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In this article, we examine nonautonomous bifurcation patterns in nonlinear systems of impul-
sive differential equations. The approach is based on Lyapunov-Schmidt reduction applied to
the linearization of a particular nonlinear integral operator whose zeroes coincide with bounded
solutions of the impulsive differential equation in question. This leads to sufficient conditions
for the presence of fold, transcritical and pitchfork bifurcations. Additionally, we provide a com-
putable necessary condition for bifurcation in nonlinear scalar impulsive differential equations.
Several examples are provided illustrating the results.
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1. Introduction

Impulsive differential equations have become increasingly more relevant in applications in recent years.
Optimal control, mathematical biology and chemical kinetics applications abound [Church & Smith?, 2016;
Galbusera & Pasquali, 2015; Li, Feng & Wang, 2009; Zhao & Chen, 2009; Zhao, Yang & Chen, 2009], this
subfield of discontinuous dynamics has grown wide and has been the subject of a great deal of theoretical
research. However, research into bifurcation theory of impulsive systems has been modest. Although there
are numerous examples [Church & Smith?, 2016; Georgescu, Zhang & Chen, 2008; Zhao, Yang & Chen,
2009] of the techniques of autonomous bifurcation theory of discrete-time systems being applied to periodic
systems of impulsive differential equations, there are few elementary results that are suitable for general
aperiodic systems. Positive results in more general directions include [Akhmet & Kashkynbayev, 2013,
2016], in which the authors considered Bernoulli-type equations and studied bifurcation of solutions based
on notions of pullback stability and attraction, much in the same vein as Langa et. al [Langa, Robinson &
Suarez, 2002, 2006]. In [Akhmet & Kashkynbayev, 2013], the authors obtain linearized past-, forward-, and
all-time attractivity conditions for systems of impulsive differential equations and obtain some elementary
bifurcation results in the sense of nonautonomous bifurcations as pioneered by Rasmussen [Rasmussen,
2007] and others. Still another direction exploits Rabbinowitz global bifurcation theorems to describe the
global structure of solutions of impulsive boundary value problems [Liu, 2015; Niu & Yan, 2016; Liu &
O’Reagan, 2011], obtaining sufficient conditions for multiplicity of solutions and bifurcation points and
intervals.
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In the present article, we will focus our attention on the methods of static bifurcation theory. Recently
[Pötzsche, 2010], by means of Lyapunov-Schmidt reduction, abstract bifurcation conditions for differential
equations in Banach spaces have been determined under the assumption that, at the critical parameter,
the variational equation about a given reference solution of interest lacks an exponential dichotomy, but
posesses exponential dichotomies on half-lines. Our objective will be to extend this result to systems of
impulsive differential equations, although we choose to remain in the more concrete finite-dimensional
setting of Euclidean space (though one could certainly obtain analogous results in a Banach space setting).

The paper is organized as follows. In Section 2, we introduce some of the basic definitions and notation
that will be used throughout. Section 3 will be devoted to the introduction of a nonlinear integral operator
and its properties: namely, smoothness properties and the connection between its zeroes and solutions of
a given impulsive differential equation. Section 4 pertains to fundamental properties of the linearization of
the operator defined in Section 3. Namely, bifurcation points are characterized and Fredholm properties
are determined. Section 5 provides several sufficient conditions for classical bifurcation patterns. Section
6 contains an analytically precise necessary condition for bifurcation of bounded solutions in nonlinear
scalar systems, with some examples. The penultimate Section 7 contains examples of bifurcations in planar
systems that take advantage of the results from Section 5. We end (Section 8) with a conclusion.

2. Background

We begin by defining symbols and function spaces that will be seen throughout. The nonnegative real
numbers will be denoted R+, and the nonpositive real numbers by R−. | · | is the Euclidean norm on Rn,
|| · || is the induced operator norm, and ||f ||0 = supt∈R |f(t)| for a function f : R→ Rn. The symbols RL
and NL denote the range and kernel of a linear operator L. Ω will denote a convex open subset of Rn, Λ
an open subset of Rm. The interior of a set X is denoted X◦, and #X denotes the cardinality of X. For a
topological vector space V , the symbol V ∗ denotes its continuous dual.

Let τk be a real, increasing sequence unbounded on every compact set. Introduce the function space

PC(Ω) =
{
f : I → Ω | f is continuous except at times τk, where it is continuous
from the left and has limits on the right

}
The notation ḟ indicates the left-derivative of f . Next, introduce the spaces

BPC(Ω) = {f ∈ PC(R,Ω) : ||f ||0 <∞},
BPC1(Ω) = {f ∈ BPC(Ω) : ḟ ∈ BPC(Rn)}.

Then,

||f ||1 = max{||f ||0, ||ḟ ||0}

is a norm on BPC1(Ω). Also, we will denote BPC1 = BPC1(Rn). The space BPC(Rn) with the norm
|| · ||0 is complete [Akhmet, 2010], and it is a straightforward exercise to prove that the same holds for
BPC1 with the norm || · ||1.

Our object of interest will be an impulsive differential equation

ẋ = f(t, x, λ), t 6= τk

∆x = Jk(x, λ), t = τk,
(Eλ)

where f : R× Ω× Λ→ Rn, Jk : Ω× Λ→ Rn, and τk ∈ R is a strictly increasing real sequence of impulse
times that is unbounded on R+ and R−.

We will also be interested in homogeneous linear impulsive differential equations

ẋ = A(t)x, t 6= τk (1)

∆x = Bkx, t = τk, (2)

for A(t), Bk ∈ Rn×n. The transition operator is the unique matrix-valued function X(t, s), defined for
t ≥ s, such that x = X(t, s)xs is the unique solution of the initial-value problem x(s) = xs for (1)–(2)
defined on [s,∞]. We will say that X(t, s) is reversible if X(t, s)−1 exists for all t ≥ s. In this case, we
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write X(t, s)−1 = X(s, t). Note that, generally speaking, when A(t) is regular enough, X(t, s) is reversible
if and only if det(I +Bk)k∈Z 6= 0.

Definition 2.1. We say that the homogeneous impulsive differential equation (1)–(2), or X(t, s), has an
exponential dichotomy on I ⊆ R if there exist a projection P (t), satisfying X(t, s)P (s) = P (t)X(t, s)for
t ≥ s in I, and there exist constants K ≥ 1 and α > 0 such that

|X(t, s)P (s)| ≤ Ke−α(t−s), s ≤ t ∈ I
|X(s, t)[I − P (t)]| ≤ Ke−α(t−s), s ≤ t ∈ I.

It is well-known [Bainov & Simeonov, 1993; Kiskinov et. al, 2015] that if X(t, s) posesses an exponential
dichotomy, then so does the matrix Y (t, s) = X∗(s, t), which coincides with transition operator for the
adjoint system

ẏ = −A∗(t)y, t 6= τk (3)

∆y = −B∗k(I = B∗k)−1y, t = τk. (4)

We summarize this in the following proposition whose proof we omit.

Proposition 1. Let X(t, s) posess an exponential dichotomy on I with exponent α and projector P . Then
Y (t, s) = X∗(s, t) posesses an exponential dichotomy on I with exponent α and projector I−P ∗. Specifically,
we have the following:

|Y (t, s)[I − P ∗(s)]| ≤ Ke−α(s−t), s ≤ t ∈ I,
|Y (s, t)P ∗(t)| ≤ Ke−α(t−s), s ≤ t ∈ I.

Remark 2.1. The definition of exponential dichotomy assumes X(t, s) is reversible. The definition can be
modified so that an exponential dichotomy can be defined in the non-reversible case by imposing that the
restriction of X(t, s) to RP (s) is an isomorphism onto RP (t). Dichotomy properties are still carried over
to the adjoint matrix (generally, dual operator). See [Pötzsche, 2010] or [Ruan & Zhang, 2005] for the idea.

3. The solution operator

We begin by defining a formal integral operator whose zeroes will coincide with solutions of the impulsive
differential equation (Eλ). We begin with a definition.

Definition 3.1. Given an impulsive differential equation (Eλ), the (A,B)-augmented equation, for a con-
tinuous A(t) ∈ Rn×n and B = Bk∈Z, is the formal semilinear impulsive differential equation

ẋ = A(t)x+ f(t, x, λ), t 6= τk

∆x = Bkx+ Jk(x, λ), t = τk,
(Eλ)

with f = f − Ax and J = J − Bx. The associated homogeneous equation is the impulsive differential
equation

ẋ = A(t)x, t 6= τk

∆x = Bkx, t = τk,
(5)

and its transition operator is denoted X(t, s).

In the following sections, we will work with a fixed a pair (A,B), the augmented equation, and the
associated transition operator X(t, s) for the homogeneous equation. Define a formal nonlinear operator
H : BPC1(R,Ω)× Λ→ BPC1 by the following formula:

H : (φ, λ)[t] = φ(t)−

[∫ t

−∞
X(t, s)f(s, φ(s), λ)ds+

∑
τk<t

X(t, τ+k )Jk(φ(τk), λ)

]
. (6)

The following assumptions will be needed throughout.
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H0. A is continuous, supt∈R ||A(t)|| = ||A|| <∞, and X(t, s) has an exponential dichotomy on R with projec-

tion P = I. That is, there exists K ≥ 1 and α > 0 such that |X(t, s)| ≤ Ke−α(t−s) for t ≥ s.
H1. Let m ∈ N, and suppose f : R×Ω×Λ→ X and Jk : Ω×Λ→ X are continuous and the partial derivatives

Dj
(2,3)f and Dj

(1,2)Jk are continuous, for 0 ≤ j ≤ m and k ∈ Z, and that they satisfy the following continuity

and boundedness conditions for all bounded C ⊆ Ω:

sup
t∈R

sup
u∈C

∣∣∣Dj
(2,3)f(t, u, λ)

∣∣∣ <∞, sup
k∈Z

sup
u∈C
|Dj

(1,2)Jk(u, λ)| <∞, λ ∈ Λ,

and for all λ∗ ∈ Λ and ε > 0, there exists δ > 0 such that ||u− u||0 < δ implies∣∣∣∣∣∣Dj
(2,3)f(t, u, λ)−Dj

(2,3)(t, u, λ)
∣∣∣∣∣∣
0
< ε, and

∣∣∣∣∣∣Dj
(1,2)Jk(u, λ)−Dj

(1,2)Jk(u, λ)
∣∣∣∣∣∣
0
< ε,

for all u, u ∈ Ω and λ ∈ Bδ(λ∗).
H2. There exists b > 0 such that τk+1 − τk ≥ b for all k ∈ Z.

Our first results concern the well-definition of the operator H and its smoothness. To begin, define the
formal derivatives, for integers j ∈ {0, . . . ,m},

Gj(φ, λ)[X] =

∫ t

−∞
Φ(t, s)Dj

(2,3)f(s, φ(s), λ)X(s)ds+
∑
τk<t

Φ(t, τ+k )Dj
(1,2)Jk(φ(τk), λ)X[τk] (7)

and the formal partial derivatives, for v = (v1, v2) ∈ N2
0 with v1 + v2 ≤ m,

Gv(φ, λ)[X] =

∫ t

−∞
Φ(t, s)Dv1

2 D
v2
3 f(s, φ(s), λ)X[s]ds+

∑
τk<t

Φ(t, τ+k )Dv1
1 D

v2
2 Jk(φ(τk), λ)X[τk], (8)

where X represents an element of an appropositionriate product space of the form Lj(BPC
1(Ω)×Λ, BPC1)

or Lv1(BPC1(Ω), Lv2(Λ, BPC1)), and for an operator L acting on one of these spaces, we denote LX(s) =
(LX)(s) for the post-operarational evaluation in BPC1.

Lemma 1. Under conditions H0–H2, the operators

Gj : BPC1(R,Ω)× Λ→ (Lj(BPC
1 × Λ, BPC1)

Gv : BPC1(R,Ω)× Λ→ Lv1(BPC1, Lv2(Λ, X))

are well-defined and continuous.

Proof. In the following, we will suppress the variable X appearing in equations (7) and (8). Also, we prove
only the result for Gj and integers j. First, we prove that Gj is well-defined. For each t ∈ R, we have

|Gj(φ, λ)[t]| ≤
∫ t

−∞
|X(t, s)Dj

(2,3)f(s, φ(s), λ)|ds+
∑
τk<t

|X(t, τ+k )Dj
(1,2)Jk(φ(τk), λ)|

≤
∫ t

−∞
Ke−α(t−s)c1ds+

∑
τk<t

Ke−α(t−τk)c2

≤ Kc1
α

+
Kc2

1− e−αb

c1 and c2 are finite constants guaranteed by hypothesis H1, K and α are as in H0, and b is as defined in
H2. and we have assume without loss of generality that τk is an unbounded sequence of impulses. It follows
that the integrals and sums defining Gj are absolutely integrable and summable, so t 7→ Gj(φ, λ)[t] indeed
exists. Moreover, Gj(φ, λ) is globally bounded. One can prove by similar estimations that it is continuous.



April 18, 2018 13:33 ChurchLiu-bifurcations-bounded

Bifurcation of bounded solutions of impulsive differential equations 5

Next, we prove that Gj(φ, λ) ∈ BPC1. Existence of the left derivative is fully justified by hypothesis
H1 and the properties of the fundamental matrix X(t, s). In particular, we have

d

dt
Gj(φ, λ)[t] = Dj

(2,3)f(t, φ(t), λ) + A(t)Gj(φ, λ)[t], (9)

and due to boundedness of A(t) guaranteed by assumption (H4), we conclude that Gj(φ, λ) ∈ BPC1.
We now prove continuity of (φ, λ) 7→ Gj(φ, λ). Let ε and δ be as in H1. We find∣∣∣∣Gj(φ, λ)−Gj(ψ, µ)

∣∣∣∣
0
≤ sup

t∈R

∫ t

−∞

∣∣X(t, s)[Djf(s, φ(s), λ)−Djf(s, ψ(s), µ)]
∣∣ ds

+ sup
t∈R

∑
τk<t

∣∣X(t, τ+k )[DjJk(φ(τk), λ)−DjJk(ψ(τk), µ)]
∣∣

≤ sup
t∈R

(∫ t

−∞
Ke−α(t−s)εds+

∑
τk<t

Ke−α(t−τk)ε

)

≤ εK
(

1

α
+

1

1− e−αb

)
:= εC

Also, ∣∣∣∣∣∣∣∣ ddtGj(φ, λ)− d

dt
Gj(ψ, µ)

∣∣∣∣∣∣∣∣
0

≤ sup
t∈R

(
|Dj

(2,3)f(t, φ(t), λ)−Dj
(2,3)f(t, ψ(t), µ)|

+ |A(t)| · |Gj(φ, λ)[t]−Gj(ψ, µ)[t]|
)

≤ ε+ ||A|| · ||Gj(φ, λ)−Gj(ψ, λ)||0
≤ ε(1 + ||A||C)

Therefore, Gj is continuous. �

Corollary 3.1. Let hypotheses H0–H2 be satisfied. The operator H defined in equation (6) is well-defined
and continuous.

Proposition 2. Let hypotheses H0–H2 be satisfied. The operator G : BPC(Ω)×Λ→ BPC is well-defined
and m-times continuously differentiable on BPC(Ω)◦ × Λ, with partial derivatives

DvG(φ, λ) = Gv(φ, λ).

Proof. We know that each of the operators Gv is well-defined and continuous for v = (v1, v2), v1 +v2 ≤ m,
due to Lemma 1. We prove only that DjG = Gj for integers j ∈ {0, . . . ,m− 1}, since the result pertaining
to partial derivatives then follows by definition of Frechet differentiability.

Let φ∗ ∈ BPC1(Ω)◦, let λ, λ∗ ∈ Λ, and let φ ∈ BPC1 be small enough so that φ∗ + hφ ∈ BPC1(Ω)◦

for all h ∈ [0, 1]. For each j ∈ {0, . . . ,m− 1}, define the remainder

rj(φ, λ) = sup
h,s∈[0,1]

||F j+1(φ∗ + hφ, λ∗ + hλ)− F j+1(φ∗, λ∗)||0 + ||J j+1(φ∗ + sφ, λ∗ + sλ)− J j+1(φ∗, λ∗)||Z0 ,

where F j(φ, λ)[t] = Dj
(2,3)f(t, φ, λ) and J j(φ, λ)[k] = Dj

(1,2)Jk(φ(τk), λ). Continuity of F j+1 and J j+1 are

guaranteed by hypothesis H1, so we have that rj(φ, λ) → 0 as (φ, λ) → 0. By the mean-value theorem
[Lang, 1993] ∣∣∣F j(φ∗ + φ, λ∗ + λ)[t]− F j(φ∗, λ∗)[t]− F j+1(φ∗, λ∗)[t]

[
φ λ

]T ∣∣∣
≤
∫ 1

0

∣∣F j+1(φ∗ + hφ, λ∗ + hλ)[t]− F j+1(φ∗, λ∗)[t]
∣∣ dh ∣∣∣[φ λ ]T ∣∣∣

≤ rj(φ, λ)
∣∣∣[φ λ ]T ∣∣∣ ,
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and similarly,

|DjJk(φ
∗ + φ, λ∗ + λ)−DjJk(φ

∗, λ∗)−Dj+1Jk(φ
∗, λ∗)[φ(τk) λ ]T | ≤ rj(φ, λ)

∣∣[φ λ ]T
∣∣ .

By passing to suprema in t and k,∣∣∣∣∣∣Gj(φ∗ + φ, λ∗ + λ)−Gj(φ∗, λ∗)−Gj+1(φ∗, λ∗)
[
φ λ

]T ∣∣∣∣∣∣
0

≤ sup
t∈R

(∫ t

−∞
Ke−r(t−s)ds+

∑
τk<t

Ke−r(t−τk)

)
rj(φ, λ) max{||φ||, ||λ||}

≤ K
(

1

α
+

1

1− e−αb

)
rj(φ, λ)||(φ, λ)||1.

On the other hand, we have∣∣∣Dj ḟ(t, φ∗ + φ, λ∗ + λ)−Dj ḟ(t, φ∗, λ∗)−Dj+1ḟ(t, φ∗, λ∗)
[
φ λ

]T ∣∣∣
≤
∫ 1

0

∣∣∣Dj+1ḟ(t, φ∗ + hφ, λ∗ + hλ)−Dj+1ḟ(t, φ∗, λ∗)
∣∣∣ dh ∣∣∣[φ λ ]T ∣∣∣

≤ rj(φ, λ)
∣∣∣[φ λ ]T ∣∣∣ .

Using equation (9), we can obtain

d

dt

(
Gj(φ∗ + φ, λ∗ + λ)−Gj(φ∗, λ∗)−Gj+1(φ∗, λ∗)[φ λ ]T

)
= F j(φ∗ + φ, λ∗ + λ)[t]− F j(φ∗, λ∗)[t]− F j+1(φ∗, λ∗)[t]

[
φ λ

]T
+ A(t)

(
Gj(φ∗ + φ, λ∗ + λ)−Gj(φ∗, λ∗)−Gj+1(φ∗, λ∗)

[
φ λ

]T)
.

Consequently,∣∣∣∣∂tGj(φ∗ + φ, λ∗ + λ)− ∂tGj(φ∗, λ∗)− ∂tGj+1(φ∗, λ∗)
[
φ λ

]T ∣∣∣∣
0
≤ Crj(φ, λ)||(φ, λ)||1,

where C =
(
1 + ||A||0K

(
α−1 + (1− e−αb)−1

))
. We conclude that Gj is differentiable and D(2,3)G

j = Gj+1,
as required. �

Finally, we arrive at our smoothness result for the operator H, which is a direct corollary of the above
lemma.

Corollary 3.2. Under hypotheses H0–H2, the operator H : BPC1(Ω) × Λ → BPC1 defined in (6) is
m-times continuously differentiable on BPC1(Ω)◦ × Λ.

We have a result concerning the solutions of the impulsive differential equation (Eλ) and zeroes of the
operator H.

Theorem 1. Let λ ∈ Λ. Suppose hypotheses H0–H2 hold. φ : R → Ω is a bounded, complete solution of
(Eλ) if and only if

H(φ, λ) = 0 (10)

for the operator H : BPC1(Ω)× Λ→ BPC1 defined in (6).

Proof. Suppose φ ∈ BPC1(Ω) is a complete solution of solves (Eλ). Then, φ is a complete solution of
(Eλ), and so by the variation of constants formula, the following is valid for t ≥ y:

φ(t) = X(t, y)φ(y) +

∫ t

y
X(t, s)f(s, φ(s), λ)ds+

∑
y≤τk<t

X(t, τ+k )Jk(φ(τk), λ).
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The left-hand side is independent of y, and φ(y) is bounded as y → −∞. Therefore, taking the aforemen-
tioned limit, assumption H0 and Corollary 3.1 imply that φ(t) = H(φ, λ)[t] for all t ∈ R, so that equation
(10) is satisfied.

Conversely, if φ satisfies equation (10), taking time derivatives on both sides of the equation shows
that φ satisfies the differential equation of (Eλ) at times t 6= τk ∈ R, and satisfies the difference equation at
times τk. Therefore, φ satisfies (Eλ) and, similarly, (Eλ), and is therefore a complete solution, as claimed.
�

We conclude with a remark concerning the partial derivative in the variable φ of the operator H at a
given λ ∈ Λ and reference solution φ ∈ BPC1(R,Ω)◦. Specifically, the partial derivative is

D1H(φ, λ)ψ[t] = ψ(t)−
∫ t

−∞
X(t, s)D2f(s, φ(s), λ)ψ(s)ds−

∑
τk<t

X(t, τ+k )D1Jk(φ(τk), λ)ψ(τk). (11)

If ψ ∈ N (D1H(φ, λ)), one can verify by taking derivatives of D1H(φ, λ)ψ[t] = 0 that ψ is a solution of the
variational equation for (Eλ) about the solution φ:

ψ̇ = [A(t) +D2f(t, φ(t), λ)]ψ, t 6= τk

∆ψ = [Bk +D1Jk(φ(τk, λ)]ψ, t = τk.
(Vλ,φ)

By construction, the above coincides with the variational equation for (Eλ) about the reference solution φ:

ψ̇ = [D2f(t, φ(t), λ)ψ, t 6= τk

∆ψ = D1Jk(φ(τk, λ)ψ, t = τk.
(Vλ,φ)

4. Fredholm properties of the linearized solution operator

This section is organized as follows. First, we define bifurcation points and hyperbolicity of solutions. Fol-
lowing this, we prove that a lack of exponential dichotomy (nonhyperbolicity) always occurs at a bifurcation
point. Then, at those parameter values λ∗ and solutions φ∗ where a bifurcation could occur, we establish
conditions under which the operator D1H(φ∗, λ∗) is Fredholm, computing the index and characterizing
various important subspaces of BPC1 that will be relevant after.

4.1. Bifurcation points

The material in this section follows loosely the presentation of [Pötzsche, 2010]. We begin with a few
definitions.

Definition 4.1. Let (φ∗, λ∗) ∈ BPC1 × Λ. We will say (Eλ) bifurcates at λ = λ∗ along φ∗, or simply φ∗

bifurcates at λ∗, if there exist a sequence λn ∈ Λ with λn → λ∗ such that (Eλn) has two distinct bounded
complete solutions φ1(λn) and φ2(λn), satisfying

lim
n→∞

φ1(λn) = lim
n→∞

φ2(λn) = φ∗,

with convergence in BPC1.

Definition 4.2. Given λ∗ ∈ Λ, a bounded complete solution φ∗ of (Eλ∗) is hyperbolic if the variational
equation (Vλ∗,φ∗) admits an exponential dichotomy on R. Otherwise, φ∗ is nonhyperbolic.

Proposition 3. Let hypotheses H1–H2 be satisfied. If a bounded complete solution φ∗ bifurcates at λ∗, then
φ∗ is nonhyperbolic.

Proof. Choose a uniformly bounded pair (A,B) for which hypothesis H0 is satisfied, and define the oper-
ator H with respect to the associated augmented system (Eλ). Then, for this system, hypotheses H0–H2
are satisfied and any statement regarding solutions of (Eλ) apply to solutions of (Eλ) and vice versa.
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Proceeding by contrapositive, we consider the map L = D1H(φ∗, λ∗) : BPC1 → BPC1 and prove that
if φ∗ has an exponential dichotomy, then L is a Banach space isomorphism. Invoking the implicit function
theorem will then demonstrate that φ∗ does not bifurcate at λ∗.

By the bounded inverse theorem, it suffices to prove that L is a bounded bijection. Boundedness follows
by Corollary 3.2. To begin, we show that L is injective. If Lψ = 0, then ψ satisfies the variational equation
(Vφ∗,λ∗). Thus, if V (t, s) is the evolution operator of (Vφ∗,λ∗), then ψ satisfies the equation ψ(t) = V (t, s)ψ(s)
for all t ≥ s. By exponential dichotomy,

P (t)ψ(t) = P (t)V (t, s)ψ(s) = V (t, s)P (s)ψ(s),

which implies |P (t)v(t)| ≤ Ke−α(t−s)|ψ(s)| for all t ≥ s. Since ψ is bounded, taking s → −∞, produces
the bound |P (t)ψ(t)| ≤ 0 for all t ∈ R, which shows ψ ∈ N (P ). Applying V (s, t) = V −1(t, s) to both sides
of ψ(t) = V (t, s)ψ(s) produces ψ(s) = V (s, t)ψ(t), which holds for all t ≥ s. Finally, since ψ ∈ N (P ), we
have [Id− P ]ψ = ψ, and so

ψ(s) = V (s, t)ψ(t) = V (s, t)[Id− P (t)]ψ(t),

which implies |ψ(s)| ≤ Keα(s−t)|ψ(t)| for all t ≥ s. With boundedness of ψ, taking the limit t → ∞
produces the bound |ψ(s)| ≤ 0, which holds for all s ∈ R. Therefore, ψ = 0, proving that L is injective.

We now prove that L is surjective. We must prove that for all ψ ∈ BPC1, there exists γ ∈ BPC1 such
that Lγ = ψ. Since an element of BPC1 is uniquely determined by its derivative in each interval [τk, τk+1),
its discontinuities at times τk, and a given initial condition, it suffices to find a solution in BPC1 of the
impulsive differential equation

γ′(t) =
d

dt
Lγ[t] + ψ′(t), t 6= τk

∆γ(τk) = ∆Lγ[τk] + ∆ψ(τk) t = τk,

where Lγ = γ − Lγ for the linear integral-sum operator L appearing in (11). It can be verified that the
above impulsive differential equation is equivalent to the following:

γ′ = [A(t) +D2f(t, φ∗(t), λ)]γ + (ψ′ −A(t)ψ), t 6= τk

∆γ = [Bk +D1Jk(φ
∗(τk), λ

∗)]γ + (∆ψ −Bkψ), t = τk.
(12)

The associated homogeneous equation to (12) is precisely (Vφ∗,λ∗) which, by assumption, posesses an
exponential dichotomy with exponent α. Introduce the function

γ(t) =

∫ ∞
0

G(t, s)[ψ′(s)−A(s)ψ(s)]ds+
∞∑

j=−∞
G(t, τ+j )[∆ψ(τj)−Bjψ(τj)],

G(t, s) =

{
V (t, s)P (s), t > s
−V (t, s)[Id− P (s)], t ≤ s,

whose definition is inspired by a similar construction appearing in [Kiskinov et. al, 2015]. Using the prop-
erties of exponential dichotomy, it is easily verified that γ ∈ BPC1, and that γ satisfies the impulsive
differential equation (12). By the above discussion, γ satisfies Tγ = ψ. Therefore, T = D1H(φ∗, λ∗) is a
bounded linear bijection, and the proposition is proved. �

4.2. Fredholm properties of the linearized solution operator

The main result of this section concerns the Fredholm index of the linearized solution operator,
D1H(φ∗, λ∗), when the variational equation (Vφ∗,λ∗) posesses exponential dichotomies on the half-lines
(−∞, 0] and [0,∞). For full generality (and also to simplify the notation), we will present the result for an
arbitrary linear impulsive system (L):

x′ = L(t)x, t 6= τk

∆x = Mkx, t = τk,
(L)
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and the associated adjoint equation

y′ = −L∗(t)y, t 6= τk

∆y = −[(I +Mk)
−1]∗M∗ky, t = τk.

(L∗)

Consider the solution operator L : BPC1 → BPC1 defined as follows:

Lψ = ψ −
∫ t

−∞
X(t, s)[L(s)−A(s)]ψ(s)ds−

∑
τk<t

X(t, τ+k )[Mk −Bk]ψ(τk), (13)

where X(t, s) is, once again, the transition operator associated to (5). Note that if (L)=(Vλ,φ), then
L = D1H(φ∗, λ∗). We will derive conditions under which L is Fredholm, and we will compute the index.
This will be done through a series of lemmas.

Lemma 2. Let (L) be reversible and posess exponential dichotomies on (−∞, 0] and [0−,∞). If g ∈ imL,
then for all bounded solutions ψ ∈ BPC1 satisfying the adjoint equation (L∗), we have

F(ψ, g) :=

∫ ∞
−∞
〈ψ(t), ġ(t)−A(t)g(t)〉dt+

∑
k∈Z
〈ψ(τ+k ),∆g(τk)−Bkg(τk)]〉 = 0. (14)

Proof. By Proposition 1, if (L) has exponential dichotomies on half-lines (−∞, 0] and [0,∞) with pro-
jectors P− and P+, then so does the adjoint equation (L∗), with projectors Id − P ∗− and Id − P ∗+. The
dichotomy properties then imply that if ψ ∈ BPC1 solves the adjoint equation, then we must have ψ(t)→ 0
exponentially as |t| → ∞.

Now, suppose Lx = g for some x ∈ BPC1. Differentiating both sides and examining discontinuities at
impulse times, we find

ẋ(t)− L(t)x = ġ(t)−A(t)g, t 6= τk

∆x−Mkx = ∆g −Bkg, t = τk.
(15)

With the above equalities at hand, we compute∫ ∞
−∞
〈ψ, ġ −Ag〉dt =

∑
k∈Z

∫ τk+1

τ+k

〈ψ, ẋ− Lx〉dt

=
∑
k∈Z

∫ τk+1

τ+k

〈ψ, ẋ〉 − 〈L∗ψ, x〉dt

=
∑
k∈Z

∫ τk+1

τ+k

〈ψ, ẋ〉+ 〈ψ̇, x〉dt

=
∑
k∈Z

∫ τk+1

τ+k

d

dt
〈ψ, x〉dt

=
∑
k∈Z
〈ψ(τk+1), x(τk+1)〉 − 〈ψ(τ+k ), x(τ+k )〉,

(16)

〈ψ(τk),∆g(τk)−Bkf(τk)〉 = 〈ψ(τk),∆x(τk)〉 − 〈ψ(τk),Mkx(τk)〉
= 〈ψ(τk),∆x(τk)〉+ 〈∆ψ(τk), (I +Mk)x(τk)〉,

which implies

〈ψ(τ+k ),∆f(τk)−Bkf(τk)〉 = 〈ψ(τk) + ∆ψ(τk),∆x(τk)−Mkx(τk)〉
= 〈∆ψ(τk) + ψ(τk),∆x(τk)〉+ 〈∆ψ(τk), x(τk)〉
= 〈ψ(τ+k ),∆x(τk)〉+ 〈∆ψ(τk), x(τk)〉
= 〈ψ(τ+k ), x(τ+k )〉 − 〈ψ(τ+k ), x(τk)〉+ 〈∆ψ(τk), x(τk)〉
= 〈ψ(τ+k ), x(τ+k )〉 − 〈ψ(τk), x(τk)〉.

(17)
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Substituting (16) and (17) into (14), we have

F(ψ, g) =
∑
k∈Z
〈ψ(τk+1), x(τk+1)〉 − 〈ψ(τk), x(τk)〉

= lim
k,j→∞

〈ψ(τk), x(τk)〉 − 〈ψ(τ−j), x(τ−j)〉.

The above limit is zero because of the exponential decay of ψ, along with boundedness of x. Therefore,
F(ψ, g) = 0, as claimed. �

The following is a converse of the above lemma.

Lemma 3. Let (L) be reversible and possess exponential dichotomies on (−∞, 0] and [0,∞). If for some
g ∈ BPC1, the operator F defined in (14) satisfies F(ψ, g) = 0 for all bounded solutions ψ of the adjoint
equation (L∗), then g ∈ R(L).

Proof. Let P and Q denote the projection-valued operators for exponential dichotomies on [0,∞) and
(−∞, 0] respectively. Denote P0 = P (0), Q0 = Q(0), and similar for their adjoints. Since (L) is reversible
and has Cauchy matrix X(t, s), we have X(t, s) = X(t, 0)X−1(s, 0) := X(t)X−1(s), and Y (t) := V −1(t)∗

is a fundamental matrix solution of the adjoint equation. Without loss of generality, let X(0) = Id. Let
η ∈ Rn satisfy η∗(P0 − (Id−Q0)) = 0, and consider the function

ψ̃(t) =

{
Y (t)(I − P ∗0 )η, t ≥ 0
Y (t)Q∗0η, t < 0

Recall that the adjoint equation to (L∗) has an exponential dichotomy on [0,∞) with projector I − P ∗,
and on (−∞, 0] with projector I−Q∗. From this, it follows that ψ is bounded. Also, since Q∗η = (I−P ∗)η
due to the definition of η, we have ψ̃(t) = Y (t)Q∗η for all t ∈ R, meaning that ψ̃ is a solution of the adjoint
equation. Define

G1(s) =

{
Q0X

−1(s), s ≤ 0
(Id− P0)X

−1(s), s > 0

Notice that ψ̃∗(t) = η∗G1(t). Then, one finds

η∗

[∫ ∞
−∞

G1(s)[ġ(s)−A(s)g(s)]ds+
∑
k∈Z

G1(τ
+
k )[∆g(τk)−Bkg(τk)]

]
= F(ψ̃, g),

which, by assumption, is zero. By the Fredholm Alternative theorem, there exists ξ ∈ X such that

[P − (Id−Q)]ξ =

∫ ∞
−∞

G1(s)[ġ(s)−A(s)g(s)]ds+
∑
k∈Z

G1(τ
+
k )[∆g(τk)−Bkg(τk)].

Assume without loss of generality that τ0 = 0. Define the following:

x(t) =


X(t)Pξ +

∫ ∞
0

G2(t, s)[ġ −Ag](s)ds+
∑
k≥0

G2(t, τ
+
k )[∆gk −Bkgk], t > 0

X(t)(Id−Q)ξ +

∫ 0

−∞
G2(t, s)[ġ −Ag](s)ds+

∑
k<0

G2(t, τ
+
k )[∆gk −Bkgk], t ≤ 0,

G2(t, s) =


X(t)PX−1(s), 0 ≤ s ≤ t
−X(t)(Id− P )X−1(s), 0 ≤ t < s
X(t)QX−1(s), s ≤ t ≤ 0
−X(t)(Id−Q)X−1(s), t < s ≤ 0.
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It is readily verified that x is a solution (15). Moreover, it is bounded. Indeed, if we set h = ġ −Ag, then
for for t > 0 we have∣∣∣∣∫ ∞

0
G2(t, s)h(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0
X(t)PX−1(s)h(s)ds

∣∣∣∣+

∣∣∣∣∫ ∞
t

X(t)(Id− P )X−1(s)h(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0
PX(t, s)h(s)ds

∣∣∣∣+

∣∣∣∣∫ ∞
t

(Id− P )X(t, s)h(s)ds

∣∣∣∣
≤
∫ t

0
Ke−α(t−s)|h(s)|ds+

∫ ∞
t

Keα(t−s)|h(s)|ds

≤ 2K

α
||h||∞ <∞.

Similarly, one can show that the summation term is bounded for t > 0, and that x(t) is bounded for t ≤ 0.
Therefore, x ∈ BPC1 and, in particular, Lx = g, so that g ∈ R(L), as required. �

Theorem 2. Let (L) be reversible and posess exponential dichotomies on (−∞, 0] and [0−,∞). The fol-
lowing are true.

• g ∈ R(L) if and only if F(ψ, g) = 0 for all ψ ∈ BPC1 satisfying (L∗).
• The operator L is Fredholm.

If, in addition, the homogeneous equation (5) (with fundamental matrix X(t, s)) posesses an exponential
dichotomy on R, then the index of L is

indL = dim(S ∩ U)− dim(S⊥ ∩ U⊥),

where S = R(P0), U = N (Q0), and P is the projector on [0,∞) while Q is the projector on (−∞, 0] for
(L), P0 = P (0) and Q0 = Q(0).

Proof. The first propositionerty characterizing R(L) follows by lemma 2 and lemma 3. Therefore, we begin
by showing that R(L) is closed and has finite codimension. To begin, notice that if ψ is a bounded solution
of the adjoint equation (L∗), then ψ(0) ∈ S⊥ ∩ U⊥; this can be seen as follows. First, it is clear that
S⊥ = R(I − P ∗0 ) and U⊥ = R(Q∗0). Then, by definition of exponential dichotomies, one can see that if
ψ0 ∈ S⊥ ∩ U⊥, then Y (t)ψ0 is a bounded solution of the adjoint equation (L∗), where Y (t) = X∗(t)−1

is a fundamental matrix for the adjoint equation. In particular, all bounded solutions are of this form1.
This establishes an isomorphism between the bounded solutions of (L∗) and S⊥ ∩ U⊥. We will now abuse
notation and identify a bounded solution ψ of the adjoint equation with an element of S⊥ ∩ U⊥ by said
isormorphism. Define the linear map F : S⊥ ∩ U⊥ → (BPC1)∗ by

F(ψ)[f ] = F(ψ, f). (18)

It follows that F(S⊥ ∩U⊥) is finite-dimensional, and by the characterization of R(L), we have that R(L)
is annihilated by some finite-dimensional subspace of F(S⊥∩U⊥). Therefore, R(L) is closed and has finite
codimension, so L is Fredholm.

Suppose (5) has an exponential dichotomy on R. Let F(ψ) = 0 for some bounded solution of (L∗).
Then, the same proof as in Proposition 3 guarantees the existence of a unique µ ∈ BPC1 such that

µ̇−A(t)µ = ψ, t 6= τk

∆µ−Bkµ(τk) = ψ(τ+k ), t = τk.

But then, we have

F [ψ](µ) =

∫ ∞
−∞
〈ψ,ψ〉dt+

∑
k∈Z
〈ψ(τ+k ), ψ(τ+k )〉 = 0,

1This can be seen by noticing that exponential dichotomy with projection-valued operator P for the fundamental matrix X
implies inequalities of the form |X(t)P (0)ξ| ≤ Ke−α(t−s)|X(s)P (0)ξ| for all s ≤ t and ξ ∈ X.
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which implies that ψ = 0, so F is injective, defining an isomorphism onto its range. Consequently, R(F) ∼
S⊥ ∩ U⊥ annihilates R(L), and we obtain that

codimR(L) = dimR(F) = dimS⊥ ∩ U⊥.

By definition, the index of L is dimN (L) − codimR(L). The rest of the proof follows the same lines
as the proof of the orthogonality theorem appearing in [Palmer, 1984] and is omitted. �

Note that assumption H0 implies that (5) posesses an exponential dichotomy on R with projector
P = I, so the final assumption of Theorem 2 concerning X(t, s) holds whenever H0 does, if one is con-
sidering (L)=(Vλ,φ). With the above theorem, we now state the appropositionriate result for the operator
D1H(φ∗, λ∗). First, some additional assumptions.

H3. Let q, r ∈ N and λ∗ ∈ Λ be given. (Eλ∗) admits a complete permanent2 solution φ∗ ∈ BPC1(R,Ω) such
that the variational equation (Vλ∗,φ∗) admits an exponential dichotomy on both [0,∞) and (−∞, 0] with
respective projectors P and Q satisfying

R(P0) ∩N (Q0) = span{ξ1, . . . , ξp}
(R(P0)⊕N (Q0))

⊥ = span{ξ′1, . . . , ξ′r}

and linearly ndependent vectors ξ1, . . . , ξq ∈ X and ξ′1, . . . , ξ
′
r ∈ X ′.

H4. (Vλ∗,φ∗) is reversible.

Proposition 4. If (H1)–(H6) hold, the linear operator D1H(φ∗, λ∗) : BPC1 → BPC1 is Fredholm of index
p− r and one has, up to isomorphism,

N (D1H(φ∗, λ∗)) = span{Vλ∗ξ1, . . . , Vλ∗ξp}
N
(
D1H(φ∗, λ∗)′

)
∼ span{Yλ∗ξ′1, . . . , Yλ∗ξ′r},

N
(
D1H(φ∗, λ∗)′

)
= span{F [Yλ∗ξ

′
1], . . . ,F [Yλ∗ξ

′
r]}

(19)

where Vλ∗ is the fundamental matrix solution of (Vλ∗,φ∗) satisfying Vλ∗(0) = I, Yλ∗ = (V −1λ∗ )′ is the
fundamental matrix of the adjoint system to (Vλ∗,φ∗), and F is as defined in (18). The elements of the
above spans are linearly independent.

Proof. That L = D1H(φ∗, λ∗) is Fredholm under assumptions (H1)–(H6) follows directly by Theorem 2.
As for the index, denote S = R(P0) and U = N (Q0) as in the proof of Theorem 2. By assumption (H5),
we have

dim(S ∩ U) = dim(R(P0) ∩N (Q0)) = p,

and also,

dim(S⊥ ∩ U⊥) = dim([[S⊥ ∩ U⊥]⊥]⊥)

= dim([(S⊥)⊥ ⊕ (U⊥)⊥]⊥)

= dim([S ⊕ U ]⊥)

= dim([R(P0)⊕N (Q0)]
⊥)

= r

so that ind(L) = p−r. The assertions concerning (19) are proven as follows. Recall that N (L) consists of all
bounded solutions of the variational equation (Vλ∗,φ∗). Any bounded solution y = Vλ∗y(0) of the variational
equation must have an initial condition y(0) ∈ S ∩ U3. By hypothesis (H5), y(0) ∈ span{ξ1, . . . , ξp}, and
since the ξi are linearly independent, the first equality of (19) is proven.

2φ ∈ BPC1(R,Ω) is permanent if inft∈R dist(φ(t), ∂Ω) > 0.
3The proof of this assertion is essentially the same as the proof that a bounded solution of the adjoint equation must have an
initial condition on S⊥ ∩ U⊥; see the proof of Theorem 2.
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For the second and third equalities, recall that we have N (L′) = R(L)⊥. By the proof of Theorem 2,

R(L)⊥ = R(F) = F(S⊥ ∩ U⊥) ∼ S⊥ ∩ U⊥ = (S ⊕ U)⊥,

and since S⊥∩U⊥ is isomorphic to the space of bounded solutions of (L∗) (in this case, the adjoint equation
associated to the variational equation), we obtain the result claimed. �

4.3. Construction of Lyapunov-Schmidt Projectors

With Theorem 4 at hand, we will construct the Lyapunov-Schmidt projectors associated to the Fredholm
operator L = D1H(φ∗, λ∗). First, define P ∈ L(BPC1) by

Px =

p∑
i=1

〈η′i, x(0)〉Vλ∗ξi, (20)

where η′1, . . . , η
′
q ∈ X ′ are such that 〈η′i, ξj〉 = δi,j for 1 ≤ i, j ≤ q. By construction, P is a bounded projection

onto N (L). For the projection Q ∈ L(BPC1) onto R(L), the construction is a bit more complicated, and
we require a few lemmas.

Lemma 4. Let ω ∈ BPC1(0,∞) be a function such that ωV ′λ∗ is bounded and normalized, in the sense
that ∫

R
ω(s)ds+

∑
k∈Z

ω(τk) = 1.

Then, there exist f1, . . . , fr ∈ BPC1 such that F [Yλ∗ξ
′
i](fj) = δi,j for 1 ≤ i, j ≤ r. Specifically, fj is a

solution of the impulsive differential equation

ḟj −A(t)fj = ωV ′λ∗ηj , t 6= τk

∆fj −Bkfj(τk) = ω(τk)V
′
λ∗(τ

+
k )ηj , t = τk,

(21)

where the ηj are chosen so that 〈ξ′i, ηj〉 = δij.

Proof. By assumption, since ωV ′λ∗ is bounded, exponential dichotomy of the homogeneous equation (5)
guarantees the existence of functions fj ∈ BPC1 satisfying the impulsive differential equation given in the
statement of the lemma. Then, by definition of F , the vectors ηj and duality, we have

F [Yλ∗ξ
′
i](fj) =

∫
R
〈Yλ∗ξ′i, V ′λ∗ηjω〉ds+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i, V

′
λ∗(τ

+
k )ηjω(τk)〉

=

∫
R
〈Yλ∗Vλ∗ξ′i, ηj〉ωds+

∑
k∈Z
〈Yλ∗(τ+k )Vλ∗(τ

+
k )ξ′i, ηj〉ω(τk)

=

∫
R
〈ξ′i, ηj〉ωds+

∑
k∈Z
〈ξ′i, ηj〉ω(τk)

= δij .

�

Remark 4.1. There exist functions ω satisfying the conditions of the above lemma as follows. We construct
one in the following. Identify (Vλ,φ) with (L) for brevity. By the assumptions of the lemma, we have with
||L(t)|| ≤ c for some c ≥ 0, and so

|Vλ∗(t)| ≤ e
ct+

∑
τk∈[0,t)

log |Id+Mk|−
∑
τj∈(t,0]

log |Id+Mj | ≤ ec|t|+g(t),
where g, defined by

g(t) =
∑

τk∈[−|t|,|t|]

∣∣ log |Id+Mk|
∣∣,
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is even, nondecreasing, nonnegative, and is an element of BPC1(R). In particular, there exists g1 ∈
BPC1(R) such that g ≤ g1 and e−g1(t) is integrable. Define ω1(t) = exp(−2c|t| − g1(t)). Then ω1 ∈
BPC1(0,∞) is integrable (hence summable) and ω1Vλ∗ is clearly bounded. An obvious normalization
produces the desired result.

With the above two lemmas in mind, the following is obvious.

Proposition 5. The operator Q ∈ L(BPC1) defined by

Qy = y −
r∑
i=1

F [Yλ∗ξ
′
i](y)fi (22)

is a projection onto R(L), provided the functions f1, . . . , fr are as given in Lemma 4

5. Bifurcation theorems

The results on this section are based on techniques from bifurcation theory in general Banach spaces. There
are a wealth of references on this topic, including [Chow & Hale, 1996; Kielhofer, 2012; Zeidler, 1993]. For
our purposes, we will refer to the convenient appendix appearing in the article [Pötzsche, 2010]. Section
5.1 provides the abstract branching equation associated to (Eλ), as well as some supplemental results that
will be useful in Section 5.2, where sufficient conditons for bifurcations of bounded solutions are given.

5.1. Abstract branching equation and supplemental results

With the projectors of Section 4.3, together with our Fredholm theory for the opertor D1H(φ∗, λ∗), we are
ready to perform Lyapunov-Schmidt reduction.

Theorem 3 [Branching Equations]. Suppose H0–H4 hold. There exist open convex neighbourhoods S ⊆ Rp
of 0, λ0 ⊆ Λ of λ∗ and a Cm fuction v : S × Λ0 → BPC1 satisfying v(0, λ∗) = 0, detD1v(0, λ∗) = 0, and

H

(
φ∗ +

p∑
i=1

Vλ∗siξi + v(s, λ), λ

)
−

r∑
j=1

[∫
R

〈
Yλ∗ξ

′
j , f(t, φ∗, λ∗) + v̇(s, λ)(t)−A(t)v(s, λ)(t)

+D2f(t, φ∗, λ∗)Vλ∗

p∑
i=1

ξisi

〉
dt+

∑
k∈Z

〈
Yλ∗(τ

+
k )ξ′j ,Jk(φ

∗, λ∗) + [∆v(s, λ)(τk)−Bkv(s, λ)(τk)]

+D1Jk(φ
∗, λ∗)Vλ∗(τk)

p∑
i=1

ξisi

〉]
fj = 0,

(23)

for all (s, λ) ∈ S×Λ0, where the functions fj are solutions of (21) for an arbitrary normalization factor ω.
In particular, if there exists s ∈ S satisfying the equation g(s, λ) = 0, where g : S×Λ0 → R has components

gj(s, λ) =

∫
R

〈
Yλ∗ξ

′
j , f(t, φ∗, λ∗)− f

(
t, φ∗ + Vλ∗

p∑
i=1

siξi + v(s, λ), λ

)
+ v̇(s, λ)−A(t)v(s, λ)

+D2f

(
t, φ∗ + Vλ∗

p∑
i=1

siξi + v(s, λ), λ

)
Vλ∗

p∑
i=1

siξi

〉
+
∑
k∈Z

〈
Yλ∗(τ

+
k )ξ′j ,Jk(φ

∗, λ∗)

−Jk

(
φ∗ + Vλ∗

p∑
i=1

siξi + v(s, λ), λ

)
+ ∆v(s, λ)(τk)−Bkv(s, λ)(τk)

+D1Jk

(
φ∗ + Vλ∗

p∑
i=1

siξi + v(s, λ), λ

)
Vλ∗(τk)

p∑
i=1

ξisi

〉
,

(24)

then φ = φ∗ + Vλ∗
∑p

i=1 siξi + v(s, λ) satisfies H(φ, λ) = 0.
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Proof. The proof is a consequence of applying the result on branching equations from Lemma A.1 of
[Pötzsche, 2010] together with our preparations on the Fredholm theory for L = D1H(φ∗, λ∗) of Section
4.2 and the Lyapunov-Schmidt projectors of Section 4.3. One must also keep in mind that the vectors fj
for 1 ≤ j ≤ r given by Lemma 4 satisfy (I−Q)fj = fj and are linearly independent, while dimR(I−Q) =
codimR(L) = r, so we can choose R(I −Q) = span{fi, . . . , fr}. �

Notice that the branching equations depend explicitly on the choice of augmenting pair (A,B). The
bifurcation conditions of the following section, however, will be independent of such a choice. Before moving
to these results, we introduce linear functionals that will be useful later.

Lemma 5. If H0–H4 hold, the linear functionals µi : BPC1 → R for 1 ≤ i ≤ r defined by

µi(φ) = F [Yλ∗ξ
′
1](φ) =

∫
R
〈Yλ∗ξ′i, φ̇−Aφ〉ds+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i,∆φ(τk)−Bkφ(τk)〉, (25)

are continuous, and one has R(D1H(0, λ∗) =
⋂r
i=1N (µ).

Proof. By definition,

ξ′i ∈ (R(P0)⊕N (Q0))
⊥ = N (I − P ∗0 ) ∩R(I −Q∗0),

which implies both P ∗0 ξ
′
i = ξ′i and (I −Q∗0)ξ′i = ξ′i. Therefore,∫

R
〈Yλ∗ξ′i, φ̇−Aφ〉ds =

∫ 0

−∞
〈Yλ∗P ′ξ′i, φ̇−Aφ〉ds+

∫ ∞
0
〈Yλ∗(I −Q∗)ξ′i, φ̇−Aφ〉ds

≤ |ξ′i| · ||φ̇−Aφ||0
(∫ 0

−∞
|Yλ∗(t, 0)P ∗(0)|dt+

∫ ∞
0
|Yλ∗(0, t)(I −Q∗(t))|dt

)
≤
(
|ξ′i|(|1 + ||A||)K

∫
R
e−α|t|dt

)
· ||φ||1.

An analogous bound is available for the summation term in (25). Therefore, µi is bounded. The assertion
involving the range of D1H(0, λ∗) follows directly from Theorem 2 and Proposition 4. �

We will also require a result concerning the time derivatives of the various derivatives of the operator
H. The following lemma follows by direct computations and the proof is omitted.

Lemma 6. Let hypotheses H0–H4 be satisfied. Let V u = Hu(φ∗, λ∗), where u ≤ m is either an integer or
2-index. Then,

V̇ u −AV u =
d

dt
[Duπ1(φ

∗, λ∗)]−Du[A(t)φ∗ + f(t, φ∗, λ∗)],

∆V u(τk)−BkV
u(τk) = ∆[Duπ1(φ

∗, λ∗)φ∗(τk)]−Du[Bkφ
∗ + Jk(φ

∗, λ∗)],

where π1 : BPC1 × Λ→ BPC1 is the projection π1(φ, λ) = φ.

5.2. Explicit bifurcation conditions

In the following theorems, we will at times assume a trivial solution branch is known. That is, the following
additional hypothesis is introduced.

H5. f(t, 0, λ) = 0 on R× Λ and Jk(0, λ) = 0 on Z× Λ.

Remark 5.1. Note that if φ∗ is a given solution independent on the parameter λ, the time-dependent change
of variables x = φ∗+y produces an equivalent impulsive differential equation in the variable y that satisfies
H5.
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Theorem 4 [Bifurcation with an odd-dimensional kernel]. Let Λ ⊆ R and m ≥ 2. If H1-H5 hold with
p = r, then the trivial solution of (Eλ) bifurcates at λ∗, provided p is odd and the following transversality
condition holds:

det

(∫
R
〈Yλ∗(t)ξ′j , D2D3f(t, 0, λ∗)Vλ∗(t)ξi〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξ′j , D1D2Jk(0, λ

∗)Vλ∗(τk)ξi〉

)
1≤i,j≤p

6= 0.

Proof. Choose a pair (A,B) such that condition H0 is satisfied for X(t, s), and define the solution operator
H for the equivalent augmented system (Eλ). We will use Theorem A.5 of [Pötzsche, 2010]. Let θ ∈
ND1H(0, λ∗); it follows by Proposition 4 that θ =

∑p
j=1 sjVλ∗ξj for sj ∈ R. By Theorem 2, we have

D1D2H(0, λ∗)θ ∈ RD1H(0, λ∗) if and only if F [Yλ∗ξ
′
i](D1D2H(0, λ∗)θ) = 0 for all i = 1, . . . , p. However,

using Lemma 6, this is seen to be equivalent to

p∑
j=1

sj

(∫
R
〈Yλ∗ξ′i, D2D3f(t, 0, λ∗)Vλ∗ξj〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i, D1D2Jk(0, λ

∗)Vλ∗(τk)ξj〉

)
= 0

for i = 1, . . . , p. The above defines a homogeneous p × p system of linear equations, and the determinant
condition of the theorem guarantees it has a unique solution, from which we conclude that s1 = · · · = sp = 0.
Therefore, θ = 0, so that

D1D2H(0, λ∗)N (D1H(0, λ∗)) ∩R(D1H(0, λ∗)) = {0},

as required. �

Theorem 5 [Fold bifurcation]. Let Λ ⊆ R. Suppose H1–H5 hold with p = r = 1. If

g01 :=

∫
R
〈Yλ∗ξ′i, D3f(t, φ∗, λ∗)〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i, D2Jk(φ

∗, λ∗)〉 6= 0,

then there exists ρ > 0 and open convex neighbourhoods U ⊆ BPC1(Ω) of φ∗, λ0 ⊆ Λ of λ∗, and Cm

functions φ : (−ρ, ρ)→ U , λ : (−ρ, ρ)→ Λ0 such that

• φ(0) = φ∗, λ(0) = λ∗, and φ̇ = Vλ∗ξi, λ̇(0) = 0,
• each φ(s) is a complete solution of (Eλ(s)) in BPC1(Ω).

Moreover, in case m ≥ 2 and under the additional assumption

g20 :=

∫
R
〈Yλ∗ξ′i, D2

2f(t, φ∗, λ∗)[Vλ∗ξ1]
2〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i, D

2
1Jk(φ

∗, λ∗)[Vλ∗(τ
+
k )ξ1]

2〉 6= 0,

φ∗ bifurcates at λ∗, one has λ̈(0) = −g20
g01

, and the following holds locally in Λ0.

• Subcritical case: If g20/g01 > 0, there exists Ω0 ⊆ Ω open and containing the image of φ∗ such that then
(Eλ) has no complete solution in BPC(Ω0) for λ > λ∗, φ∗ is the unique complete solution of (Eλ∗) in
BPC(Ω0), and there are exactly two distinct complete solutions in BPC(Ω0) for λ < λ∗.

• Supercritical case: If g20/g01 > 0, there exists Ω0 ⊆ Ω open and containing the image of φ∗ such that then
(Eλ) has no complete solution in BPC(Ω0) for λ < λ∗, φ∗ is the unique complete solution of (Eλ∗) in
BPC(Ω0), and there are exactly two distinct complete solutions in BPC(Ω0) for λ > λ∗.

Proof. Choose a pair (A,B) such that condition H0 is satisfied for X(t, s), and define the solution op-
erator H for the equivalent augmented system (Eλ). Using Lemma 5 and Lemma 6, we readily find that
µ(D2H(φ∗, λ∗)) = −g01. Similarly, we find

µ(D2
1H(φ∗, λ∗)[Vλ∗ξ1]

2) = µ(D(2,0)H(φ∗, λ∗)[Xλ∗ξ1]
2) = −g20.

The result follows by applying Theorem I.4.1 of [Kielhofer, 2012] or Theorem A.2 of [Pötzsche, 2010]. �
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Theorem 6 [Bifurcation with 1-dimensional kernel]. Let Λ ⊆ R, m ≥ 2. Suppose H1–H5 hold with p =
r = 1 and the transversality condition

g11 :=

∫
R
〈Yλ∗ξ′1, D2D3f(t, 0, λ∗)Vλ∗ξ1〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i, D1D2Jk(0, λ

∗)Vλ∗(τ
+
k )ξ1〉 6= 0,

is satisfied. Then, the trivial solution bifurcates at λ∗. In particular, there exists ρ > 0 and open convex
neighbourhoods U ⊆ BPC1(R,Ω) of 0, λ0 ⊆ Λ of λ∗, and nontrivial Cm functions φ : (−ρ, ρ) → U ,
λ : (−ρ, ρ)→ Λ0 such that

• φ(0) = 0, λ(0) = λ∗, and φ̇ = Xλ∗ξi, λ̇(0) = 0,
• each φ(s) is a complete solution of (Eλ(s)) in BPC1(R,Ω).

Proof. Choose a pair (A,B) such that condition H0 is satisfied for X(t, s), and define the solution operator
H for the equivalent augmented system (Eλ). We use Lemma 5 and 6 to find µ(D1D2H(0, λ∗)) = −g11,
which is nonzero by the transversality assumption. We apply Theorem I.5.1 of [Kielhofer, 2012] or Theorem
A.3/A.4 of [Pötzsche, 2010], completing the proof. �

The following corollaries are proven in an identical fashion to the above three theorems, using results
of Section 1.6 of [Kielhofer, 2012] or Theorems A.3/A.4 of [Pötzsche, 2010].

Corollary 5.1 [Transcritical bifurcation]. Let the conditions of Theorem 6 hold. If additionally

g20 :=

∫
R
〈Yλ∗ξ′1, D2

2f(t, 0, λ∗)[Vλ∗ξ1]
2〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξi,

′D2
1Jk(0, λ

∗)[Vλ∗(τ
+
k )ξ1]

2〉 6= 0,

one has λ̇ = − g20
2g11

, and the following holds locally in Λ0: equation (Eλ) has a unique nontrivial complete

bounded solution φλ for λ 6= λ∗, and 0 is the unique complete bounded solution of (Eλ∗).

Corollary 5.2 [Pitchfork bifurcation]. Let the conditions of Theorem 6 hold. If additionally g20 = 0 and

g30 :=

∫
R
〈Yλ∗ξ′1, D3

2f(t, 0, λ∗)[Vλ∗ξ1]
3〉dt+

∑
k∈Z
〈Yλ∗(τ+k )ξ′i, D

3
1Jk(0, λ

∗)[Vλ∗(τ
+
k )ξ1]

3〉 6= 0,

one has λ̇ = 0, λ̈ = − g30
3g11

, and the following holds locally in Λ0:

• Subcritical case: If g30/g01 > 0, there exists Ω0 ⊆ Ω open and containing the image of φ∗ such that the
unique bounded solution of (Eλ) in BPC(Ω0) for λ ≥ λ∗ is the trivial solution, while for λ < λ∗, there are
exactly two nontrivial complete solutions in BPC(Ω0).

• Supercritical case: If g30/g01 < 0, there exists Ω0 ⊆ Ω open and containing the image of φ∗ such that the
unique bounded solution of (Eλ) in BPC(Ω0) for λ ≤ λ∗ is the trivial solution, while for λ < λ∗, there are
exactly two nontrivial complete solutions in BPC(Ω0).

6. Applications to scalar impulsive systems

We begin with a general, computable necessary condition for bifurcation in nonlinear scalar impulsive
systems that may serve as a first-order test for the presence of a bifurcation. We then provide two examples
of this form; the impulsive Bernoulli equation (as introduced in [Akhmet & Kashkynbayev, 2016]) and a
logistic equation with harvesting. Following this, we state a corollary pertaining to sufficient conditions for
bifurcation in the sense of [Rasmussen, 2007].

6.1. Application: A necessary conditon for bifurcation of bounded solutions in
nonlinear scalar impulsive differential equations

Suppose system (Eλ) is scalar; x ∈ Ω ⊆ R, λ ∈ Λ. Let assumptions H1–H2 hold and let φ∗ be a given
bounded complete solution of (Eλ∗). Suppose φ∗ bifurcates at λ∗. Then, by proposition 3, φ∗ is nonhyper-
bolic. By fully characterizing hyperbolicity of the solution in terms of the impulsive differential equation,
we can provide an elegant necessary bifurcation condition. Namely, we will prove the following.
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Theorem 7. Let (Eλ) be scalar and satisfy hypotheses H1–H2. Introduce the function γ : {(t, s) ∈ R×R :
t > s} → R defined by

γ(t, s) =
1

t− s

∫ t

s
D2f(u, φ∗(u), λ∗)du+

∑
τk∈[s,t)

log |1 +D1Jk(φ
∗(τk), λ

∗)|

 . (26)

Let λ∗ ∈ Λ. The solution φ∗ of (Eλ∗) is nonhyperbolic if and only if

lim inf
t−s→∞

γ(t, s) ≤ 0 ≤ lim sup
t−s→∞

γ(t, s). (27)

In particular, if φ∗ bifurcates at λ∗ then equation (27) is satisfied.

Proof. φ∗ is nonhyperbolic if and only if the variational equation does not posess exponential dichotomy.
The variational equation is precisely

ẏ = D2f(t, φ∗(t), λ∗)y, t 6= τk

∆y = D1Jk(φ
∗(τk), λ

∗), t = τk,
(28)

which has the fundamental matrix solution X(t, s) that can be written as

X(t, s) = exp

∫ t

s
D2f(u, φ∗(u), λ∗)du+ sign(t− s)

∑
τk∈i(s,t)

log (1 +D1Jk(φ
∗(τk), λ

∗))

 , (29)

and i(s, t) = [s, t) if s ≤ t and i(s, t) = [t, s) if s ≥ t. Since X(t, s) is scalar, there is an exponential
dichotomy if and only if either |X(t, s)| ≤ Ke−α(t−s) or |X(s, t)| ≤ Ke−α(s−t) for t ≤ s and constants
K ≥ 1 and α > 0. Also,

|X(t, s)| = exp

∫ t

s
D2f(u, φ∗(u), λ∗)du+ sign(t− s)

∑
τk∈i(s,t)

log |1 +D1Jk(φ
∗(τk), λ

∗)|

 , (30)

Notice that, due to our explicit representation of |X(t, s)|, the case of a stable exponential dichotomy,
|X(t, s)| ≤ Ke−α(t−s) for t ≥ s, is equivalent to having

γ(t, s) ≤ logK

t− s
− α.

If the above inequality holds for all t ≥ s so that that the stable exponential dichotomy occurs, then in
particular, one has

γ+ = lim sup
t−s→∞

γ(t, s) < 0.

For the converse, suppose that the above limit superior is negative. Let ε > 0 be small enough so that
γ+ + ε < 0. Then, there exists N > 0 such that for all t− s > N , one has

γ(t, s) <
logK

t− s
+ (γ+ + ε)

for any K ≥ 1. Define the constant K by

logK = max

{
0,

(
−γ+ + sup

t−s≤N
γ(t, s)

)
N

}
.

Then, for t− s ≤ N , one has

γ(t, s) ≤ sup
t−s≤N

γ(t, s) ≤ logK

N
+ γ+ ≤ logK

t− s
+ (γ+ + ε).

It follows that when γ+ < 0, there exists constantsK ≥ 1 and α = −(γ++ε) > 0 such that γ(t, s) ≤ logK
t−s −α

for all t ≥ s. We conclude that that X(t, s) has a stable exponential dichotomy if and only if γ+ < 0.
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For the case of an unstable exponential dichotomy, the inequality |X(s, t)| ≤ Ke−α(t−s) for t ≥ s is
equivalent to

γ(t, s) ≥ − logK

t− s
+ α.

If the above holds for all t ≥ s so that there is an unstable exponential dichotomy, then in particular, one
has

γ− = lim inf
t−s→∞

γ(t, s) > 0.

Conversely, if γ− > 0, let ε > 0 be small enough so that γ− − ε > 0. Then, there exists N > 0 such that
for all t− s ≥ N , one has

γ(t, s) > − logK

t− s
+ (γ− − ε)

for all K ≥ 1. Define the constant K by

logK = max

{
0,

(
γ− − inf

t−s≤N
γ(t, s)

)
N

}
.

Then, it follows that for all t− s ≤ N ,

γ(t, s) ≥ inf
t−s≤N

γ(t, s) ≥ − logK

N
+ γ− ≥ − logK

t− s
+ (γ− − ε).

It follows that when γ− > 0, there exists constants K ≥ 1 and α = γ−−ε > 0 such that γ(t, s) ≥ − logK
t−s +α

for all t ≥ s. We conclude that that X(t, s) has an unstable exponential dichotomy if and only if γ− > 0.
Since X(t, s) has an exponential dichotomy if and only if it has either a stable or unstable exponential

dichotomy, we have that φ∗ is nonhyperbolic if and only if X(t, s) has neither a stable nor unstable
exponential dichotomy. By the above, this is equivalent to having γ− ≤ 0 ≤ γ+.

6.1.1. Example: Impulsive Bernoulli equations

Theorem 7 illustrates that the sufficient conditions for transcritical and pitchfork bifurcation patterns
identified in [Akhmet & Kashkynbayev, 2013, 2016] are also necessary. Indeed, in [Akhmet & Kashkynbayev,
2016], the authors prove that a sufficient condition for bifurcation of the trivial solution of the impulsive
Bernoulli equation

ẋ = p(t)x− q(t)xn, t 6= τk

∆x = −x+
x

(ck + dkxn−1)
1

n−1

, t = τk,
(31)

with n ≥ 2 is that the parameter

γ = lim sup
t−s→∞

1

t− s

∫ t

s
(1− n)p(u)du+

∑
s≤τk<t

log ck


passes through zero. The above can be equivalently written as

(1− n) lim sup
t−s→∞

1

t− s

∫ t

s
p(u)du+

∑
s≤τk<t

log c
− 1
n−1

k

 . (32)

Since the variational equation for (31) is precisely

ẏ = p(t)y, t 6= τk

∆y =

(
−1 + c

−1
n−1

k

)
y, t = τk,
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we see that (32) is a rescaled version of lim supt−s→∞ γ(t, s) as defined in Theorem 7, where the scaling
factor 1−n comes from the Bernoulli transformation the authors use to derive their bifurcation condition.
�

6.1.2. Example: Nonhyperbolicity in a logistic-type differential equation with impulsive
harvesting

Consider the logistic equation with time-dependent intrinsic growth g(t), carrying capacity K(t) and im-
pulsive harvesting at times τk with linear, parameter-dependent harvesting:

ẋ = g(t)x (1− x/K(t)) , t 6= τk

∆x = −λx, t = τk,
(33)

where λ ∈ (0, 1) is the harvesting effort. For the trivial solution (extinction state) φ∗ = 0, the function
γ(t, s) of Theorem 7 can be written

γ(t, s) =
1

t− s

[∫ t

s
g(u)du+ log(1− λ)#{τk ∈ [s, t)}

]
If the species grows seasonally, we might assume g ≥ 0 is periodic4 with mean growth rate µ. In this case,
if we denote

δ− = lim inf
t−s→∞

#{τk ∈ [s, t)}
t− s

, δ+ = lim sup
t−s→∞

#{τk ∈ [s, t)}
t− s

,

it follows by Theorem 7 that 0 is nonhyperbolic if and only if

µ+ log(1− λ)δ− ≤ 0 ≤ µ+ log(1− λ)δ+.

However, since λ ∈ (0, 1), this can only occur if the above holds with equality. Therefore, if the trivial
solution bifurcates at λ, then we must have

λ = 1− exp
(
− µ

δ+

)
.

6.2. Application: All-time bifurcation in nonlinear scalar impulsive systems

Theorem 7 can provide a sufficient condition for bifurcation as well, albeit for a slightly different definition
of bifurcation [Rasmussen, 2007].

Definition 6.1. Let φ∗ denote a complete λ-invariant solution of (Eλ). Let x(t, t0, x0, λ) denote the solution
of (Eλ) with initial condition x(t0, t0, x0, λ) = x0, and let d(A,B) = supa∈A infb∈B |a − b| denote the
Hausdorff semidistance. We say that φ∗

• is all-time attractive if there exists η > 0 such that

lim
t→∞

sup
t0∈R

d (x(t+ t0, t0, Bη(φ
∗(t0)λ), λ) , φ∗(t+ t0)) = 0,

and in this case, the supremum of all such η is denoted Aλφ∗ , the radius of all-time attraction of φ∗.
• is all-time repulsive if there exists η > 0 such that

lim
t→∞

sup
t0∈R

d (x(t0 − t, t0, Bη(φ∗(t0)λ), λ) , φ∗(t0 − t)) = 0,

and in this case, the supremum of all such η is denoted Rλφ∗ , the radius of all-time repulsion of φ∗.

4Or, more generally, that lim supt−s→∞
∫ t
s g(u)du = µ = lim inft−s→∞

∫ t
s g(u)du.
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• undergoes an all-time bifurcation at λ∗ if the following holds locally for λ near λ∗: φ∗ is all-time attractive
for λ < λ∗ (resp. λ > λ∗), all-time repulsive for λ > λ∗ (resp. λ < λ∗), and the radii of all-time attraction
and repulsion satisfy

lim
λ↗λ∗

Aλφ∗ = 0, lim
λ↘λ∗

Rλφ∗ = 0

(resp. with sidedness of limits reversed).

The following corollary provides a sufficient condition for a loss (or gain) of stability due to parameter
variation, based Theorem 7.

Corollary 6.1. Let φ∗ denote a λ-invariant solution of the scalar equation (Eλ). Let hypotheses H1–H2
hold, and let γ(t, s;λ) denote the function (26) associated to the solution φ∗, where we now make explicit
the dependence on the parameter γ. Suppose for some λ∗ ∈ R, the following holds locally near λ∗:

lim sup
t−s→0

γ(t, s, λ) < 0, λ < λ∗

lim inf
t−s→0

γ(t, s, λ) > 0, λ > λ∗,

(resp. inequalities involving λ and λ∗ reversed). Then φ∗ is all-time attractive for λ < λ∗, all-time repulsive
for λ > λ∗ (resp. inequalities reversed).

Proof. To obtain the attractivity and repulsivity, apply Theorem 1 and Theorem 2 of [Akhmet & Kashkyn-
bayev, 2013], taking into account the exponential dichotomies guaranteed for λ < λ∗ and λ > λ∗ by The-
orem 7 and the associated exponential stability of the solution φ∗ in the nonlinear system (forward or
time-reversed) as in [Bainov & Simeonov, 1988] �

The above conditions do not guarantee an all-time bifurcation occurs. The associated trivialization of
radii of all-time attraction and repulsion as in Definition 6.1 require somewhat stronger conditions than
those given in the above corollary. Specifically, one may need to impose particular boundedness properties
on the second and/or third-order terms of the taylor expansion of the vector field and difference equation;
see [Akhmet & Kashkynbayev, 2016] for relevant conditions.

7. Examples of bifurcations of bounded solutions in planar systems

In this section, we provide two examples of transcritical and pitchfork bifurcation as presented in Section
5.2. These two examples are planar, minimal, and somewhat contrived, serving only to provide explicitly
computable examples for the application of Corollaries 5.1–5.2.

7.1. Example: Transcritical Bifurcation

Consider the impulsive system

ẋ = α tanh(t)x+ γy2, t 6= τk

ẏ = β tanh(t)y, t 6= τk

∆x = aλx+ bλy, t = τk

∆y = cλx, t = τk,

with constants α, β, a, b, c ∈ R, b, γ 6= 0, α > 0 > β. We see that (x, y) = (0, 0) is a a solution. The
variational equation about the trivial solution for λ = 0 has an exponential dichotomy on half-lines with
projectors

P =

[
0 0
0 1

]
, Q =

[
1 0
0 0

]
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on [0,∞) and (−∞, 0] respectively. Therefore, RP = NQ = R[ 0 1 ]T . By Theorem 2, the index is zero and

the kernel of L is one-dimensional. We choose ξ1 = [0 1 ]T and ξ′1 = [1 0 ]T , and we have

V0(t) =

[
exp (α log cosh(t)) 0

0 exp (β log cosh(t)))

]
.

Denote f(t, (x, y), λ) = (α tanh(t)x+y2, β tanh(t)y) and Jk((x, y), λ) = (aλx+bλy, cλx). Since D2D3f = 0,
we compute g11 as

g11 =
∑
k∈Z
〈V −1∗0 ξ′1, D1D2Jk(0, 0)V0(τ

+
k )ξi〉

=
∑
k∈Z

[ 1 0 ]e−α log cosh(τk)

[
a b
c 0

] [
0
1

]
eβ log cosh(τk)

= b
∑
k∈Z

exp ((−α+ β) log cosh(τk))

6= 0

Therefore, a bifurcation occurs at λ = 0 by Theorem 6. Since D2
1Jk = 0, we compute the coefficient g20 as

g20 =

∫
R
〈V −1∗0 ξ′1, D

2
2f(t, 0, 0)[V0(t)ξ1]

2〉

=

∫
R

[ 1 0 ]e−α log cosh(t)

[
0 2γ
0 0

] [
0
1

]
eβ log cosh(t)dt

= 2γ

∫
R

exp ((−α+ β) log cosh(t)) dt

6= 0.

By Corollary 5.1, the trivial undergoes a transcritical bifurcation at λ = 0.

7.2. Example: Pitchfork Bifurcation

We consider a similar impulsive system to the previous example:

ẋ = α tanh(t)x+ γy3, t 6= τk

ẏ = β tanh(t)y, t 6= τk

∆x = aλx+ bλy, t = τk

∆y = cλx, t = τk,

with constants α, β, a, b, c ∈ R, b, γ 6= 0, α > 0 > β. As before, the index of the associated linearized
solution operator is zero and the kernel is one-dimensional. The coefficient g11 is the same as in the
previous example. Overall, we find

g11 = b
∑
k∈Z

exp ((−α+ β) log cosh(τk)) , g30 = 6γ

∫
R

exp ((−α+ β) log cosh(t)) dt,

both of which are nonzero. Therefore, by Corollary 5.2, the trivial solution undergoes a pitchfork bifurcation
at λ = 0. The sign of γ/b determines whether the bifurcation is subcritical (positive) or supercritical
(negative).

8. Conclusion

In this article, we have provided a necessary condition for the bifurcation of a bounded solution in non-
linear impulsive differential equations (Proposition 3) and derived sufficient conditions for classical fold,
transcritical and pitchfork bifurcations (Section 5), among others. The former result allowed us to derive
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an analytically precise necessary condition for bifurcation in nonlinear scalar impulsive systems (Theorem
7), and it was shown that this condition is consistent with sufficient conditions for bifurcations that have
been derived by other authors (Section 6.1.1). We also provided a result relating to all-time bifurcation of
scalar impulsive systems (Corollary 6.1). We concluded with two two-dimensional examples that illustrate
our sufficient conditions for transcritical and pitchfork bifurcations.

The approach to all of the above results is ultimately based on abstract bifurcation theory, specifically,
Lyapunov-Schmidt reduction. The solution operator H defined in equation (6) differs from the operator
defined in [Pötzsche, 2010] for ordinary differential equations in that it is explicitly an integral operator
as opposed to a differential operator. This distinction is required because it is not possible to incorporate
discontinuities in state (the impulses) into a differential operator and maintain the desirable Banach space
setting that makes the Lyapunov-Schmidt reduction possible. The caveat is that we must introduce arbi-
trary linear factors (Equation (Eλ)) for the operator H to be well-defined. However, as expected, the linear
factors have no impact on the necessary or sufficient conditions for bifurcation.
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