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We present a six-dimensional system describing coupled troposphere-stratosphere dynamics
which takes the form of two coupled Lorenz-84 systems (one for each of the troposphere and
stratosphere) involving thermal forcing terms. The systems are coupled through a linear inter-
action term, which permits energy transfer between both troposphere and stratosphere layers.
While other six-dimensional systems giving hyperchaos and multi-scroll attractors have been
found in the literature, the coupled systems given here arises naturally from the physical prob-
lem. In particular, the resulting six-dimensional system constitutes a physically interesting model
where the stratosphere-troposphere dynamics are coupled to one another (rather than just cou-
pling the troposphere dynamics to the stratosphere, while keeping the time evolution of the
stratosphere independent). This model gives bounded dynamics and for some parameters ex-
hibits chaos or hyperchaos. Interestingly, there are parameter regimes for which the dynamics
go directly between periodic orbits and hyperchaos, bypassing an intermediate chaos step. The
precise form of the coupling between the two Lorenz-84 systems is found to strongly influence
the solution behavior. We find that even small coupling from the stratosphere back to the tro-
posphere can destabilize the system and yield hyperchaotic dynamics, while for other parameter
sets this coupling can instead smooth dynamics in both regions.

Keywords: stratosphere-troposphere dynamics; hyperchaos; Lyapunov exponents; chaotic attrac-
tors; generalized coupled Lorenz system

1. Introduction

The first model giving the so-called hyperchaos was due to Rössler [1979]. In order to observe hyperchaos, a
system must have bounded trajectories in phase space, yet two Lyapunov exponents must remain positive.
A necessary condition for a continuous-time dynamical system to be hyperchaotic is therefore that the
dimension of the system is at least four. As a result, a number of three-dimensional systems known to
give chaos (bounded trajectories with one positive Lyapunov exponent) have been extended, through the
addition of extra coupling terms and equations, to obtain higher-dimensional systems exhibiting hyperchaos
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[Baire and Sahle, 1995; Baire and Thomsen, 1993; Choudhury and Van Gorder, 2012; Gao et al., 2006; Nik
and Van Gorder, 2013]. Many of these models are therefore mathematical constructs developed to give a
certain behavior in their solutions. However, there has been work in development of physically meaningful
models which happen to give hyperchaos, with applications being found in neuronal networks [Shuai et
al., 1997], optics [Udaltsov et al., 2001], semiconductors [Peinke et al., 1993], communications [Xiao et al.,
1996], nonlinear antiferromagnetic resonance [Moser eta al., 1993], intermittent convection in a magnetized
fluid [Macek and Strumik, 2014], and networks [Kestler et al., 2007]. Work has also been taken in order
to control [Colet et al., 1994; Kapitaniak, 1994; Huang, 2004] or synchronize [Ali and Fang, 1997; Bryant,
2010; Peng et al., 1996; Tamasevicius and Cenys, 1997] the emergent hyperchaos in such models. Since
hyperchaos is observed when two Lyapunov exponents become positive, one can be interested in finding
hyperchaos in parameter regimes near where chaos is already known to exist, and this is related to the
study of the transition between chaos and hyperchaos in dynamical systems [Kipitaniak, 1993; Kipitaniak
et al., 2000; McCullen and Moresco, 2011; Pavlov et al., 2015].

It was originally the study of atmospheric dynamics that would lead Lorenz to obtain a dynamical
system giving chaos [Lorenz, 1963], and in this sense there was a natural motivation for the study of
chaos. As mentioned above, many existing hyperchaotic systems are constructed to mathematically exhibit
hyperchaos. However, we shall present a model - fittingly motivated by atmospheric dynamics - which
exhibits hyperchaos in a fairly natural way. The model constitutes a physically interesting scenario when
the troposphere-stratosphere dynamics are coupled to one another, rather than just a coupling of the
stratospheric dynamics to the troposphere by assuming the stratospheric dynamics take a prescribed,
simple form. While the system may have zero, one, or two positive Lyapunov exponents, we note that
the bifurcation diagrams suggest that is it possible for the system to go directly between zero and two
Lyapunov exponents. This corresponds to a switch between periodic orbits and hyperchaos, bypassing any
intermediate standard (one positive Lyapunov exponent) chaos. The primary bifurcation parameters will
be due to the coupling of the two layers, as well as constant (averaged) forcing terms due to topography.
We start with a review of the relevant atmospheric dynamics, after which we introduce the six-dimensional
dynamical system governing the coupled troposphere-stratosphere interaction. We demonstrate that the
dynamics of the system can give periodic orbits, chaos, and hyperchaos, and bifurcation diagrams inform
us of where in parameter space the coupling and forcing parameters permit each of these behaviors. We
conclude by giving some physical intuition for the results.

In Sec. 2 we give a brief primer on troposphere-stratosphere interactions We also discuss the Lorenz-84
model for tropospheric dynamics. Motivated by this model, we consider a coupled Lorenz-84 model which
has an extra three-dimensional component for the stratospheric dynamics in Sec. 3. This allows for each
of the respective troposphere and stratosphere dynamics to influence the other. We study the possible
dynamics of this model as a function of the strength of asymmetric forcing terms and parameters coupling
tropospheric and stratospheric dynamics. In Sec 4, we apply a competitive modes analysis in order to
obtain more general parameter families which may lead to chaos in our model. We summarize and relate
our back to atmospheric turbulence near the tropopause in Sec. 5.

2. Stratosphere-Troposphere Dynamics

Conventionally, the atmosphere is divided into various layers, the lowest of which is the troposphere
[Matthewman et al., 2009]. The troposphere extends to 8-15km above the surface, and is separated from
the next layer, the stratosphere, by the tropopause. The stratosphere is characterized by a reversal of the
temperature gradient, caused by the presence of ozone and the absorption of solar UV radiation. The
majority of current weather forecasts focus on the dynamics of the troposphere, which varies erratically,
limiting any predictive skill to the order of a few days. The climate in the stratosphere is much less erratic.
However, until recently, the effect of the stratosphere on tropospheric dynamics had been thought to be
minimal. In the northern hemisphere winter (December-January-February), the stratosphere is subject to
greater heating in lower latitudes, which drives the mid-latitude westerly winds - this creates a vortex,
called the stratospheric polar vortex. It is the effect of this stratospheric polar vortex on the winter climate
in the troposphere that motivates our current investigation.
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north of 20◦ is first deseasonalised by subtracting a 90 day
low pass filter. However, the resulting data resides on a
non-uniform grid, and hence is necessarily weighted by
the square root of the cosine of the latitude [6]. Let the
gridded time series data be given by (an n×pmatrix with
n observations in time at p spatial points). Given the
weighting matrix W of size p× p, we have the following
area integral

∫

A

x2da ≈
p∑

i=1

p∑

j=1

xiWijxj = xTWx, (2)

where x represents the gridded data at a single point in
time. We can write the sample correlation matrix C of
the data X as

C =
XTX

n
. (3)

This can be decomposed as a sum of its EOF’s
[u1, u2, · · · ] as

X =

r∑

i=1

yiu
T
i , (4)

where r is the rank of X. The EOF’s are ordered by the
amount of variance they explain in the data. We only
consider the first EOF in all the cases studied here, since
it usually explains a ‘significant’ amount of variance in
the climate system [6, 7]. Therefore, in this case, the
time series y1 explains the highest variance, and is taken
as the Northern Annular Mode for the level under con-
sideration.

SIMPLE DYNAMICAL MODEL OF THE NAM

In order to qualify the results we obtain from the var-
ious nonlinear time series analysis tools we apply to the
NAM, we first test them against a prototypical model of
the NAM, with the implicit assumption that the actual
weather would roughly conform to the same behaviour
after the analysis is made. Therefore, we use the Lorenz-
84 system [8], which was designed to broadly characterise
the atmospheric irregularity that is inherent in the north-
ern hemisphere.

The Lorenz-84 model is given by the equations

ẋ = −y2 − z2 − ax+ aF, (5)

ẏ = xy − bxz − y +G, (6)

ż = bxy + xz − z. (7)

This model and its motivation is described in detail in [8],
and is summarised below. Here, x is a time-dependant
variable that represents the westerly winds, a major com-
ponent of the polar vortex. The variables y and z rep-
resent eddies that can transfer heat and momentum to
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FIG. 1: Phase portrait of the tropospheric Lorenz-1984
model, given by Equations (1.5-1.7). The parameters used
here are a = 0.25, b = 4, F = 8 and G = 0.5 for (a) and
G = 1 for (b). The initial conditions were chosen so that they
were close to the attractor.

here representing higher coupling between the tropo-
sphere and the stratosphere.

We further evaluate the Lyapunov exponent spectrum
of this system using the Wolf algorithm [10], and find
that this case has one positive exponent, indicative of
chaotic behaviour, which can be seen straightforwardly
through the phase portraits. If GX is increased to 1,
(which demonstrates chaotic behaviour in the uncoupled
case, as shown in Figure 1(b)), we find that two Lya-
punov exponents are positive, indicating hyperchaos in
the system - the phase portraits are shown in Figures 5
(c) and (d). The bifurcation diagram for various values
of GX and GY in this case is shown in Figure 2. It can
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the equations

ẋX = −y2X − z2X − axX + aF, (9)

ẏX = xXyX − bxXzX − yX +GX + εX(yX − yY ),(10)

żX = bxXyX + xXzX − zX , (11)

ẋY = −y2Y − z2Y − axY + aF, (12)

ẏY = xY yY − bxY zY − yY +GY + εY (yY − yX),(13)

żY = bxY yY + xY zY − zY . (14)

PROPERTIES OF COUPLED L84 MODEL

In the basic stratosphere-troposphere model consid-
ered here, we use a higher value of GY for the strato-
sphere, since the asymmetric forcing, that can have a
significant impact on the troposphere (due to the orogra-
phy, for instance) might be restricted in the less chaotic
stratosphere. The phase plots of the two components
with GX = 0.5 for the troposphere and GY = 0.1 for the
stratosphere are shown in Figure 5(a) and (b) respec-
tively (here, we use a coupling of εX = 4 and εY = 0.25,
here representing higher coupling between the tropo-
sphere and the stratosphere.

We further evaluate the Lyapunov exponent spectrum
of this system using the Wolf algorithm [? ], and find
that this case has one positive exponent, indicative of
chaotic behaviour, which can be seen straightforwardly
through the phase portraits. If GX is increased to 1,
(which demonstrates chaotic behaviour in the uncoupled
case, as shown in Figure 1(b)), we find that two Lya-
punov exponents are positive, indicating hyperchaos in
the system - the phase portraits are shown in Figures 5
(c) and (d). The bifurcation diagram for various values
of GX and GY in this case is shown in Figure 2. It can
be seen that the onset of hyperchaos here occurs at the
values of GX where there usually is an onset of chaos in
the uncoupled case (which happens around GX = 0.9).

Considering the impact of the various new parame-
ters introduced in this model, we increase εY from 0 to
0.25, keeping εX constant. The bifurcation diagram for
various values of GX and GY is shown in Figure 3. In
this case, we find a reversal of the regions where there
is hyperchaos, this time occurring at regions where the
system would be periodic in the uncoupled case. At the
same time, we find regions lacking any chaotic behaviour
in the case where the system previously demonstrated
hyperchaos. This transition can be seen in Figures 6(a)
and (b) (with εY = 0) and Figures 6(c) and (d) (with
εY = 0.25).

We further consider the dependence of the behaviour of

the system on εX and εY and find the onset of hyperchaos
for smaller values of εX and εY , as well.

FIG. 2: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.

FIG. 3: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.25, taken here to represent higher coupling
from the troposphere to the stratosphere.

[1] D.-I. Choi and Q. Niu, Phys. Rev. Letts. 82, 2022 (1999).

FIG. 4: The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1 and GX = 0.5.

FIG. 2: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.
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[1] D.-I. Choi and Q. Niu, Phys. Rev. Letts. 82, 2022 (1999).

FIG. 4: The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1 and GX = 0.5.

FIG. 3: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.25, taken here to represent higher coupling
from the troposphere to the stratosphere.

be seen that the onset of hyperchaos here occurs at the
values of GX where there usually is an onset of chaos in
the uncoupled case (which happens around GX = 0.9).

Considering the impact of the various new parame-
ters introduced in this model, we increase εY from 0 to
0.25, keeping εX constant. The bifurcation diagram for
various values of GX and GY is shown in Figure 3. In
this case, we find a reversal of the regions where there
is hyperchaos, this time occurring at regions where the
system would be periodic in the uncoupled case. At the
same time, we find regions lacking any chaotic behaviour
in the case where the system previously demonstrated
hyperchaos. This transition can be seen in Figures 6(a)
and (b) (with εY = 0) and Figures 6(c) and (d) (with
εY = 0.25).

We further consider the dependence of the behaviour of
the system on εX and εY and find the onset of hyperchaos
for smaller values of εX and εY , as well.
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ings. part iii: Polar vortex evolution and vertical struc-
ture. Journal of Climate, 22(6):1566–1585, 2009.
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FIG. 1: Phase portrait of the tropospheric Lorenz-1984
model, given by Equations (1.5-1.7). The parameters used
here are a = 0.25, b = 4, F = 8 and G = 0.5 for (a) and
G = 1 for (b). The initial conditions were chosen so that they
were close to the attractor.

the higher latitudes. These eddies can be amplified when
they interact with the westerlies, and these interactions
are incorporated into the xy and xz terms. Correspond-
ingly, at the same time, the westerlies would then lose
energy, and this is accomplished through the −y2 and
−x2 terms. Other x forcing terms include aF , which is
the symmetric thermal forcing given in this case by the
annual solar cycle. In the model, we also have G, which
is its asymmetric counterpart (for instance, this could be
due to the orography). The natural dampening of all the
quantities involved is given by the linear terms. Multi-
plying Equations (1.5-1.7) by x, y and z respectively, it
is straightforward to see that

1

2

d

dt
(x2 + y2 + z2) = −ax2 − y2 − z2 + aFx+Gy. (8)

Since a, F , and G are positive in this model, it can be
seen that the total energy in the system will decrease if it
exceeds a certain value, i.e., the system is bounded. The
phase portrait of this system is shown in Figure 1. It can
be seen that the system spends most of its time in one
of two states - this is interpreted in meteorological terms
as two climate regimes. This behaviour, when it persists
forever is called intransitivity [9].

Since the publication of the original model, several
modifications were proposed to it, including a modifi-
cation by Lorenz in 1990 [9] that added a periodic term
for F to simulate the annual solar cycle.

In the analysis of coupled stratosphere-troposphere in-
teractions, we propose a coupled Lorenz-84 system as a
proxy for the atmospheric dynamics. One component,
X, is (very crudely) representative of the troposphere
and shows steady recurrent dynamics, while the other
(Y ) represents the stratosphere. This system is given by

Fig. 1. Phase portrait of the tropospheric Lorenz-1984 model, given by (1). The parameters used here are a = 0.25, b = 4,
F = 8 and G = 0.5 for the X system and G = 1 for the Y system. The initial conditions were chosen so that they were close
to the attractor.

Heights above mean sea level are usually weighted by the gravity at the elevation and latitude. Geopo-
tential height is often referred to by the average pressure at the location, and a geopotential anomaly is the
variation from that average at various times. The geopotential anomaly is measured by several reanalysis
projects [Dee et al., 2011; Kistler et al., 2001]. In terms of the predictability of the northern hemisphere
weather, one of the particularly relevant meteorological variables is the pressure anomaly (deviations from
the average pressure) in the lower troposphere (measured here using data from 1000 hPa geopotential
height anomalies). The hemispheric mode of height/pressure variability is related closely to the Arctic
Oscillation [Thompson et al., 2000]. Another similar measure of northern hemisphere pressure variability
is the North Atlantic Oscillation, and this is defined as the difference in pressure levels between Iceland
(at Stykkisholmur or Reykjavik) and Portugal (at Azores or Lisbon) [Solomon, 2007]. Measures similar to
the Arctic Oscillation can be made for all levels in the atmosphere (not just the troposphere), and we call
the collection the Northern Annular Mode (NAM).

The Lorenz-84 system [Lorenz, 1984], which was designed to broadly characterize the atmospheric
irregularity that is inherent in the northern hemisphere, can be viewed as a prototypical model of the
NAM. The Lorenz-84 model is given by the equations

ẋ = −y2 − z2 − ax+ aF,

ẏ = xy − bxz − y +G,

ż = bxy + xz − z.

(1)

Motivation for this model is described in detail in Lorenz [1984]. Here, x is a time-dependent variable that
represents the westerly winds, a major component of the polar vortex. The variables y and z represent
eddies that can transfer heat and momentum to the higher latitudes. These eddies can be amplified when
they interact with the westerlies, and these interactions are incorporated into the xy and xz terms. Cor-
respondingly, at the same time, the westerlies would then lose energy, and this is accomplished through
the −y2 and −x2 terms. Other x forcing terms include aF , which is the symmetric thermal forcing given
in this case by the annual solar cycle. In the model, we also have G, which is its asymmetric counterpart
(for instance, this could be due to the orography). The natural dampening of all the quantities involved is
given by the linear terms. Multiplying (1) by x, y and z respectively, it is straightforward to see that

1

2

d

dt
(x2 + y2 + z2) = −ax2 − y2 − z2 + aFx+Gy. (2)
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Since a, F , and G are positive in this model, it can be seen that the total energy in the system will
decrease if the state variables exceeds certain value, hence the system is bounded. The phase portrait of
this system is shown in Fig. 1. It can be seen that the system spends most of its time in one of two states
- this is interpreted in meteorological terms as two climate regimes. Such behavior, when it persists, is
called intransitivity [Lorenz, 1990]. Since the publication of the original model, several modifications were
proposed to it, including a modification by Lorenz [1990] that added a periodic term for F to simulate the
annual solar cycle.

3. Coupled Lorenz-84 System for Troposphere-Stratosphere Interactions

In the analysis of coupled stratosphere-troposphere interactions, we propose a coupled Lorenz-84 system
as a proxy for the atmospheric dynamics. One component, X, is (very crudely) representative of the
troposphere and shows steady recurrent dynamics [Adusumilli, 2015], while the other (Y ) represents the
stratosphere. This system is given by the equations

ẋX = −y2X − z2X − axX + aF,

ẏX = xXyX − bxXzX − yX +GX + εX(yX − yY ),

żX = bxXyX + xXzX − zX ,

ẋY = −y2Y − z2Y − axY + aF,

ẏY = xY yY − bxY zY − yY +GY + εY (yY − yX),

żY = bxY yY + xY zY − zY .

(3)

In the basic stratosphere-troposphere model considered here, we use a lower value of GY for the stratosphere
than we take for the value of GX in the troposphere, since the asymmetric forcing (that can have a
significant impact on the troposphere due to the orography, for instance) might be restricted in the less
chaotic stratosphere Here εX gives the coupling of stratospheric dynamics into the troposphere, while εY
gives the coupling of tropospheric dynamics into the stratosphere. While the idea of the stratosphere having
an influence on the upper troposphere is not new, we note that there has also been some speculation on the
influence of the upper troposphere on the stratosphere, as well [Haynes et al., 1995]. Therefore, we include
both manners of coupling.

Note that this coupled Lorenz 84 model is fundamentally different in both structure and physics from
the coupled Lorenz systems of Ma et al. [1997] and Grassi et al. [2009]. In both of those papers, the
coupled Lorenz systems described were constructed to study chaos, hyperchaos, multiple scroll attractors,
and other dynamics, yet they were primarily mathematically motivated. The coupled Lorenz system we
study is primarily motivated by the physical application, and it is interesting to see a physically interesting
(rather than mathematically contrived) example of a system such as this giving hyperchaos.

As we did for the uncoupled model (1), we can show for (3) that

1

2

d

dt
(x2X + y2X + z2X + x2Y + y2Y + z2Y )

= −a(x2X + x2Y ) − (z2X + z2Y ) + aF (xX + xY )

− (1 − εX)y2X − (1 − εY )y2Y
− (εX + εY )yXyY +GXyX +GY yY .

(4)

While (2) implies boundedness of trajectories of solutions to (1), note that (4) implies that trajectories of
solutions to (3) are bounded conditionally, depending on εX and εY . We find that a sufficient condition for
trajectories of solutions to (3) to be bounded is the parameter restriction 4(1 − εX)(1 − εY ) > (εX + εY )2

where 0 < εX , εY < 1. This defines a convex subset of the region 0 < εX , εY < 1. However, we should
note that we have found numerical solutions which remain bounded even outside of this region. Hence, this
region defines a sufficient but not necessary condition for boundedness of trajectories to (3).

The phase portraits for the two components with GX = 0.5 for the troposphere and GY = 0.1 for the
stratosphere are shown in Fig. 2. Here, we use a coupling strength of εX = 4 (which measures the degree
to which the stratosphere dynamics influence the troposphere dynamics). It shall usually make sense to
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GY = 0.1, GX = 1, (a), (b) with εX = 4, εY = 0 and (c), (d)
with εX = 4, εY = 0.25.

Fig. 2. Transition from chaos to hyperchaos for the coupled L84 system with the tropospheric component on the left column
and the stratospheric component on the right column. The parameters used here are a = 0.25, b = 4, F = 8, GY = 0.1,
GX = 0.5 with εX = 4, εY = 0 (for chaotic dynamics) or with εX = 4, εY = 0.25 (for hyperchaotic dynamics). Even for
small asymmetric forcing and small coupling from the troposphere to the stratosphere, we see the emergence of chaos in the
stratospheric part of the model, which drives the entire system (3) into hyperchaos.

consider εX > εY , since the influence of the troposphere on the stratosphere is less pronounced. When we
activate the parameter εY , we have a feedback effect since the troposphere dynamics will then influence
the stratosphere. As we see from Fig. 2, this pushes the observed dynamics from chaos to hyperchaos.
As seen in the lower panels of Fig. 2, both component systems are chaotic, and we can verify that the
resulting six-dimensional dynamical system has two positive Lyapunov exponents for the parameter values
taken. To see this influence of the coupling parameters εX and εY on these dynamics more generally, we
obtain a bifurcation diagram by evaluating the Lyapunov exponent spectrum of this system using the Wolf
algorithm [Wolf et al., 1985]. In Fig. 3 we plot a bifurcation diagram which shows the number of positive
Lyapunov exponents of the bounded trajectories of (3) as a function of the coupling parameters, εX and
εY . We label the dynamics for each based on what we observe in the corresponding phase portraits. We see
that for the fixed choice of parameters taken, there is a large band of chaotic dynamics which surrounds
an inner band of hyperchaotic dynamics. While the values of εX or εY needed for chaos appears to be
large, note that this is due to the values of the other parameters. For other parameter choices, one obtains
chaos for even small values of εX and εY . The bifurcation diagram in Fig. 3 is chosen to show a case where
hyperchaotic dynamics are surrounded by chaotic dynamics in parameter space. As we shall see later, this
is not always the case.

The thermal forcing parameters will also strongly influence the dynamics of the coupled system (4).
In Fig. 4 we provide bifurcation diagrams in the thermal forcing parameters for each of the troposphere
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4

FIG. 3: Bifurcation diagrams in coupling parameters εX and
εY showing parameter regions giving periodic orbits, chaos,
and hyperchaos. The parameters used here are a = 0.25,
b = 4, F = 8, GY = 0.1 and GX = 0.5. Even for larger
values of the coupling parameters εX and εY we find bounded
trajectories which lead to chaos or hyperchaos.

dynamics in parameter space. As we shall see later, this
is not always the case.

The thermal forcing parameters will also strongly in-
fluence the dynamics of the coupled system (4). In Fig.
4 we provide bifurcation diagrams in the thermal forcing
parameters for each of the troposphere and stratosphere,
GX and GY , respectively. While both parameters play a
role in the dynamics, we see that it is the thermal forcing
in the troposphere that more readily changes the quali-
tative features of the solutions, with the bifurcation dia-
grams exhibiting a banded structure due to an increase in
GX . Note that hyperchaos is possible even with εY = 0,
provided that the forcing term GX is large enough. On
the other hand, when εY is increases, the threshold value
of GX which allows for hyperchaos lowers, meaning that
it is easier to observe hyperchaos when there is a stronger
coupling of the stratosphere to the troposphere dynam-
ics.

While a stronger coupling of the stratosphere and tro-
posphere permits hyperchaos for smaller thermal forcing
parameter GX , note also that there may be a smoothing
effect for fixedGX when we increase the coupling between
the stratosphere and troposphere components. This is
best seen by comparing the top and bottom diagrams in
Fig. 4. For, say, GY = 0.1 and GX = 1, the system with
εX = 4 and εY = 0 gives hyperchaos, while if we increase
the stratospheric coupling term to εY = 0.25, we obtain
regular (non-chaotic) periodic dynamics for large time.
Therefore, one must be mindful of all parameter values,
as in some parameter regimes they may conspire to give
hyperchaos, while in other parameter regimes one might
observe stable regular dynamics.

3

the equations

ẋX = −y2X − z2X − axX + aF, (9)

ẏX = xXyX − bxXzX − yX +GX + εX(yX − yY ),(10)

żX = bxXyX + xXzX − zX , (11)

ẋY = −y2Y − z2Y − axY + aF, (12)

ẏY = xY yY − bxY zY − yY +GY + εY (yY − yX),(13)

żY = bxY yY + xY zY − zY . (14)

PROPERTIES OF COUPLED L84 MODEL

In the basic stratosphere-troposphere model consid-
ered here, we use a higher value of GY for the strato-
sphere, since the asymmetric forcing, that can have a
significant impact on the troposphere (due to the orogra-
phy, for instance) might be restricted in the less chaotic
stratosphere. The phase plots of the two components
with GX = 0.5 for the troposphere and GY = 0.1 for the
stratosphere are shown in Figure 5(a) and (b) respec-
tively (here, we use a coupling of εX = 4 and εY = 0.25,
here representing higher coupling between the tropo-
sphere and the stratosphere.

We further evaluate the Lyapunov exponent spectrum
of this system using the Wolf algorithm [? ], and find
that this case has one positive exponent, indicative of
chaotic behaviour, which can be seen straightforwardly
through the phase portraits. If GX is increased to 1,
(which demonstrates chaotic behaviour in the uncoupled
case, as shown in Figure 1(b)), we find that two Lya-
punov exponents are positive, indicating hyperchaos in
the system - the phase portraits are shown in Figures 5
(c) and (d). The bifurcation diagram for various values
of GX and GY in this case is shown in Figure 2. It can
be seen that the onset of hyperchaos here occurs at the
values of GX where there usually is an onset of chaos in
the uncoupled case (which happens around GX = 0.9).

Considering the impact of the various new parame-
ters introduced in this model, we increase εY from 0 to
0.25, keeping εX constant. The bifurcation diagram for
various values of GX and GY is shown in Figure 3. In
this case, we find a reversal of the regions where there
is hyperchaos, this time occurring at regions where the
system would be periodic in the uncoupled case. At the
same time, we find regions lacking any chaotic behaviour
in the case where the system previously demonstrated
hyperchaos. This transition can be seen in Figures 6(a)
and (b) (with εY = 0) and Figures 6(c) and (d) (with
εY = 0.25).

We further consider the dependence of the behaviour of

the system on εX and εY and find the onset of hyperchaos
for smaller values of εX and εY , as well.

FIG. 2: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.

FIG. 3: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.25, taken here to represent higher coupling
from the troposphere to the stratosphere.

[1] D.-I. Choi and Q. Niu, Phys. Rev. Letts. 82, 2022 (1999).

FIG. 4: The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1 and GX = 0.5.
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FIG. 2: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.

FIG. 3: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.25, taken here to represent higher coupling
from the troposphere to the stratosphere.

[1] D.-I. Choi and Q. Niu, Phys. Rev. Letts. 82, 2022 (1999).

FIG. 4: The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1 and GX = 0.5.

FIG. 4: Bifurcation diagrams in asymmetric thermal forcing
parameters GX and GY showing parameter regions giving
periodic orbits, chaos, and hyperchaos. The parameters used
here are a = 0.25, b = 4, F = 8, εX = 4 and εY = 0 (top di-
agram), εY = 0.25 (bottom diagram) taken here to represent
higher coupling from the troposphere to the stratosphere. By
coupling tropsphereic dynamics back into the stratosphere,
even by a small amount, the threshold in Gx needed for hyper-
chaos in system (3) greatly decreases. However, this behavior
is not always de-stabilizing. Indeed, we note that some regions
giving hyperchaos in the absence of the coupling parameter
εY now give regular, periodic trajectories. This highlights the
relative complexity of the model.

One interesting feature of the system (4) is that we ob-
serve an immediate transition between regular periodic
dynamics and hyperchaos. This is observed in both pan-
els of Fig. 4 where regions in parameter space admitting
hyperchaotic dynamics (dark blue regions) are adjacent
to regions in parameter space admitting periodic orbits
(white regions). We similarly find small regions of peri-
odic dynamics adjacent to hyperchaotic regions, in Fig.
3. Therefore, a slight perturbation to the model parame-
ters can push the solutions from stable periodic trajecto-
ries into the hyperchaotic regime, highlighting the sensi-
tivity of equation (4) to the coupling and thermal forcing
parameters. Furthermore, we take the view that the hy-
perchaos generated here is rather fundamental, due to the
fact is is easy to move into a hyperchaotic regime. In-
deed, rather than being a small subset of the chaotic pa-
rameter regime valid when parameters take non-physical
values, hyperchaotic trajectories can be obtained even
from slight perturbations of stable periodic trajectories.
One such transition between periodic behavior and hy-
perchaos is shown in Fig. 5. Here we treat εY as the
bifurcation parameter; when εY = 0, we observe hyper-
chaos, while when εY = 0.25, the dynamics smooth and
periodic orbits are found. Therefore, in this instance, we
observe that the stronger coupling with the stratosphere

Fig. 3. Bifurcation diagrams in coupling parameters εX and εY showing parameter regions giving periodic orbits, chaos, and
hyperchaos. The parameters used here are a = 0.25, b = 4, F = 8, GY = 0.1 and GX = 0.5. Even for larger values of the
coupling parameters εX and εY we find bounded trajectories which lead to chaos or hyperchaos.

and stratosphere, GX and GY , respectively. While both parameters play a role in the dynamics, we see
that it is the thermal forcing in the troposphere that more readily changes the qualitative features of the
solutions, with the bifurcation diagrams exhibiting a banded structure due to an increase in GX . Note that
hyperchaos is possible even with εY = 0, provided that the forcing term GX is large enough. On the other
hand, when εY is increases, the threshold value of GX which allows for hyperchaos lowers, meaning that
it is easier to observe hyperchaos when there is a stronger coupling of the stratosphere to the troposphere
dynamics.

While a stronger coupling of the stratosphere and troposphere permits hyperchaos for smaller thermal
forcing parameter GX , note also that there may be a smoothing effect for fixed GX when we increase the
coupling between the stratosphere and troposphere components. This is best seen by comparing the top
and bottom diagrams in Fig. 4. For, say, GY = 0.1 and GX = 1, the system with εX = 4 and εY = 0
gives hyperchaos, while if we increase the stratospheric coupling term to εY = 0.25, we obtain regular
(non-chaotic) periodic dynamics for large time. Therefore, one must be mindful of all parameter values, as
in some parameter regimes they may conspire to give hyperchaos, while in other parameter regimes one
might observe stable regular dynamics.

One interesting feature of the system (4) is that we observe an immediate transition between regular
periodic dynamics and hyperchaos. This is observed in both panels of Fig. 4 where regions in parameter
space admitting hyperchaotic dynamics (dark blue regions) are adjacent to regions in parameter space
admitting periodic orbits (white regions). We similarly find small regions of periodic dynamics adjacent
to hyperchaotic regions, in Fig. 3. Therefore, a slight perturbation to the model parameters can push
the solutions from stable periodic trajectories into the hyperchaotic regime, highlighting the sensitivity
of equation (4) to the coupling and thermal forcing parameters. Furthermore, we take the view that the
hyperchaos generated here is rather fundamental, due to the fact is is easy to move into a hyperchaotic
regime. Indeed, rather than being a small subset of the chaotic parameter regime valid when parameters
take non-physical values, hyperchaotic trajectories can be obtained even from slight perturbations of stable
periodic trajectories. One such transition between periodic behavior and hyperchaos is shown in Fig. 5. Here
we treat εY as the bifurcation parameter; when εY = 0, we observe hyperchaos, while when εY = 0.25, the
dynamics smooth and periodic orbits are found. Therefore, in this instance, we observe that the stronger
coupling with the stratosphere actually stabilizes the entire system (4). This is keeping with the view that
the stratosphere itself is primarily dissipative, with perturbations collapsing to steady state dynamics in
the absence of dynamic forcing [Shepherd, 2002]. Of course, in the presence of such forcing, the dynamics
can become more complicated, and for even larger values of forcing (see Fig. 4) the dynamics can be pushed
back into the chaotic or even hyperchaotic regimes.
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3

the equations

ẋX = −y2X − z2X − axX + aF, (9)

ẏX = xXyX − bxXzX − yX +GX + εX(yX − yY ),(10)

żX = bxXyX + xXzX − zX , (11)

ẋY = −y2Y − z2Y − axY + aF, (12)

ẏY = xY yY − bxY zY − yY +GY + εY (yY − yX),(13)

żY = bxY yY + xY zY − zY . (14)

PROPERTIES OF COUPLED L84 MODEL

In the basic stratosphere-troposphere model consid-
ered here, we use a higher value of GY for the strato-
sphere, since the asymmetric forcing, that can have a
significant impact on the troposphere (due to the orogra-
phy, for instance) might be restricted in the less chaotic
stratosphere. The phase plots of the two components
with GX = 0.5 for the troposphere and GY = 0.1 for the
stratosphere are shown in Figure 5(a) and (b) respec-
tively (here, we use a coupling of εX = 4 and εY = 0.25,
here representing higher coupling between the tropo-
sphere and the stratosphere.

We further evaluate the Lyapunov exponent spectrum
of this system using the Wolf algorithm [? ], and find
that this case has one positive exponent, indicative of
chaotic behaviour, which can be seen straightforwardly
through the phase portraits. If GX is increased to 1,
(which demonstrates chaotic behaviour in the uncoupled
case, as shown in Figure 1(b)), we find that two Lya-
punov exponents are positive, indicating hyperchaos in
the system - the phase portraits are shown in Figures 5
(c) and (d). The bifurcation diagram for various values
of GX and GY in this case is shown in Figure 2. It can
be seen that the onset of hyperchaos here occurs at the
values of GX where there usually is an onset of chaos in
the uncoupled case (which happens around GX = 0.9).

Considering the impact of the various new parame-
ters introduced in this model, we increase εY from 0 to
0.25, keeping εX constant. The bifurcation diagram for
various values of GX and GY is shown in Figure 3. In
this case, we find a reversal of the regions where there
is hyperchaos, this time occurring at regions where the
system would be periodic in the uncoupled case. At the
same time, we find regions lacking any chaotic behaviour
in the case where the system previously demonstrated
hyperchaos. This transition can be seen in Figures 6(a)
and (b) (with εY = 0) and Figures 6(c) and (d) (with
εY = 0.25).

We further consider the dependence of the behaviour of

the system on εX and εY and find the onset of hyperchaos
for smaller values of εX and εY , as well.

FIG. 2: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.

FIG. 3: The parameters used here are a = 0.25, b = 4, F = 8,
ε1 = 4 and ε2 = 0.25, taken here to represent higher coupling
from the troposphere to the stratosphere.

[1] D.-I. Choi and Q. Niu, Phys. Rev. Letts. 82, 2022 (1999).

FIG. 4: The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1 and GX = 0.5.
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[1] D.-I. Choi and Q. Niu, Phys. Rev. Letts. 82, 2022 (1999).

FIG. 4: The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1 and GX = 0.5.

Fig. 4. Bifurcation diagrams in asymmetric thermal forcing parametersGX andGY showing parameter regions giving periodic
orbits, chaos, and hyperchaos. The parameters used here are a = 0.25, b = 4, F = 8, εX = 4 and εY = 0 (top diagram),
εY = 0.25 (bottom diagram) taken here to represent higher coupling from the troposphere to the stratosphere. By coupling
tropospheric dynamics back into the stratosphere, even by a small amount, the threshold in GX needed for hyperchaos in
system (3) greatly decreases. However, this behavior is not always de-stabilizing. Indeed, we note that some regions giving
hyperchaos in the absence of the coupling parameter εY now give regular, periodic trajectories. This highlights the relative
complexity of the model.

4. Competitive modes analysis

In order to further study the appearance of chaotic dynamics in the coupled Lorenz-84 systems, we shall
turn our attention to a competitive modes analysis. The method of competitive modes involves recasting
a dynamical system as a coupled system of oscillators [Reeves et al., 2012; Van Gorder, 2011; Van Gorder,
2013; Van Gorder and Choudhury, 2010; Yao et al., 2002; Yu, 2006; Yu et al., 2007]. For instance, consider
the general nonlinear autonomous system of dimension n given by

ξ̇i = fi(ξ1, ξ2, ..., ξn) . (5)

Differentiation of (5) once gives a coupled system of second order equations,

ξ̈i =

n∑

j=1

fj
∂fi
∂ξj

= − ξigi(ξ1, ξ2, ..., ξi, ..., ξn)

+ hi(ξ1, ξ2, ..., ξi−1, ξi+1, ..., ξn) .

(6)

When a gi is positive, its respective ith equation behaves like an oscillator. The following conjecture is
posed in Yao et al. [2002]:
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FIG. 6: Transition from hyperchaos to periodic behaviour for
the coupled L84 system with the tropospheric component on
the left column and the stratospheric component on the right
column. The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1, GX = 1, (a), (b) with εX = 4, εY = 0 and (c), (d)
with εX = 4, εY = 0.25.

Fig. 5. Transition from hyperchaos to periodic behaviour for the coupled L84 system with the tropospheric component on
the left column and the stratospheric component on the right column. The parameters used here are a = 0.25, b = 4, F = 8,
GY = 0.1, GX = 1 with εX = 4, εY = 0 (for hyperchaotic dynamics) or with εX = 4, εY = 0.25 (for periodic dynamics).
Instead of becoming less regular, this particular coupling between stratosphere and troposphere has actually had a stabilizing
effect on the solution trajectories for (3). Therefore, additional coupling of the troposphere back into the stratosphere via εY
can either stabilize or destabilize the dynamics of (3), depending on the parameter regime we consider.

Competitive Modes Requirements: The conditions for dynamical systems to be chaotic are given by:
(A) there exist at least two non-zero modes, labeled gi in the system;
(B) at least two g’s are competitive or nearly competitive, that is, for some i and j, gi ≈ gj > 0 at some t;
(C) at least one of the g’s is a function of evolution variables such as t (this can be through the state
variables ξi); and
(D) at least one of the h’s is a function of state variables ξi.

The requirements (A)-(D) essentially tell us that a condition for chaos is that two or more equations
in (6) behave as oscillators (gi > 0), and that two of these oscillators lock frequencies at one or more
times. In practice, we find that the frequencies agree at a countably infinite collection of time values [Van
Gorder, 2011; Yu, 2006]. The frequencies should be functions of time (i.e., we have nonlinear frequencies),
and there should be at least one forcing function which depends on a state variable. Furthermore, it has
been seen that the modes should be competitive in some intermittent manner, without perfect repetition
or periodicity [Choudhury and Van Gorder, 2012].

In order to apply the competitive modes analysis to our system of interest, we rewrite the system (3)
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Fig. 6. Plot of the mode frequencies for the parameter values a = 0.25, b = 4, F = 8, GY = 0.1, GX = 0.5, εX = 4, εY = 0
giving chaos.

as the system of coupled oscillators

ẍX + g1xX = h1,

ÿX + g2yX = h2,

z̈X + g3zX = h3,

ẍY + g4xY = h4,

ÿY + g5yY = h5,

z̈Y + g6zY = h6,

(7)

where

g1 = 2y2X + 2z2X − a2xX ,

g2 = y2X + z2X + (b2 − 1)x2X + byXzX − εXεY yX + (a+ 2(1 − εX))xX − aF − (1 − εX)2,

g3 = y2X + z2X − x2X + byXzX + (b2 + a+ 2)xX − 1 − aF,

g4 = 2y2Y + 2z2Y − a2xY ,

g5 = y2Y + z2Y + (b2 − 1)x2Y + byY zY − εXεY yY + (a+ 2(1 − εY ))xY − aF − (1 − εY )2,

g6 = y2Y + z2Y − x2Y + byY zY + (b2 + a+ 2)xY − 1 − aF,

(8)

while the hk’s may also be calculated but will not be useful in our analysis.
In Figs. 6-8, we plot the mode frequencies gk over a sample time interval for various parameter com-

binations corresponding to chaos (Fig. 6), hyperchaos (Fig. 7), and periodic orbits (Fig. 8). When two
or more mode frequencies are positive and equal or nearly equal, then we are in the regime where the
modes are competitive. We find that both the chaotic and hyperchaotic trajectories give intermittently
competitive mode frequencies. That is to say, the more frequencies are competitive frequently (likely a
countably infinite number of times) yet not periodic. On the other hand, from Fig. 8 we see that the mode
frequencies can become competitive in the case of periodic orbits, yet for those cases the mode frequencies
are themselves completely periodic, which rules out chaos.
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Fig. 7. Plot of the mode frequencies for the parameter values a = 0.25, b = 4, F = 8, GY = 0.1, GX = 0.5, εX = 4, εY = 0.25
giving hyperchaos.

Fig. 8. Plot of the mode frequencies for the parameter values a = 0.25, b = 4, F = 8, GY = 3, GX = 0.2, εX = 4,
εY = 0 giving periodic solutions. Note that the more are more often negative, most intersections of the mode frequency curves
occur when they take negative values, and the interaction that do take place between g1 and g2 are periodic. As mentioned
elsewhere, one should look for intermittency, rather than periodicity, when attempting to use competitive modes to obtain
chaotic trajectories.
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While competitive modes can be used in order to search for chaos, yet further numerical simulation
should be used to verify any chaos predicted. In this way, we can view the competitive modes analysis as a
diagnostic tool useful when searching for chaos, although the existence or two or more competitive modes
should be viewed more as a necessary condition for chaos, rather than sufficient condition. This reinforces
the point of view discussed in [Van Gorder, 2016].

5. Conclusions

We proposed a coupled Lorenz-84 system which serves as a crude model of stratosphere-troposphere inter-
actions. We included symmetric and asymmetric forcing parameters for each layer of the atmosphere, as
well as parameters εX (coupling stratospheric dynamics to the troposphere) and εY (coupling tropospheric
dynamics to the stratosphere). Treating the asymmetric forcing parameters and the coupling parameters as
bifurcation parameters, we find that regular periodic dynamics, chaos, and hyperchaos are all possible from
the model. In some parameter regimes, the asymmetric forcing is destabilizing, bringing about hyperchaos,
while for other parameter regimes the asymmetric forcing induces a stabilizing effect. Furthermore, we
find that the additional coupling of the troposphere back into the stratosphere via εY can either stabilize
or destabilize the dynamics of (3), depending on the parameter regime we consider. For some parameter
regimes, we find that the system can transition directly between periodic orbits and hyperchaos, bypassing
an intermediate chaos regime. This may happen when both troposphere and stratosphere systems undergo
a bifurcation from periodic orbits to chaos in a coincident manner, yet there is no destructive interference
between the two systems.

Let us remark that we know of no other coupled stratosphere - troposphere model giving hyperchaos,
although we feel that such dynamics should naturally be observed. Indeed, it was rather simple to identify
parameter regimes for which hyperchaos exists, and these parameter regimes are not inconsistent with
physically reasonable parameter values. This also makes physical sense: Under small forcing and coupling
perturbations, the stratosphere portion of model (4) can be driven chaotic. Meanwhile, it is already well-
known that the Lorenz-84 model gives chaos, and this is exactly the troposphere component of the model.
Therefore, it is reasonable to find hyperchaos in a model where both troposphere and stratosphere dynamics
are mutually coupled. Physically, these dynamics are supported in part by the experimental observation
of strong turbulence around the tropopause where both layers meet [Shapiro, 1980]. This turbulence has
been suggested as one mechanism allowing chemical transport between both layers [Haynes et al., 1995;
Shapiro, 1980]. In our model, turbulence occurring around the tropopause would manifest as hyperchaos,
while regular chaos only in the tropospheric part of the model would be turbulence strictly below the
tropopause. Therefore, the hyperchaos here has a clear physical relevance, in the context of this previously
observed atmospheric turbulence around the tropopause. Of course, one could consider adding terms or
additional equations to the model (3) in future work. However, we feel that the rather simple model is still
useful in that it detects this tropopause turbulence under a relatively simple framework.
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