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From geodesic flow on a surface of negative curvature

to electronic generator of robust chaos

Sergey P. Kuznetsov∗

(Dated: August 13, 2018)

Departing from the geodesic flow on a surface of negative curvature as a classic example of the
hyperbolic chaotic dynamics, we propose an electronic circuit operating as a generator of rough
chaos. Circuit simulation in NI Multisim software package and numerical integration of the model
equations are provided. Results of computations (phase trajectories, time dependences of variables,
Lyapunov exponents and Fourier spectra) show good correspondence between the chaotic dynamics
on the attractor of the proposed system and of the Anosov dynamics for the original geodesic flow.

PACS numbers: 05.45.Ac, 84.30.-r, 02.40.Yy

The hyperbolic theory is a part of the theory of dy-
namical systems delivering a rigorous justification of the
possibility of chaotic behavior of deterministic systems
both for the discrete-time case (iterative maps – diffeo-
morphisms) and for the continuous time case (flows) [1–
5]. The objects of study are uniformly hyperbolic in-
variant sets in the phase space composed exclusively of
saddle trajectories. For conservative systems the hyper-
bolic chaos is represented by the Anosov dynamics when
the uniformly hyperbolic invariant set either occupies a
compact phase space (for diffeomorphisms), or occupies
completely a surface of constant energy (for flows). For
dissipative systems the hyperbolic theory introduces a
special kind of attracting invariant sets, the uniformly
hyperbolic chaotic attractors.

A fundamental mathematical fact is that the uniformly
hyperbolic invariant sets possess the property of rough-
ness, or structural stability [6]. It means that the nature
of the dynamics is robust and persists under small varia-
tions of the system. Such systems should be of preferable
interest to any practical applications of dynamical chaos
due to insensitivity to variation of parameters, manufac-
turing imperfections, interferences, etc. [7–9]. However,
consideration of numerous examples of chaotic systems
occurring in different fields in nature does not justify
the expectations regarding occurrence of the hyperbolic
chaos. In this situation, instead of looking for ”ready-
for-use” examples it makes sense to turn to the pur-
poseful constructing the systems with hyperbolic dynam-
ics appealing to tools of physics and electronics [10, 11]
exploiting naturally the roughness (structural stability).
Namely, taking a formal example of hyperbolic dynamics
as the prototype, one can try to modify it in such way
that the dynamical equations become appropriate to be
associated with a physical system, hoping that due to the
roughness the hyperbolic nature of the dynamics will sur-
vive this transformation. In this article, departing from
the classical problem of the geodesic flow on a surface of
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negative curvature, we propose an electronic device that
operates as a generator of robust chaos.
It is known that the free mechanical motion of a parti-

cle on a curved surface is carried out along the geodesic
lines of the metric, which is defined by the quadratic
form, expressing the kinetic energy W via the gener-
alized velocities with coefficients depending on coordi-
nates [12, 13]. In the case of negative curvature, the mo-
tion is characterized by instability with respect to trans-
verse perturbations. Therefore, if it occurs in a compact
domain, it appears to be chaotic [13].
As an example, consider the geodesic flow on the so-

called Schwartz primitive surface [14], which is defined in
the three-dimensional space (θ1, θ2, θ3) by the equation

cos θ1 + cos θ2 + cos θ2 = 0, (1)

and the motion takes place with constant kinetic energy

W = 1

2
(θ̇21 + θ̇22 + θ̇23). (2)

Here the mass is taken as a unit, and the relation (1)
may be regarded as the imposed holonomic mechanical
constraint. Because of the periodicity in three axes, the
variables θ1,2,3 may be defined modulo 2π, and we can
interpret the motion as proceeding in a compact domain,
the cubic cell of size 2π.
For curvature in this case it is possible to obtain an

explicit expression [15–17].

K = −
1

2

cos2 θ1 + cos2 θ2 + cos2 θ3
(

sin2 θ1 + sin2 θ2 + sin2 θ3
)2

. (3)

With exception of eight points, where the numerator
is zero, the curvature K is everywhere negative, so that
the geodesic flow implements the Anosov dynamics.
The dynamics associated with the geodesic flow on

the surface (1) occurs, for example, in the triple link-
age mechanism of Thurston – Weeks – MacKay – Hunt
[15, 18] in some special asymptotic case [15–17]. It is
also of interest in the context of model description of a
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particle motion in three-dimensional periodic potential,
say, in the solid-state physics [15, 19].
Using the standard procedure for mechanical systems

with holonomic constraints [20], we can write down the
equations of motion in the form

θ̈1 = −Λ sin θ1, θ̈2 = −Λ sin θ2, θ̈3 = −Λ sin θ3, (4)

where the Lagrange multiplier Λ has to be determined
with taking into account the algebraic condition of me-
chanical constraint complementing the differential equa-
tions. In our case

Λ = −
θ̇2
1
cos θ1 + θ̇2

2
cos θ2 + θ̇2

3
cos θ3

sin2 θ1 + sin2 θ2 + sin2 θ3
. (5)

Figure 1a shows a typical trajectory in the configura-
tion space, which travels on the two-dimensional surface
(1). The opposite faces of the cubic cell are naturally
identified, resulting is a compact manifold of genus 3; in
other words the surface is topologically equivalent to the
”pretzel with three holes” [15, 18]. Visually, you can
conclude about chaotic nature of the trajectory covering
the surface in ergodic manner. The power spectrum of
the signal generated by the motion of the system is con-
tinuous, which is an intrinsic feature of chaos (Fig.1b).
Taking into account the imposed mechanical con-

straint, there are four Lyapunov exponent characterizing
the behavior of perturbations about the reference phase
trajectory: one positive, one negative and two zero. One
exponent equal to zero appears due to the autonomous
nature of the system; it corresponds to the perturbation
vector tangent to the phase trajectory. Another one is
associated with a disturbance of energy. Since the sys-
tem does not possess any certain characteristic time scale,
the Lyapunov exponents responsible for the exponential
growth or decay of perturbations are proportional to the
velocity, i.e. λ = ±κ

√
W , where the coefficient is deter-

mined by the average curvature of the metric. Empiri-
cally, from computations for the system under consider-
ation κ = 0.70 [16, 17].
In [17] a self-oscillating system was suggested, where

the sustained dynamics corresponds approximately to the
geodesic flow on the Schwarz surface; there the kinetic
energy is not constant but undergoes some irregular fluc-
tuations around a certain average level in the course of
the dynamics in time. This system is based on three
self-rotators, the elements whose state is defined by the
angular variables θ1,2,3 and generalized velocities θ̇1,2,3,
and the steady motion of one element in isolation corre-
sponds to the rotation in either direction with a certain
constant angular velocity. The rotators are supposed to
interact via the potential that is minimal under the con-
dition (1). According to [17], in a certain range of pa-
rameters the dynamics are hyperbolic, although for the
modified system one should speak about self-oscillatory
chaotic regimes corresponding to hyperbolic attractors

FIG. 1: Typical trajectory of the system (4), (5) in a three-
dimensional configuration space (θ1, θ2, θ3) (a) and power

spectrum of the variable θ̇1 for the motion with the kinetic
energy W = 0.03 (b). Plotting the diagram (a) the angular
variables are related to the interval from 0 to 2π, i.e. it corre-
sponds to the fundamental cell, which is repeated with period
2π along each of the three coordinate axes.

rather then the Anosov dynamics. The purpose of this
article is to propose an electronic circuit implementation
of such system and to demonstrate its functioning as a
generator of robust chaos.

For the construction of the electronic device the el-
ements are required similar to rotators in mechanics.
Namely, the state of the element has to be character-
ized by a generalized coordinate defined modulo 2π. An
appropriate variable of such kind is a phase shift in the
voltage controlled oscillator relative to a reference signal,
like it is practiced in the phase-locked loops [21].

Let us turn to the circuit diagram shown in Figure 2.
The voltages U1,2,3 are used to control the phases of the
oscillators V1, V2, V3, so that the voltage outputs vary in
time as sin(ωt+θ1,2,3), where the phases satisfy the equa-

tions θ̇i = kUi, i = 1, 2, 3, and k is the coefficient char-
acterizing the frequency control. The center frequency of
the oscillators is determined by the bias provided by DC
voltage source V4. The reference signal is generated by
the AC voltage source V5.

Assuming the output voltages of the multipliers A1,
A2, A3 to be W1,2,3, for currents through the ca-

pacitors C1, C2, C3 we have CU̇i + (R−1 − g)Ui +
αUi + βU3

i = R−1Wi, where i=1,2,3, C=C1=C2=C3,
R=R10=R11=R12, and I(U) = αU+βU3 is the current-
voltage characteristic of the nonlinear element composed
of a pair of the diodes. The equations take into account
the negative conductivity g = R2/R1R3 = R5/R4R6 =
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R8/R7R9 introduced by the elements on the operation
amplifiers U1, U2, U3. The voltages W1,2,3 are obtained
by multiplying the signals sin(ωt+θ1,2,3) cosωt from out-
puts of A4, A5, A6 by an output signalW of the inverting
summing-integrating element containing the operational
amplifier U4.
Input signals for the summing-integrating element are

the output voltages of the multipliers A7, A8, A9, so, that
with account of the leakage current through the resistor
R16, we have C0Ẇ + r−1W = −R−1

0
[U1 sin(ωt + θ1) +

U2 sin(ωt + θ2) + U3 sin(ωt + θ3)] cosωt, where C0=C4,
R0=R13=R14=R15, r=R16.
Using variables τ = t/

√
4RCR0C0, ui =

2k
√
RCR0C0Ui, w = 2kR0C0W and parameters Ω =√

4RCR0C0ω, µ = (gR − αR − 1)
√

4R0C0/RC, ν =

β/
√
4k4RC3R0C0, γ =

√

4RCR0/r2C0, we rewrite the
equations in dimensionless form, where the dot means
now the derivative over τ :

θ̇i = ui, i = 1, 2, 3,
u̇i = µui − νu3

i + 2w sin(Ωτ + θi) cosΩτ,

ẇ = −γw − 2
∑

3

i=1
ui sin(Ωτ + θi) cosΩτ .

(6)

Non-trivial self-oscillatory behavior takes place at µ >
0; this parameter may be varied by simultaneous tuning
the resistances R1, R4, R7.
Taking into account that Ω ≫ 1 one can simplify the

equations assuming that ui and w vary slowly on the
high-frequency period. Namely, we perform averaging in
the right-hand parts setting

sin(Ωτ + θi) cosΩτ = 1

2
sin θi (7)

and arrive at the equations

θ̇i = ui, u̇i = µui − νu3

i + w sin θi, i = 1, 2, 3,
ẇ = −γw − (u1 sin θ1 + u2 sin θ2 + u3 sin θ3).

(8)

Finally, supposing γ ≪ 1 we can neglect the respective
term in the last equation and to integrate it with substi-
tution of u1,2,3 from the first equation; then we obtain
w ≈ cos θ1 + cos θ2 + cos θ3, and the final result corre-
sponds exactly to the equations of Ref. [17]:

θ̈i = µθ̇i−νθ̇3i −(cos θ1+cos θ2+cos θ3) sin θi, i = 1, 2, 3.
(9)

Figure 3 shows a sample of the signal U1 copied from
the virtual oscilloscope screen when simulating the dy-
namics of the circuit in the NI Multisim software package,
and the spectrum obtained with the virtual spectrum an-
alyzer. Visually, the signal looks chaotic, without any
apparent repetition of forms. Continuous spectrum in-
dicates chaotic nature of the process. It is characterized
by slow decrease of the spectral density with frequency
and is of rather good quality in the sense of lack of pro-
nounced peaks and dips.
In a frame of the circuit simulation it is difficult to ex-

plore some characteristics, such as Lyapunov exponents,

therefore, we turn to comparison of the results with the
model (6), for which the relevant analysis in the compu-
tations can be performed. Using the component nomi-
nals indicated in the circuit diagram of Fig.2 and apply-
ing the conversion formulas to the dimensionless quan-
tities, we evaluate the parameters in the equations (6):
µ = 0.07497, ν = 1.73156, γ = 0.05, Ω = 20.1062. Fig-
ure 4 shows a plot of the dimensionless variable u1 versus
time obtained from the numerical integration of the equa-
tions (6) (a), and the Fourier spectrum (b). The scales
on the axes are chosen to provide correspondence with
Fig.3. Similar in form and characteristic scales are sam-
ples of time dependences and spectra obtained for the
models (8) and (9).

As one can see, the dynamics of the electronic device
are similar to the original geodesic flow on the surface of
negative curvature in the sense that the trajectories in
the space of coordinate variables (θ1,θ2,θ3) are close to
the Schwartz surface. This is illustrated in Fig.5, which
shows a trajectory found by numerical integration of the
equations for the model (6), and a diagram obtained from
data of circuit simulation in Multisim. To plot the last
one, the circuit was complemented by three special sig-
nal processing modules. The output signal of each of the
voltage controlled oscillators subjected to multiplication
by sinωt and cosωt, and after filtration and separation of
the low frequency components three pairs of the result-
ing signals (xk, yk), k=1,2,3 were recorded in a file for
subsequent processing. According to the recorded data,
at each time point three variables defined modulo 2π are
evaluated as θk = arg(xk + iyk), k=1,2,3, and respective
points are plotted. These diagrams can be compared with
Fig.1 for the geodesic flow on the surface of negative cur-
vature. Figure 5 shows that the trajectory remains close
to the Schwartz surface, though it is not located exactly
on it; the pictures are ”fluffed” in the transverse direc-
tion. This effect becomes more pronounced with increas-
ing parameter µ, as we move away from the critical point
of appearance of chaotic self-oscillations at µ = 0.

Figure 6 shows plots for all seven Lyapunov exponents
calculated using Benettin algorithm [10, 22, 23] for the
model (6) depending on the parameter µ. In the pre-
sented range of µ we have one positive exponent, other
two are close to zero, and the rest are negative. The
dependence on the parameter is smooth, without pro-
nounced peaks and dips, indicating the roughness of the
chaotic attractor. Note that in [17] special calculations
were carried out based on verification of the absence of
tangencies between stable and unstable subspaces of per-
turbation vectors nearby a typical trajectory on the at-
tractor for the model (9); it argues in favor of assumption
of the hyperbolic nature of the dynamics for the system
under consideration.

Particularly, at µ = 0.07497 the Lyapunov exponents
of the attractor are λ1 = 0.1421± 0.0012, λ2 = 0.0005±
0.0003, λ3 = 0.0000 ± 0.0002, λ4 = −0.0547 ± 0.0006,
λ5 = −0.0582 ± 0.0009, λ6 = −0.1382 ± 0.0004, λ7 =
−0.1591±0.0022, where errors indicated are the standard
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FIG. 2: Circuit diagram of the chaos generator in the Multisim software package. The current-voltage characteristic of the
nonlinear element with two parallel contrarily directed 1N1200C diodes is given approximately by the relation I ≈ αU +βU3=
0.0039U+0.035U3 , where the current is expressed in amperes and the voltage – in volts. Coefficient of frequency control for
V1, V2, V3 is k/2π=40 kHz/V.

FIG. 3: Voltage on capacitor C1 versus time in a sustained regime (a) and its power spectrum (b) as obtained by circuit
simulation in Multisim.

FIG. 4: Time dependence (a) and spectrum (b) of the variable u1 obtained from numerical integration of Eqs. (6).
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FIG. 5: Trajectories in the three-dimensional space
(θ1, θ2, θ3) for the model system (6) (a) and for the elec-
tronic device obtained from results of simulation in Multisim
according to the method described in the text (b).

deviations obtained under averaging data for 102 sam-
ples of duration τ=5·104. The averaged dimensionless
kinetic energy in this case according to the computations

is W = 1

2
(u2

1
+ u2

2
+ u2

3
) ≈ 0.0425, so, for the comparable

geodesic flow the Lyapunov exponents should be equal
to ±0.7

√
W ≈ ±0.144; that agrees well with λ1 and λ7

relating to the model (6).

Concluding, in this paper a construction of the elec-
tronic generator of rough chaos is proposed inspired by
the problem of the geodesic flow on a surface of nega-
tive curvature, which implements hyperbolic dynamics
of Anosov. An electron analog circuit simulation is pro-
vided in the NI Multisim software package. Also, the set
of equations is derived to describe the system, and com-
putational study of chaotic dynamics is performed on the

base of these equations. In contrast to the previously
considered electronic circuits with hyperbolic attractors
[10, 11, 24, 25], in this case the hyperbolic dynamics is
characterized by higher degree of uniformity in expansion
and compression for elements of the phase volume in the
course of evolution in continuous time. Thus, the gener-
ated chaos has rather good quality of the power spectral
density distributions.

FIG. 6: Lyapunov exponents of the system (6) depending on
the parameter of supercriticality µ.

Although the particular circuit described in the article
operates in the low frequency range (kHz), it seems pos-
sible to implement similar devices at high frequencies as
well.

Since the hyperbolic dynamics are characterized by
roughness, or structural stability, as the mathematically
proven attribute, it seems preferable for practical appli-
cations of chaos due to low sensitivity to parameter vari-
ations, various imperfections, noise, etc.
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