium

statistical mechanics through thermostated dynamics.

Our presentday understanding of nonequilibrium systems has its basis in the work of

Boltzmann, the Ehrenfests, Gibbs, and Maxwell. 50 years of numerical work have pro-

vided alternatives to their classic Hamiltonian and stochastic models. Deterministic repro-

ducibility with dissipative time-reversibility have provided explicit links between microscopic

nonequilibrium molecular dynamics and macroscopic thermodynamics.

Shockwave studies which generate localized far-from-equilibrium states would seem to

be an ideal problem for consolidating these gains in understanding. Shock dynamics is

purely Hamiltonian inside the wave and with equilibrium cold and hot boundaries. The

relaxation times correspond to vibrational collision times. The nonlinear dependence of

transport coefficients and the irreversible nature of the timelag between forces and fluxes

can be measured directly in shockwaves18 . There is a comprehensive listing of nearly all the

existing approaches to nonequilibrium systems in Jepps and Rondoni’s review19. Tools for

the exploration of these problems are close at hand. The only thing lacking in the shockwave

problems is a simple model example like the Galton Board11 and the conducting oscillator

studied here.
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1 S. Nosé, “A Molecular Dynamics Method for Simulations in the Canonical Ensemble”, Molecular

Physics 52, 255-268 (1984).
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