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SECOND MINIMAL ORBITS, SHARKOVSKI ORDERING AND UNIVERSALITY IN CHAOS

UGUR G. ABDULLA, RASHAD U. ABDULLA, MUHAMMAD U. ABDULLA, AND NAVEED H. IQBAL

AssTrACT. This paper introduces the notion of second minimal n-periodic orbit of the continuous map on the
interval according as if n is a successor of the minimal period of the map in Sharkovski ordering. We pursue
classification of second minimal 7-orbits in terms of cyclic permutations and digraphs. It is proved that there
are 9 types of second minimal orbits with accuracy up to inverses. The result is applied to the problem on
the distribution of periodic windows within the chaotic regime of the bifurcation diagram of the one-parameter
family of unimodal maps. It is revealed that by fixing the maximum number of appearances of the periodic
windows there is a universal pattern of distribution. In particular, the first appearance of all the orbits is always a
minimal orbit, while the second appearance is a second minimal orbit. It is observed that the second appearance
of 7-orbit is a second minimal 7-orbit with Type 1 digraph. The reason for the relevance of the Type 1 second
minimal orbit is the fact that the topological structure of the unimodal map with single maximum is equivalent to
the structure of the Type 1 piecewise monotonic endomorphism associated with the second minimal 7-orbit. Yet
another important report of this paper is the revelation of the universal pattern dynamics with respect to increased
number of appearances.

1. INTRODUCTION AND MAIN RESULT

Let f : I — I be a continuous endomorphism, and / be a non-degenerate interval on the real line. Let
f" : 1 — I be an nth iteration of f. A point ¢ € [ is called a periodic point of f with period m if f™(c) = c,
f*(c) # c for 1 < k < m. The set of m distinct points

e, f@)- [ (e)
is called the orbit of ¢, or briefly m-orbit or periodic m-cycle. In his celebrated paper [15], Sharkovski
discovered a law on the coexistence of periodic orbits of continuous endomorphisms on the real line.
Theorem 1.1 (Sharkovskii). [15] Let the positive integers be totally ordered in the following way:
(1) 14242%42%<--.a22.5422.34---492-542-34---99<74543.
If a continuous endomorphism, f : I — I, has a cycle of period n and m <n, then f also has a periodic orbit

of period m.

This result played a fundamental role in the development of the theory of discrete dynamical systems. A
conceptually novel proof was given in [5]. Following the standard approach, we characterize each periodic
orbit with cyclic permutations and directed graphs of transitions or digraphs. Consider m-orbit:

B={B1<Br<- <PBu}

Definition 1.2. If f(8;) = B;, for 1 < s; <m, withi = 1,2,...,m, then B is associated with cyclic permutation
[ 1 2 ... m]
T =
S1 S22 ... Sm
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Definition 1.3. Let w be the order reversing permutation

|1 2 . m—1 m
Tlm om-1 ... 2 1
Then, given a cyclic permutation 7, it’s inverse is obtained as 77! = w o o w.

In the sequel < a, b > means either [a, b] or [b, a].

Definition 1.4. Let J; = [B;,8:+1]. The digraph of m-orbit is a directed graph of transitions with vertices
Ji,J2, -, -1 and oriented edges J; — Js if J; € < f(B:), f(Bi+1) >.

Definition 1.5. The inverse digraph of m-orbit is a digraph associated with inverse cyclic permutation 77",

Equivalently, inverse digraph is obtained from the digraph of m-orbit by replacing each J; with J,,,_;.
Proof of the Sharkovskii’s theorem significantly uses the concept of minimal orbit.

Definition 1.6. n-orbit of f is called minimal if # is the minimal period of f in Sharkovski’s ordering.

Definition 1.7. Digraph of the m-orbit contains the red edge J;—J, if J; =< f(B)), f(Bi+1) >.

The structure of the minimal orbits is well understood [16, 2, 3, 4]. Minimal odd orbits are called Stefan
orbits, due to the following characterization:

Theorem 1.8 (Stefan). [16, 4] The digraph of a m = 2k + 1 minimal odd orbit has the unique structure given

in Figure I up to an inverse.
Cob b b \W
| Jis2 Jis3 X Jy Jok

NN N AN

Jk Jk—l J3 J2

-

Ficure 1. Digraph of Minimal Odd Orbit

Similar characterization of 2(2k + 1)-orbits (k > 1) is given in [1].

Theorem 1.9. [1] The digraph of a minimal 2(2k + 1)-orbit (k > 1) has one of four types up to their inverses
(Type I is shown in Figure 2).

The main idea of the constructive proof of [1] is based on the fact that each half of the minimal 2(2k + 1)-
orbit is minimal 2k + 1 orbit of f2. Therefore, the digraph of the minimal 2(2k + 1)-orbit is designed as one
of the possible four "unions” of two Stefan digraphs of f2. The result of Theorem 1.9 can be generalized as
follows:

Theorem 1.10. The digraph of any minimal 2"(2k + 1)-orbit, k > 1, has one of 222 types up to their
inverses. Furthermore, each digraph is strongly simple and can be constructed from the digraphs of two
minimal and strongly simple 2"~ (2k + 1)-orbits in f>.

The main goal of this paper is the characterization of second minimal odd orbits.

Definition 1.11. An n-orbit, n > 7, of f is called second minimal if # is the successor of the minimal orbit
of f in the Sharkovskii ordering.
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TasLe 1. All Second Minimal 7 cycles

For example, if map has a second minimal 7-orbit, then it has a minimal 5-orbit, but no 3-orbit. Our main
result reads:

Theorem 1.12. The second minimal 7-orbit has one of 9 possible types up to their inverses. The associated
cyclic permutations are listed in Table 1; digraphs and piecewise linear representatives are demonstrated in
Appendix 1.

The method of the proof of Theorem 1.12 is extended to prove that the second minimal 9, 11, and 13
orbits have respectively 13, 17, and 21 possible types up to their inverse. We conjecture the following result:

Conjecture 1.13. The digraph of any second minimal (2k + 1)-orbit, k > 3, has one of 4k — 3 possible types
up to their inverses.

We adress the proof of the Conjecture 1.13 in a forthcoming paper.

The structure of the remainder of the paper is as follows: In Section 2, we recall some preliminary facts.
Theorem 1.12 is proved in Section 3. In Section 4, we describe a new universal law of the distribution
of periodic windows within the chaotic regime of the bifurcation diagram of the one-parameter family of
unimodal maps. First we recall the celebrated Feigenbaum scenario of the transition from periodic to chaotic
behaviour through successful period doublings and outline the rigorous universality theory in the class of
%' -unimodal maps [8, 6, 7]. In subsection 4.1, we report the numerical reslts which reveal fascinating
pattern of distribution of all the superstable periodic orbits when parameter changes in the range between
the Feigenbaum transition point to chaos and the value when superstable 3-orbit appears for the first time.
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In fact, this parameter range is divided into infinitely many Sharkovski s-blocks where all the 2°(2k + 1)-
orbits are distributed and the pattern is independent of s. Subsection 4.2 demonstartes that the convergence
of the successive parameter values for superstable 2°(2k + 1)-orbits within each s-block is exponential with
the rate which is independent of the appearance index. Finally, in subsection 4.3, we report the numerical
results which demonstrate that any superstable odd orbit in the indicated parameter range is going through
successful period doublings according to the Feigenbaum scenario when the parameter decreases to a critical
transition point. This indicates that Feigenbaum Universality is true in more general classes of maps, which
are the (2k + 1)st iteration of the class of "' -unimodal maps. We end Section 4 with the brief outline of the
anticipated rigorous universality theory in general classes of maps.

2. PRELIMINARY RESULTS

Lemma 2.1. The digraph of an m-orbit, B = {81 < 8, < -+ < B}, m > 2, possesses the following properties
[4]:
(1) The digraph contains a loop: Ir, such that J,, — J,, .
(2) VYr, A" and v’ such that J,, — J, — J,»; moreover, it is always possible to choose 1’ # r unless m
is even and r = m/2, and it is always possible to choose v’ # r unless m = 2.
3) If[B.B"] # [B1,Bm) B-B" €B, then AJ,, C [B',8"] and AJ,» € |B',B"] such that J. — J .
(4) The digraph of a cycle with period m > 2 contains a subgraph J,, — ---J, forany 1 <r <m - 1.

Definition 2.2. A cycle in a digraph is said to be primitive if it does not consist entirely of a cycle of smaller
length described several times.

Lemma 2.3 (Straffin). [17, 4] If f has a periodic point of period n > 1 and it’s associated digraph contains
a primitive cycle Jo —» Jy — -+ = J,1 — Jo of length m, then f has a periodic point y of period m such
that f*(y) € Ji, (0 < k < m).

3. Proor oF THEOREM 1.12

Let f : I — I be a continuous endomorphism that has a 7-orbit which is second minimal. Let B =
{81 < B2 <--- < fB7} be the ordered elements of this orbit; Let r. = max{i| f(8;) > B;}. Such an r, exists
since f(B1) > B and f(By+1) < Bok+1- So, we have a loop: J,, — J, ; Let

B ={BeB|p<p.}, B ={peB|B>p.}.
Then, |B~| + |B*| = 7, where |X| denotes the number of elements of the set X. Hence, |B~| # |B*|. Assume
that |B™| > |B*|. Then let r = max {i < r. | f(B;) < B} s0 f(B,) < Brs f(Bri1) > B, = J, = J,,. According
to Lemma 2.1 there is a subgraph

(11) OJ, - ->J —>J,

Assume that this is the shortest path. Then its length is at most 7, since there are 6 different intervals,
and if any interval is repeated twice, one can get shorter path by removing all the intervals between the
repetitions (including one of the repetitions). From another side the length is at least 5, since if it is 4 we
will deduce by Lemma 2.3 the existence of 3-orbit. The same conclusion is true if the length is shorter than
4, since if necessary we can always add J,, to the right end of the subgraph (11). Hence, the length can be 5,

6, or 7; In the sequel < a, b > indicates either [a, b] or [b, a]; Z or a A b imply either of the entries a or b are

valid choices for mappings of a given node; J,, — [a, b] means f(B,,) = a and f(5;,,,) = b.
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Case 1 length is 7 = all 6 intervals are represented in the cycle (11). Choose r| = r., r¢ = r and write

12)

OJyy = Jdy > dy—ody > I > T > Ty

Since O J,, — J,,, but J,, » Jrs J = 3,---,6 = J,, must be adjacent to J,,, so either Figure 3 or
Figure 4 is relevant.

Jrz r Jrz
Figure 3. Case 1.1 Ficure 4. Case 1.2

Continuing in this manner we get either Figure 5 or Figure 6. Both are Stefan orbits, and the first
one is the right one satisfying |B~| = 4 > 3 = |B*|, while the second one is its inverse satisfying
|B*| = 4 > 3 = |B~|. But Stefan orbit excludes 5-orbit and so we dismiss this case as irrelevant.

Ficure 5. Case 1.1 Ficure 6. Case 1.2

Case 2 length is 6; Choose r| = 7., rs = r and write

13)

(14a)
(14b)
(14¢)
(144d)
(14e)

15)

OJ, = J,—=Jy—=dy = Jy = Jy
We have
Joy = Jeis Jry = Ty Iy = T, Jrys I
Joy = Jrs Iy =2 Jrps Jrys I
oy = Jpps Iy » Iy Iy (Jry = J,, optional)
oy = Jrss Iy » 1oy Iy, (Jy, = J,, optional)
Jog = Iy Iy =+ Iy (Js = Jry, Jy, optional)

Hence, we have two possible orders among five intervals J,,, i = 1 ---5. Either

Since there are 6 different intervals, only one interval is missing. Let us denote this interval J, and
try to find its place. We have J,, — J,, but J,, - J,,. This implies that the missing interval J must
be between J,, and J,,. Case 2.2 corresponds to |B~| > |B*| so we restrict our discussion to this case.

6
2
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/. /f;\\ »,

Figure 7. Case 2.1, The
dashed path demonstrates
‘]rs - Jrl

Ficure 8. Case 2.2, The
dashed path demonstrates
Jrs - J r

Hence, constructing a general cyclic permutation from the rules we have the the 2 X 7 matrix 15.
It follows that either f(5) = 3 or f(5) = 4. Now, if f(5) = 3, according to the rules we must have
f(3) =7 and f(1) = 4 and this leads to a valid second minimal 7 orbit. Alternatively, if f(5) = 4
then we cannot have f(2) = 5 else we have a closed 4 cycle. Thus, f(2) = 7 and we have a another
valid second minimal 7 orbit. Both of these are displayed in Table 1 indexed as 1 and 2 respectively
and the digraph for the case f(2) = 7 is presented in Figure 9.

]
N
C U Ji

Ficure 9. Case 2.2 Digraph when f(2) =7

Finally, in order to show that the orbit above is indeed a valid second minimal odd orbit, it must
be proven that there are no odd orbits of length less than 2k — 1. In the case of a second minimal
7 orbit, it must be proven that no 3 orbits are present. Assuming that there is an orbit of length 3,
we immediately have two options. Either J; is included in the 3 orbit, or it isn’t included. If J;
isn’t included, then Jg can’t be included either, because it only maps to J;. Jy4 also can’t be included
because only J; and J4 map to J4. If J; isn’t in the orbit, and Jy is, then J4 will only map to itself
in the form: Js — Jy — J4, as no other orbit will map back to it. The only remaining orbits
are {J, J3, Js}. Note that these intervals can only form orbits of even length, by splicing together
various combinations of the two orbits: J3 — Js — J3, and J, — J5 — J,. Thus, it is impossible
for a 3 orbit to be present in the above digraph, which does not contain J;.

Suppose now, that the assumed 3 orbit does contain J;. J; can map to either: Jg, Js, or J4. If J;
maps to Je, the shortest path back to J; is: J; — Jg — Jq, which has a length of 2. If J; maps to Js,
the shortest path back to J; is J; — Js — J, — Jg — Ji, which has a length of 4. If J; maps to J4,
the shortest path back to J; is: J; = J4 — J5 — J, — Jg — Ji, which has a length of 5. Thus, it is
impossible to form a 3 orbit, regardless if J; is or isn’t contained. If a 3 orbit is proven impossible,



SECOND MINIMAL ORBITS 7

and a 5 orbit and a 7 orbit where observed during construction of the orbit, then the above cyclic
permutation represents a valid second minimal 7 orbit.
It is in this way that the validity of the second minimal orbits are proven. Note that, for all cyclic
permutations depicted in Table 1, this same method can be used to effectively prove the fact that no
3 orbits exist. This can also be done by simple observation, as digraphs for a 7 orbit can only have
a finite number of interactions.
Case 3 length is 5; (four different intervals are included and two are missing.) Let r; = r., r4 = r, SO we

have
(16) OJy=Jdp—=Jdy =Ty = Jy
then we have
(17a) Iy = s dey = oy Jry 2 T I,
(17b) oy = Iy Iy 2 I Iy Iy
(17¢) oy = Jps Iy » 1, Iy (U, = J,, Optional)
(17d) oy = Iy vy =+ 1y, Iy (Jr, = J,p, optional)

So we have either Case 3.1: J,,J,,J,, J,, or Case 3.2: J,.J, J.,J,,

Ficure 10. Case 3.1, Where Ficure 11. Case 3.2, Where
we have 3 points in B~, 2 in we have 2 points in B7, 3 in
B*; 2 remaining points can’t B*; so we need to add both
go to B* points to B~ and at least one of

them should be mapped to B™.

Consider Case 3.1, where should the remaining intervals go (call them J, f)? Case 3.1.1, assume

one is between J,,, J,, and the other is between J,,, J,,. Now, we adjust Figure 10 in one of the two
ways illustrated in Figures 12 and 13.

Ficure 12. Case 3.1.1 Ficure 13. Case 3.1.2

Now, we can continue to construct possible orbits graphically in this way and demonstrate which
settings for J and J result in valid second minimal 7 cycles however, to better communicate the
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possible settings, we adopt a slightly different tactic - we will study the cyclic permutations asso-
ciated with each possible setting in order to extract the relevant cycles. To construct these cyclic
permutations first observe in Figures 10 and 11 that there are 5 possible locations in which to insert
the extra two intervals J and J and we can insert these, assuming we assign J first and .J second, as
demonstrated below in 18:

(1,1 (1,2 (1,3) (1,4 (1,5
2,2) 2,3 2,49 2,5

(18) 3,3) 3.4 3,5
“4,4) &5
(5,5)

To construct the cyclic permutation determine where each interval J,,, i = 1 ---4, is mapped to then
combine all the mappings. We begin with Case 3.1. We furnish an example of how to construct
the cyclic permutation for the setting (2,4) which corresponds to the setting for Figures 12 and 13.
First, determine where each interval is mapped according to the rules

2
J, =14,5] = [2 ;] Jn, =16,7] = <1, >

3
4
5 5
Jr, = [3,4] - [7, 6] 1y =11,2] - <4,6>

7

Then, construct the associated cyclic permutation

1 2 3 4. 5 6 7
(19) 5 6 2 3
7 5 3 <1, 2 >
Since f3)=7= f(7)#3 = f(7)=1or2.
(a) Case (2,4);: f(7) = 1 = either f(6) =2, f(5)=3or f(6) =3, f(5) =2
(b) Case (2,4)1.1: f(T) =1, f(6) =2, f(5) =3 or
1 2 3 4 5, 6 17
(20) 5 6
<4, 6 > 7 5 3 21
(c) Case (2,4)1.1.1: f(4) = 6 = J;—Js. Now, f(1) = 5 implies period 4-suborbit {1, 3,5, 7} which
is a contradiction. If f(1) = 4 we get the second minimal 7 orbit with index 1 in Table 1.
(d) Case (2,4)112: f(4) =5 = either f(1) =4, f(2) = 6 or f(1) = 6, f(2) = 4 however since
f(6) = 2 the former implies a period 2-suborbit {2, 6} which is a contradiction. The latter case
implies the second minimal 7 orbit with index 3 in Table 1.
(e) Case (2,4)12: f(7) =1, f(6) =3, f(5) =2 or

1 2 3 45, 67
@D <4,5>76231

6 5
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(f) Case (2,4)121: f(4) = 6 = f(1) =5, f(2) = 4. The digraph of the associated cyclic per-
mutation contains the subgraph J, — J4 — Js5 — J, and by Straffin’s lemma this implies the
existence of a 3-orbit, a contradiction.

(g) Case (2,4)122] f(4) =5 = either f(1) =4 or f(1) = 6. The latter implies a period 4-suborbit
{1,3,6,7}, a contradiction. The former implies the second minimal 7 orbit with index 5 in
Table 1.

(h) Case (2,4),: f(T)=2= f(6)=1, f(5)=3or

1 2 3 4 5, 6 17
22) <4,Z>7g312
Considering the alternative we have f(6) = 1 = f(1) =5 or f(1) = 4.
(a) Case (2,4),,: If f(1) = 5 the digraph of the associated cyclic permutation contains the sub-
graph J, — Jy — Js — J, which implies the existence of a 3-orbit, a contradiction.
(b) Case (2,4)5: f(1) =4 = either f(2) =5, f(4) = 6 0or f(2) =6, f(4) = 5. In the former case
we have a period 4-suborbit {2, 3,5, 7}, a contradiction. In the latter case we get the second
minimal 7 orbit with index 6 in Table 1.
Now, proceeding in this fashion we will analyze each of the 15 settings to extract valid second
minimal 7 orbits.
Setting (1,1) We have the cyclic permutation

1 2 3 4 5, 6

(23) i 57 6 4

W =
W =

Observe, letting f(7) = 3 would force a period 2-suborbit {1, 2} and period 5-suborbit {3,4, 5, 6, 7}
so f(7) = 1 or f(7) = 2 which implies J, — [1,5] or J, — [3,5] both of which lead to the
subgraph J4 — J¢ — J» — J4. By Straffin’s lemma this implies the existence of a 3-orbit, a
contradiction.

Setting (1,2) From 17a and 17b if follows f(5) = 6, f(4) = 7, from 17a it follows J,, = [2,3] -5< 5,6 A7 >
and hence either f(2) = 6 or f(3) = 7 which is a contradiction since three nodes are mapped to
6 and 7.

Setting (1,3) From 17aand 17b = f(5) =6, f(6) = 3, and J,, = [3,4] —< 6,7 > which is a contradiction
since three nodes {3, 4, 5} are mapped to {6, 7}.

Setting (1,4) J,, = [4,5] = [5A6,3], J,, = [2,3] — [4,7], and J,, = [6,7] —< 3 A 4,1 A2 >; Since
f(5) = 3 = either f(6) = 4 or f(7) = 4; but we also have f(2) = 4, a contradiction.

Setting (1,5) We have the cyclic permutation

1 2 3 4, 5 6 7
2 2
24) 6 4 Z 5 3 é 1
7 6

(1) Case (1,9);: f(7)=6= f(3) =7 = f(1) =2, and f(6) = 1. The digraph of this cyclic
permutation contains the subgraph J¢ — J; — J3 — Jg and by Straffin’s lemma this
implies the existence of a 3-orbit, a contradiction.

(i) Case (1,5): f(7)=1= f3)=60r f3)=7
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(ii1) Case (1,5)1: f(7) =1, f(3) = 6 = f(6) =2, f(1) = 7 and this implies the 2-suborbit
{1,7} and the 5-suborbit {2, 3,4, 5, 6}.

(iv) Case (1,5)22: f(7) =1, f3) =7 = f(6) = 2, f(1) = 6 and we get the valid second
minimal 7-cycle indexed as 3 in Table 1.

(v) Case (1,5)3: f(7) =2 = f(6) = 1; since f(1) = 6 = 2-suborbit {1, 6} so we must have
f(1) =7 and f(3) = 6 and this implies the valid cyclic permutation indexed as 4 in Table
1

Setting (2,2) From 17b J,, = [4,5] = [7, 6] and from 17d J,, = [1,2] —-< 5,6 A7 > which is a contradiction
since we have 2 nodes being mapped to 6 and 7.

Setting (2,3) From 17a and From 17b J,, = [5,6] — [6,2 A 3] and J,, = [3,4] —»< 6,7 > so f(5) = 6 and
either f(3) = 6 or f(4) = 6, a contradiction.

Setting (2,4) See above.

Setting (2,5) We have the cyclic permutation

1 2 3 4.5 6 7
25) 6 7 2 3
<4, 7 > 6 5 3 1 )

(1) Case (2,5): If f(5) =3 = f(7) =2 = f(2) # 7 or we have period 2-suborbit {2, 7}.

Now, either f(3) =6 or f(3) =7
(i1) Case (2,5)11: f(5) =3, f(3) =6 = f(2) =4, f(1) = 7 = valid second minimal 7-orbit
indexed as 4 in Table 1.
(iii) Case (2,5)12: fO) =3, f3)=7=J,, =[1,2] < 4,6 >.
@iv) Case (2,5)1,1.1: f(5) =3, f3) =7, f(2) = 6 = f(1) = 4 = valid second minimal
7-orbit indexed as 6 in Table 1.
(v) Case (2,5)112: f(5) =3, f3) =7, f(2) =4 = f(1) = 6 = a period 2-suborbit {1, 6}
and a period 5-suborbit {2, 3,4, 5, 7}, a contradiction.
(vi) Case (2,5): If f(5) =2 = f(7) =3 = f(3) # 7 or we get period 2-suborbit {3, 7}, so
f(3) = 6 and either f(1) =4 or7.
(vil) Case (2,5)21: f(5) =2, f(7) =3, f(3) =6, f(1) = 4 = a valid second minimal cycle
indexed as 7 in Table 1.
(viil) Case (2,5)22: f(5) =2, f(7) =3, f(3) = 6, f(1) = 7 = period 3-suborbit {2,4,5}, a
contradiction.
Setting (3,3) From 17a, 17b J,, = [5,6] — [6,2] and J,, = [2,3] =< 6,7 > so f(5) = 6 and either f(2) = 6
or f(3) = 6, a contradiction.
Setting (3,4) We have the cyclic permutation

1 2 3 4. 5 6 7
(26) i <g, 7> Z 2 <1, g>
(i) Case (3,4);: f(4) =5 and either f(1) =3 or f(1) = 4.
(ii) Case (3,4)11: f4) =5, f(1) =4 and f(6) =1 or 3.
(iii) Case (3,4)1.1.1: f(4) =5, f(1) =4, f(2) =6, f(6) =3 = f(3) # 6 or we get period
2-suborbit {3, 6}, thus f(3) = 7 giving valid second minimal 7 cycle indexed by 5 in
Table 1.
(iv) Case (3,4)1.12: f4) =5, f(1) =4, f(6) =1 = f(7) =3 = f(3) # 7, or we get
period 2-suborbit {3, 7}, thus f(3) = 6 giving valid second minimal 7 cycle indexed by 7
in Table 1.
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(v) Case (3,4)12: f(4) =5, f(1) = 3 and either f(6) = 1 or f(6) =4
(vi) Case (3,4)12.1: f(4) =5, f(1) = 3, and f(6) = 1 then f(3) # 6 or we have period
3-suborbit {1,3,6} so f(3) = 7. Then the digraph of the cyclic permutations has the
subgraph J; — J3 — Js — J; and by Straffin’s lemma this implies the existence of a
period 3-suborbit, a contradiction.
(vii) Case (3,4)122: f(4) =5, f(1) = 3, and f(6) = 4 then f(2) # 6 or we have a period
3-suborbit {1, 3,7} so f(2) = 7 = valid second minimal 7 cycle indexed by 8 in Table 1.
(viii) Case (3,4),: f(4) = 6 and f(2) = 5 = period 2-suborbit {2,5} so f(2) =7 and f(6) = 1
or f(6) = 3 since f(6) = 4 = period 2-suborbit {4, 6}.
(ix) Case (3,4)21: f(4) =6, f2) =7, f(6)=1= f(1)=3or f(1) =4.
(x) Case (3,4)21.1: f(4) =6, f(2) =17, f(6) =1, f(1) = 3 = digraph contains the subgraph
J1 — J3 —> J5 — J;, a contradiction.
(xi) Case (3,4)2.12: f(4) =6, f(2) =7, f(6) =1, f(1) = 4 = a period 3-suborbit {1,4, 6}, a
contradiction.
(xii) Case (3,4):22: f(4) =6, f(2) =7, f(6) =3 = f(7) = 1 = valid second minimal 7 cycle
indexed by 9 in Table 1.
Setting (3,5) From 17a, 17b J,, = [4,5] — [5,2] and J,, = [2,3] =< 5,6 A7 > so f(4) = 5 and either
f(2) =5or f(3) =5, a contradiction.
Setting (4,4) From 17a, 17c, 17d we have J,, = [3,4] - [4 A5 A6,2], J,, = [6,7] =»< 1,2 A3 >, and
Jr, =1[1,2] = [3,7]. So f(4) = 2 and f(1) = 3 but either f(6) or f(7) is 2 or 3, a contradiction.
Setting (4,5) From 17a, 17c, 17d we have J,, = [3,4] — [4 A 5,2], J,, = [5,6] —»< 1,2 A3 >, and
J, = [1,2] = [3,6 AT7]. So f(4) = 2 and f(1) = 3 but either f(5) or f(6)is 2 or 3, a
contradiction.
Setting (5,5) We have the cyclic permutation

1 2 3, 45 6 7

@7) 37 4 215 6

The digraph of this cycle admits several subgraphs of length 3; one of which is J; — Jg —
Js — Jy and by Straffin’s lemma this implies a 3-suborbit, a contradiction.

Proceeding in the same fashion for Case 3.2 generates the inverses of the valid cycles already found. Count-
ing all distinct valid second minimal 7 orbits we see there are exactly 9, unique up to an inverse. The
topological structure and digraph associated with each of these cyclic permutations are listed in Appendix
A.

4. UNIVERSALITY IN CHAOS

In this section we present some fascinating results pertaining to universal behavior in the route to chaos for
a family of unimodal maps. Specifically, we study continuous endomorphisms, dependent on a parameter,
from an interval to itself: f, : [0,1] — [0, 1] satisfying f(0) = f(1) = 0 with a single maximum at some
point, X, interior to the interval [0, 1] under the iterative relation x,.; = f(x,). We are interested in the
asymptotic behavior of x, for n — oo and how this behavior depends on the parameter 1. A prototypical
example is the logistic map

(28) X1 = 4Ax, (1 = x,)

In 1978, Fiegenbaum [9, 10, 11] discovered a universal transition mechanism to Chaos through successful
period doubling bifurcations. As A increases, the behaviour of x, for large n changes from periodic to
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chaotic via bifurcations from the 2" periodic cycle to the 2"*! periodic cycle. Two universal constants
6 = 4.6692016... and @ = —2.502907875... qualitatively characterize the universal transition route. Let A}
be the value of the parameter when 2"-orbit is superstable, i.e. critical point x,,,, is one of the elements of
the orbit, and let d,ll be directed distance from x,,,, to the closest element of the orbit:

1 on-1
dn = Xmax — ffl}] (xmax)~

Then A! T Ao, and for a class of unimodal maps with a quadratic maximum of 1 has

/ll —/ll d]
(29) lim % =6, lim - =a.
n—oo /ln — An—l n—oo dn+1

Having discovered the universality of 6 and @ numerically, Feigenbaum proposed the mechanism of it based
on the renormalization group approach to critical phenomena in statistical mechanics. He revealed that both
of these constants are related to a universal function that governs the period doubling route to chaos and
expresses this function as the fixed point of some functional operator. The rigorous proof of Feigenbaum’s
suggested theory was completed for a class of unimodal maps with quadratic maximum in [8, 6, 12]. The
following is the brief summary of the rigorous universality theory ([7]).

Map ¢ : [-1,1] = [=1,1] is called €' -unimodal, if ¢ € C[-1,1],%(0) = 1; y is strictly increasing on
[—1,0] and strictly decreasing on [0, 1]; ¢/(x) # 0 if x # 0. Let IP be the space of symmetric %' -unimodal
maps. Choose iy € P and define

a=aW)=-yY), b=>bWy) =ya).
Assume that
(30) 0<yb)=y*(@)<a<b<l.

This condition guarantees that the second iteration > maps [—a, a] to itself. Therefore, the doubling trans-
formation

1
(31) FY(x) = —;ﬂ(—ax).

maps [—1, 1] to itself. The following properties of .# are key features of the universality theory:

e .7 has a fixed point g with @ = —a~!. Namely, g solves the functional equation
X
(32) g(0) = ag’(>). 8(0)=1.
o

o The Frechet derivative of .% at the fixed point g has a simple eigenvalue equal to §; the remainder
of the spectrum is contained in the open unit disk. Therefore, .# has a one-dimensional unstable
manifold W, and a co-dimension one stable manifold W at g.

e W, intersects transversally the co-dimension one surface £, of maps with superstable 2-orbits:

X ={y:y¢)=0}
o Consider a set X; of maps with superstable 2k_orbits (inverse images of X;), i.e.
S=F CVL =Yy =T g pex) k=23, ..

Then the distance between X; and W, decreases like 57 for large k.
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e Consider an arbitrary one-parameter family 4 — , of maps and treat it as a curve in P. Assume
that this curve crosses the stable manifold Wj at u., with a non-zero transverse velocity. This implies
that for all large k, there will be a unique g near ., such that ¢, € Z; is a map with superstable
2%_orbit. Then

}i_)l’gloegz.j_k[pﬂj = gk,k =1,2,3,.. ]lgl;gjlﬂ#m =g

where g is an intersection of X; with W,; g is a fixed point of .% which solves (32). All the functions
gr and g are universal functions.

The rigorous theory was only developed for a special class of €' -unimodal maps of the form

w(x) = f(Ix")

where the function f is analytic in a complex neighborhood of [0, 1], € > 0. The typical example would be

Yo =1 = plad .

The perturbative analysis of [8] requires € to be sufficiently small. The case € = 1 was completed in [6].

In [13] periodic orbits are characterised through patterns, which is the sequence of R’s and L’s, the kth
letter expressing the fact that the kth element of the cycle is on the right or left side of the critical point of
the map. In particular, paper [13] presents a table of relative position of periodic orbits of period p < 11 for
the logistic map. Much of the work in this direction was inspired by the paper [14], where the calculus for
describing the qualitative behaviour of successive iterates of piecewise monotone maps of the interval was
invented. We refer to [7] which presents an extensive description of this approach.

In this paper, in addition to the logistic map we will present numerical results for the sine map,

(33) fa(x) = Asin(mx)

the cubic map,

3vV3
(34) £l = Tfﬂxa — )

and the quartic map

35) filx)=A-a2x - 1)*f

Note that x,,,, = 0.5 in (28), (33), (35) and X0, = 1/ V3 in (34). Moreover, only logistic and sine
maps are symmetric around X,,,,,. All three maps demonstrate Feigenbaum transition route to chaos through
successful period doubling from 2" to 2"*!-orbits. Feigenbaum constants & and « are the same for logistic,
sine and cubic maps. For the quartic map we have 6 = 7.31..., and @ = —1.69....

It is well-known that for 4 > A, one can observe all possible periodic orbits within the chaotic regime.
Figure 15 demonstrates the bifurcation diagram - asymptotic behaviour of the sequence x, as n — +oo
(periodic orbits or chaotic attractors) as a function of the parameter of the map. One can clearly see periodic
windows in the chaotic regime, the period 3 window being the largest. Let 1 = /18 be the value of the
parameter when superstable 3-orbit appears first time when A4 > A, increases. In fact, periodic orbits of all
possible periods appear when A € [A, /1(3)]. Our goal in this section is to continue the results reported in a
recent paper [1] and to reveal and analyze a fascinating pattern of distribution of all the periodic windows in
this range of the parameter.
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(a) Logistic map: x,;; = 44x,(1 — x,,) A

(8) Cubic Map (c) Sine Map (p) Quartic Map

Ficure 14. Bifurcation Diagrams

4.1. Ordering in Terms of the Number of Appearences of Orbits. For any odd number ¢ > 1, and
nonnegative integer s, let A7 denotes the set of values A € [Au,, /18] such that f; has a superstable 2°g-orbit.
In fact, the cardinality [A?| of A? is non-zero and finite for all ¢ and s. In particular,

Ay = {Agh IAGI =M = 1, IAgl =2, [Agl =4, 1Ag' =9, ..
It is well known that the number of appearances of orbits exponentially increases by increasing the period.

Let

q _ [ q q
Al={20 <20y << /lx’M},

where /I‘S’J denotes the value of the parameter which marks the ith appearance of the superstable 2°g-orbit
when the parameter A increases in the range [, /1(3)]. Furthermore this orbit will be called (2°g);-orbit. Note
that 43, = A3,

Assume that we are looking only first appearance of all the orbits in the indicated parameter range.
Numerical results of [1] demonstrate that the first appearances of all the orbits are distributed according to
Sharkovskii ordering (1) when parameter A decreases from /18 to Aw. This is reflected in the first row of the
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Table 3. Moreover, the first appearance of all the orbits is always a minimal orbit. For example, the first
appearance of all the odd orbits is always a Stefan orbit and its digraph is as in Figure 1 of Theorem 1.8. First
appearance of all the 2(2k + 1)-orbits always has Type I digraph as in Figure 2 of Theorem 1.9. The reason
of relevance of exactly Type I minimal 2(2k + 1)-orbit is hidden in the fact the topological structure of the
unimodal map with single maximum is equivalent to the topological structure of the piecewise monotonic
map associated with the Type I digraph of Figure 2. In fact, if we iterate the unimodal map with single
minimum then inverse Type I digraph will be relevant.

Assume now that we are looking to first and second appearances of all the 2°g-orbits with odd ¢ > 7,
and the first appearance of 2°g-orbits with ¢ = 3, 5, while the parameter increases from A, to /18. Numerical
results of [1] and this paper demonstrate the distribution of periodic windows as in (36)-(39). Note that we
use a notation n < m meaning that parameter decreases from the value giving superstable m-orbit down to
the value giving superstable n-orbit.

(36) s e (27) — (2"T)1 < (2"9)2 — (275)1 — (2"T)2 — (273)1 -+
(37) (—361<—442<—281<—362<—201(—282<—121<—
(38) e 18 22y «— 14 «— 18, « 10) «— 145 67 « ---
(39) e 13 =9 1l T =9 51« Ty 3 -
and we have the pattern /llzfl‘ I« /lif‘z“ < /lzzzﬁ_ 3fork =3,4,...;n=0,1,...and in particular notice that while
decreasing the parameter A, (2°g)-orbits are changed with respect to g according to pattern +4 — 2; while the
index of appearance is changed according to the simple pattern 1,2, 1,2,.... This pattern is expressed in

the second row of the Table 3. Interestingly, the second appearance of all the odd orbits is second minimal
odd orbit. In fact, this numerically observed fact was a motivation to introduce the notion of second minimal
orbit as in Definition 1.11. In fact, in all four maps the second appearance of the 7-orbit is exactly Type
I second minimal orbit with cyclic permutation and digraph demonstrated in Table 1 of Theorem 1.12 and
Fig. 29 in Appendix. The reason of the relevance of exactly Type 1 second minimal 7-orbit is hidden in
the fact that the topological structure of the single maximum unimodal map is equivalent to the topological
structure of the piecewise monotonic map associated with Type 1 second minimal 7-orbit of Fig. 29. In fact,
according to Theorem 1.12 among all possible 9 types of second minimal 7-orbits (Figures 29-37), Type
1 7-orbit is the only one with a unimodal structure with a single maximum point. In fact, if we iterate the
unimodal endomorphism with a single minimum point, then the inverse Type I digraph would be relevant.

Assume now that we are identifying up to third appearances of all the 2°g-orbits when the parameter in-
creases from A to /18. Numerical results for all four maps demonstrate the distribution of periodic windows
as in (40)-(43).

(40) e (2MD)3 < (279) < (275))  (279)3 « (") = (273)) -+
(41) <—281<—443<—362<—201<—363<—282<—121<—
(42) e 14 <223 — 18, 10 « 183 «— 14y «— 6 «— ---

(43) ”-<—132(—91<—133<—112<—71<—113<—92<—51<—93<—72(—31<—"-
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Note that we have the pattern /lﬁf‘]‘l < /lif‘f < /lik; I < /lﬁﬁ‘ 3fork =3,4,...;n=0,1,... and in particular
notice that while decreasing the parameter A, (2°g)-orbits are changed with respect to g according to pattern
+4+2-4; while index of appearance is changed according to pattern 1,2,3,... This pattern is expressed in the
third row of the Table 3.

Continuing this process reveals the structure presented in Table 3. As an example assume that we are
identifying up to 9th appearances of all the 2°g-orbits when the parameter increases from A, to /lg. Nu-
merical results for all four maps demonstrate the distribution of periodic windows according to the pattern
expressed in the ninth row of the Table 3. It is satisfactory to explain the pattern only for g-orbits, ¢ is odd
number, since the pattern is preserved for 2"g-orbits. As it is demonstrated in (44), when the parameter
A decreases from /1(3) to A, superstable g-orbits appear according to pattern +8-2+2-4+4-2+2+2-8 starting
with superstable 3-orbit (written in red in (44)), while index of appearance changes according to pattern
1,8,4,7,2,6,3,5,9,...

(44) 5, 13 115 C 9 e llg Ty e 11, &9, < 115 & 3,

To construct the table in general, first consider only appearances that are powers of 2. Now, say we
wanted to construct the 2" row of the table, then the two outermost entries, that is, the first and 2"-th entries
are set to +2(n + 1) and —2n respectively. Then, the two entries exactly in the middle of the 1st and 2"th,
namely the 2"~ 'st and 2"~ + Ist entries are set to —2(n — 1) and +2(n — 1) respectively. Now, find the median
entries between the two halves, 1 to 2"~' and 2"~! + 1 to 2" and set them to —2(n — 2) and +2(n — 2), and
continue in this fashion setting each new set of median entries to —2(n — i) and +2(n —i) fori = 3,--- ,n—1
as illustrated in Figure 15.

To generate the N-th row that is not a power of 2 say 2" < N < 2!

(1) Find the pattern for 2" row

(2) LetJ=N-2"

(3) Replace the last J values, {pl,pg, R AR ,p,}, of the 2" pattern according to the following rule:
@ If p; >0, p; = {p; +2.-2}
(b) f p; <0, p; = {+2.p; -2}

The procedure to generate the indices is recursive. Given a pattern corresponding to row i of the table to
generate the row i + 1, first counting from 1, left to right, identify the position of i, say it’s in position m and
insert the new one between positions m — 2 and m — 1, unless position m — 1 is 1, in which case insert the
new (highest) index at the end of the list or in the (i + 1)"* position. For example, to go from row 7 to row
8, we start with row 7 and observe that the highest index, 7, is in position 3 so we insert the new index, 8,
in between the index 1 in position 1 and the index 4 in position 2. However, in going from row 8 to row 9
observe that 8 is in position 2 so position m — 1 is 1. So, we insert 9 at the end of the list in position 9.

4.2. Constant Shift in Appearences. Numerical results demonstrate that for all four maps, parameter range
[Aco, /lg] is divided into infinitely many blocks. For arbitrary fixed appearance index j = 1,2, ... we have

(45) AETLAT, askT ey 5=0,1,2,...,
(46) B> > > >0, > > A A Ao, ass? oo

Note that the limit values A7 in (45) are independent of j. Moreover, the results presented in a Table 2
demonstrate exponential convergence in (45):

(47) AT -A0 ~ Co*, ask T e,
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where C is some positive constant, and ¢, is a convergence rate. With the notation g in Table 2, we expressed
the fact that m is the highest period of orbit used for the approximation of the convergence rate 6. For exam-
ple, 69 = 2.817... is calculated for up to a 31-orbit and it is approximately the same up to the 5th appearance
of all the odd orbits. This results demonstrates that for any fixed two appearance indices, the ratio of dis-
tances of parameter values for respective appearances of superstable 2°(2k + 1)-orbits is an asymptotically

positive constant for large k, i.e. for any fixed positive integers i and j we have

2k+1
z 5.J

k—o0 /12k+1 —q®
8,0

-2
=C

s

Aso1—

A
TasLE 2. Convergence Rates (—/1 - ‘]2
o~

=

> 0.

) for 2°(2k + 1) orbits

s Appearance

highest orbit used
Convergence Rate

Logistic

Sine

Cubic

| Quartic

._.
AN >N VS I ()

—_
~ LW

NSRS S BN S
A WD

31
2.81758
31
2.81747
31
2.81734
31
2.81712
31
2.81707
30
2.92338
42
2.95071
38
291317
34
2.73591
84
2.94355
92
2.94121
100
2.94257
84
2.94243

31
2.93749
31
2.93741
31
2.93731
31
2.93713
31
2.93710
38
2.94158
42
2.93561
38
2.89814
34
2.72223
68
2.93108
76
2.91648
84
2.92619
84
2.92603

31
2.96453
31
2.96448
31
2.96437
31
2.96421
31
2.96402
38
2.94044
42
2.93446
38
2.89683
34
2.60199
68
2.93112
76
2.91649
84
2.92622
84
2.92618

31
3.95368
31
3.95363
31
3.95362
31
3.95358
31
3.95351
38
4.54383
42
4.53395
38
4.52329
34
4.32894
68
4.40456
76
4.40001
84
4.40308
84
4.40154
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4.3. Feigenbaum Universlity in General Classes. Numerical results demonstrate that all the odd orbits
which appear in the parameter window (/l"",/lg] are going to go through infinitely many period doubling
transformations when A decreases towards A.. This is demonstrated in the diagram (40)-(43) if we consider
periods up to 3rd appearances. Let us fix any positive integer J as highest appearance index, and deduce
from the Jth row of the Table 3 the distribution of all the odd orbits up to Jth appearance in the parameter
window (A, /1(3)] (e.g. if J = 9 then the portion of the odd orbits up to 9th appearnces between 3; and 5, are
demonstrated in (44)). All these orbits are going to go through infinitely many bifurcations when A decreases
towarsd A, and for any positive integer s, the sth bifurcation appears in the parameter window (47 |, 47).
It is fascinating that all these transition routes to chaos follow Feigenbaum universality. In particular, it is
revealed that the Feigenbaum universality is relevant in very general classes of maps beyond the unimodal
smooth endomorphisms.

Let integers k > 1 and j € [1,|AJ""[] be fixed. Recall that /12"“ is the value of the parameter A when

superstable (2k + 1)-orbit appears jth time while increasing A from /l to /13 Numerical results demonstrate
that for all four maps we have

(48) B LA, as s oo
/12k+1 /12k+l
s—1,j s=2,j
“) lim Tt gt =0
(50) AT =20~ C6°, ass T oo,

where 0 = 4.6692... in the case of logistic, sine and cubic maps (Tables 4, 5, 6); 6 = 7.31... in the case of
the quartic map (Table 7); C > 0. Hence, we see that the convergence rate of the sequence of parameter
values for superstable (2°(2k + 1));-orbits to critical value A, as s — +oo from above is the same as the
convergence rate of the sequence of parameter values for the superstable 2°-orbits to the same value A
from below. To clarify if Feigenbaum universality mechanism is indeed relevant we check asymptotical
properties of the scaling factor for successful period doublings from (2°(2k + 1));- to 212k + 1)) j-orbits.
Let di"j” be a directed distance from the maximum point of the map to the closest element of the superstable

2512k + 1));-orbit, i.e.

2k+1 25(2k+1
(51) ds,j+ = Xmax — f/12k(+] * )(xmax)'

s+1.,j

Numerical results in Tables 4-7 demonstrate that for all four models we have
2k+1

s=1,j
(52) }EE}O d2k+l =a
where @ = —2.5029... in the case of logistic, sine and cubic maps (Tables 4, 5, 6); @ = —1.69... in the case

of the quartic map (Table 7). Hence, we see that the scaling factor of the successive bifurcations of the
superstable (2°(2k + 1)) ;-orbits when A converges to critival value Ao, as s — +oco from above is the same
as the scaling factor of the successive bifurcations of the superstable 2°-orbits when A converges to critical
value A, from below. This indicates that the doubling transformation (31) with scaling factor a = a is a
driving force for the transition to chaos through successful bifurcations of superstable (2°(2k + 1)) ;-orbits for
s =0,1,2,.... Therefore, Feigenbaum’s universality theory should be valid beyond the class of €' -unimodal
maps - the classes of maps whose structure is defined with gth iteration of unimodal maps, where g = 2k + 1
is any fixed odd number. Following Feigenbaum [9, 10] define the functions

(53) zmw—M(mﬁﬁm(mezuw
()

s+m,j
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FiGgure 16. Period doubling mechanism for 3, showing the scaling

(54) & (x) = lim g8 (x) = lim (-@)° f@k*”(—( x)y), k=1,2,..
m—oo §—00 © —)

Numerical results demonstarte that for any fixed non-negative integer &, family of functions in (53), (54) are
universal functions. The case k = 0 in (53), (54) is a particular case of classical Feigenbaum universality
theory explaining the transition from 2°-orbits, s = 0, 1,2, ... to chaos through successful period doublings
(see (29) and following description of the rigorous universality theory). In this case g'!) = g is a fixed point
of the doubling operator .# as in (32); each gﬁ,:) = gn 1s the intersection of %, with the one-dimensional
unstable manifold passing through g. Figure 17 demonstrates the convergence to the universal function g;
in Figure 23(a) for the logistic map after calculation of the few terms under the limit sign in (53).

Figures 18, 19, 20, 21, 22 demonstrate the convergence in (53) to universal functions g%"” via successive
bifurcations of superstable (2°3);-, (2°7);-, (2°7)2-, (2°9)1-, (2°9),-orbits respectively under the transition
(48)-(50) for the logistic map. Note that the side length of the green square in each of the Figures 18-22 is
equal to respective value of déz,,k].”, and Figures 23(b),(c), 24(a)(b) demonstrate the first four terms of the limit
expression in (53).

In fact, the universal functions g?*!, k = 1,2, ... in (54) are fixed points of the doubling operator .%, and
solve the functional equation in (32). That is the reason that the convergence rate of parameter sequences in
(48)-(50) is the same universal constant 6. Moreover, It is easy to prove that if function g solves functional
equation (32), then any iteration of g is also a solution of the same equation. The normalization condition
g(0) = 1 can be arranged by replacing g with g, = ug(x/u), and by choosing the constant y appropriately.
Indeed, for arbitrary u # 0, g, is a solution of the functional equation (53) if g is so. Hence, universal
functions g2**! must be exactly 2k + 1st iterations of the universal function g (which is the justification of
our notation), which is the fixed point of the doubling operator in the class of %’'-unimodal maps. For any
fixed k = 1,2, ..., g%*! represents a fixed point of the doubling operator (and hence solving the functional
equation in (32)) in the more complicated class of maps which is the (2k + 1)st iteration of the class of
%'-unimodal maps.

Hence, the numerical analysis suggests that the known rigorous universality theory ([7]) must be true in
a much larger class of maps than €' -unimodal maps, and this generalization is a driving force of infinitely
many Feigenbaum scenarios of transition to chaos through successive bifurcations of all possible odd or-
bits as it is outlined in (48)-(54). We end our presentation with the description of the anticipated rigorous
universality theory in the particular case of k = 1, or in the class of maps which is the 3rd iteration of the
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%' -unimodal maps. Let

P ={p:¢=y",yeP).

Assume that ¢ € P satisfies (30). Since y is continuous, there exists e € (a, 1) such that ¥(e) = 0, and
Y2 is increasing and maps [0, ] onto [—a, 1]; W is decreasing and maps [e, 1] onto [b, 1]. By continuity
there exists d € (0, a) such that *(d) = 0. Now consider symmetric function ¢ = . ¢ is increasing and
maps [0,d] onto [b, 1]; ¢ is decreasing and maps [d, e] onto [—a, 1]; ¢ is increasing and maps [e, 1] onto
[—a, ¥ (b)]; This guarantees that the second iteration ¢2 = y° maps [—a, a] to itself. Indeed, first of all from
(30) it follows that ¢(a) > b, and hence, ¢ maps [—a,a] to [b,1]. Also, since 1//2 maps [—a, a] to itself,
we have ¢(b) = y*(a) < a. Accordingly, ¢ maps [b, 1] into [—a, a], and hence & maps [—a, a]] to itself.
Therefore, the doubling transformation .# maps [—1, 1] into itself. Figure 16 demonstrates the structure of
¢ =y and ¢ = y° under the condition (30).
The following properties of .% are key features of the universality theory in the class P3:

.7 has a fixed point g*> with a = —a~!. Namely, g* solves the functional equation in (32) in the class
IP3. In fact, g* is precisely 3rd iteration of the fixed point of the doubling operator .% in the class of
%' -unimodal maps, defined in (32).

The Frechet derivative of .# at the fixed point g* has a simple eigenvalue equal to §; the remainder
of the spectrum is contained in the open unit disk. Therefore, .# has a one-dimensional unstable
manifold W, and a codimension one stable manifold W, at g>.

W, intersects transversally the codimension-one surface Z? of maps with superstable 2-orbits:

I} ={g P’ ¢%0) =0}
Consider a set X3, of maps with superstable 2"-orbits (inverse images of Z?), ie.
L, =F "I =g 9= F" g0, 0 €]}, m=2,3,...
Then the distance between X7, and W, decreases like 6~ for large m.
Consider arbitrary one-parameter family 1 — ¢, of maps and treat it as a curve in IP°. Assume that
this curve crosses stable manifold W; at 1., with non-zero transverse velocity. This implies that for

all large m, there will be a unique ,, near . such that ¢, € =3, is a map with superstable 2"-orbit.
Then

lim 7/, = ghum=1,2.3,... lim Fy,_ =g’

where g, is an intersection of ¥, with W,; g is a fixed point of .# which solves functional equation
in (32) in the class IP*. All the functions g’ and g* are universal functions.

For example, numerical calculation of the universal function g? is demonstrated in Figure 24(b).
Similar description of the rigorous universality theory can be outlined in various classes

P* =g ¢ =y yeP), k=234,..
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5. CONCLUSIONS

The following are the main conclusions of this paper:

We indroduced the notion of a second minimal orbit with respect to the Sharkovski ordering, for
continuous endomorphisms on the real line. It is proved that there are 9-types of second minimal
orbits up to their inverses. It is conjectured that there are 4k — 3-types of second minimal (2k + 1)-
orbits, with accuracy up to their inverses. The proof of this conjecture is addressed in a forthcoming
paper.

We demonstrate the numerical results which reveal a fascinating universal pattern of the distribution
of periodic orbits within the chaotic regime of the bifurcation diagram of the one-parameter family
of unimodal maps, when the parameter changes in the range between the Feigenbaum transition
point to chaos and the value when the superstable 3-orbit appears for the first time. Numerical
results demonstarte that this parameter range is divided into infinitely many Sharkovski s-blocks
where all the 2°(2k + 1)-orbits are distributed and the pattern is independent of s.

The first appearance of any orbit in the indicated parameter range is always a minimal orbit [1].
Numerical results of this paper demonstrate that the second appearances of all odd orbits are always
second minimal orbits with a Type 1 digraph. The reason for the relevance of exactly Type 1 second
minimal (2k+1)-orbits are hidden in the fact that the topological structure of the single maximum
unimodal map is equivalent to the topological structure of the piecewise monotonic map associated
with Type 1 second minimal (2k+1)-orbits.

Numerical results demonstrate that the convergence of the successive parameter values for super-
stable 2°(2k + 1)-orbits within each s-block is exponential with a rate independent of the appearance
index. In particular, for any fixed two appearance indices, the ratio of distances of parameter values
for respective appearances of superstable 2°(2k + 1)-orbits is asymptotically constant for large k.
Otherwise speaking, there is an asymptotically constant shift in appearances.

Numerical results demonstrate that any superstable odd orbits in the indicated parameter range are
going through successful period doublings, according to the Feigenbaum scenario when the parame-
ter decreases to the critical transition point. In particular, this reveals that the Feigenbaum universal-
ity is true in very general classes of maps, such as the class of maps which are the (2k + 1)st iteration
of the class of ¢! -unimodal maps. This generalization is a driving force of infinitely many Feigen-
baum scenarios of transition to chaos through successive bifurcations of all possible odd orbits in
the indicated range when the parameter decreases towards the first transition value to chaos.

This paper outlines the elements of the rigorous Feigenbaum universality theory in the general class
of maps, which are the (2k + 1)st iteration of the class of ¢! -unimodal maps.
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APPENDIX A. TOPOLOGICAL STRUCTURE AND DIGRAPHS OF SECOND MINIMAL 7 PERIODIC ORBITS
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AprPENDIX B. PERTIOD DOUBLING UNIVERSALITY

TasLE 4. Logistic Map, Calculation of 6, @ and A, for Period Doubling Starting at (2k + 1) ;-orbit.

12k+1 _/12k+ 1

g1 N2k+1 _/12k+]

s| @k vy, | o= R | S = S

o 3 | | |

1| 61 | | —2.454268432041252 | 0.89594979661707406416946181313487
2| 12; | 4507542941 | —2.488688613626316 | 0.89313050797449905484309938153867
3| 24 | 4.695932444 | —2.499742045692276 | 0.89262750317573161723282801462988
41 48; | 4.667366742 | —2.502259346885118 | 0.89251658164785687538727952773507
0o s | | |

1 10, | | —2.461541495514402 | 0.8941969996574211991975179787555
2] 20, | 4797049170 | —2.491558266385502 | 0.89289715499887409729439954015805
3] 40, | 4.657504624 | —2.500470850008986 | 0.89257341510864992280823790529933
4] 80, | 4.671681878 | —2.502380674035116 | 0.89250508785064221181203172037547
o 7| | |

1 14 ~2.476379655788202 | 0.89371271769926124261883715641013
2| 28, | 4.878393687 | —2.493625548299273 | 0.89280544741336308632755221705384
3] 561 | 4.647942857 | —2.499064991443559 | 0.89255347664146957131650654244597
41 112, | 4673628954 | —2.499927161986120 | 0.89250081855148633129248533587511
o 7 | | |

1 14 | —2.441360908576077 | 0.89478972189272774184345603394886
2| 28, | 4.686149745 | —2.488711635264935 | 0.89298530741659061037348218804723
3] 56, | 4.671758208 | —2.499866778948107 | 0.89259341442273037490686165466147
41 112, | 4669957285 | —2.502262858497064 | 0.89250934498693109803019762752248
of % | | |
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1| 18, | | —2.482362906116526 | 0.8939065325251966362138889769849
2| 36, | 4.843746928 | —2.490050317301194 | 0.89284322757970466863615377406862
3 72, | 4.652331109 | —2.501126509692929 | 0.89256167561679316836096148965078
| 144, | 4671925051 | -2.502292842294823 | 0.89250257204997931300986240368201
0] 1| | |
1| 22, | | —2.493231131576156 | 0.89363322498180204977764031226799
2| 44, | 4.879885441 | —2.491347078570966 | 0.89278521816361457832345187927146
| 88, | 4.648157894 | —2.501549958092916 | 0.89254921933905617305287183231895
41 176, | 4.672309401 | —2.502583102468284 | 0.89249990372894738969949420976901
TasLE 5. Sine Map, Calculation of ¢, @ and A, for Period Doubling Starting at (2k + 1) -orbit.
5| (2°Qk+1); | 6= % j— ‘ Ao = % + Ak
o 3 | | |
1| 6 | | —2.458609821276883 | 0.86873961050980452273981931736855
2| 12, | 4730427896 | —2.492752378392625 | 0.86627858717481051811520136603587
3 24, | 4.689585511 | —2.500535459353473 | 0.86573097100235693427121291937719
4 | 48, | 4.673272858 | —2.502381199234309 | 0.86561183926284564115177937682167
of 5 | | |
1| 10 | | —2.469638603784021 | 0.86753566714689360352714389016132
2| 20, | 4729401371 | —2.495394712087649 | 0.86601487306407749630463253677485
3 40, | 4.680960160 | —2.501268413804899 | 0.86567323757086173705919319289625
4| 80, | 4671707451 | —2.502538204015066 | 0.86559942426768431025803197603423
of 7| | |
1| 14, | | —2.478098385927731 | 0.86709477011987882601778050648816
2 | 28, | 4723917393 | —2.497172992020666 | 0.86591599556540358179793949158351
3| 56, | 4.677996484 | —2.501655211509605 | 0.86565177172897623001957487637671
41 112 | 4.671133912 | —2.502632946021479 | 0.86559481485612672660444462402538
of 7 | | |
1| 14, | | —2.458318467171219 | 0.86797819747052140648782279162278
2 | 28, | 4731506379 | —2.493322400484982 | 0.86611299007141507247691453285609

3| 56, | 4.684043797 | -2.500817171563748 | 0.86569462994922612770574190372751
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41 112, | 4672304839 | —2.502470979507185 | 0.86560402258559291281598155802608
0] 9% | | |

Ll 18 | | —2.473348814781689 | 0.86727607974117952905046531828577
2| 36, | 4726421035 | —2.496081537357099 | 0.86595668844377796622573295012107
3] 72, | 4679197352 | -2.501449848132213 | 0.86566059506957407320639774974063
41 144, | 4671371561 | —2.502598648169756 | 0.86559670934974347986564146576437
0] 1| | |

1| 22, | | —2.478761450016932 | 0.86700129994787830356496279859269
2| 44, | 4721501647 | -2.497198146435454 | 0.86589475408483849677912881221641
3] 88, | 4.677401460 | —2.501644350274001 | 0.86564717264860741565372582983376
4] 176, | 4.671023240 | —2.502808956533517 | 0.86559382810117226060517481733585

TabLE 6. Cubic Map, Calculation of 9, @ and A, for Period Doubling Starting at (2k + 1) ;-orbit.

s| @k | o= H | | = B e

0| 7 |

1 14| | —2.372145654798267 | 0.88804789214496225396997450138614
2 28, | 4723797089 | -2.531319536769563 | 0.88657074923765426350764650677041
3] 56, | 4.679053349 | —2.485852964973201 | 0.88624011561640477208179462882797
4| 112, | 4671403318 | —2.508524126657965 | 0.8861687905436954155321253795437
o % | | |

L 18 | | —2.392012536453845 | 0.88752721358053912198938524464942
2| 36, | 4.68688313 | —2.529350970159389 | 0.88644662175937664880268598598709
3] 72, | 4677220605 | —2.488427281068384 | 0.88621331661356273506496985070365
41 144, | 4670698719 | —2.507942183936122 | 0.88616303735274261404172741003216
0| 11

1| 22, | | —2.401139119219189 | 0.88730862290022364353463470838554
2| 44, | 4676860906 | —2.528386409182592 | 0.88639767157841350475029194748652
3| 88, | 4.676259561 | —2.489467206157571 | 0.88620274999149280074214812466681
41 176, | 4670438970 | —2.507685078672229 | 0.88616077018890463311199243290913
of 9% | | |

L 18| | —2.554658949633893 | 0.88793016259195921272846049892483

2 ‘ 363 ‘ 4.68688313 ‘ —2.458084127102111 ‘ 0.88654154523392702086619986540302
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3| 725 | 4.677220605 | —2.515688945322818 | 0.88623381029921983303969637851815
| 1444 | 4.671226897 | —2.496763200983061 | 0.88616743555663080275354412407428

of 15 | | |

1| 225 | | —2.552146100063579 | 0.88746619745994215376313738384434

2| 443 | 4682776145 | —2.464930838112400 | 0.88643257966021943800101347433979

3 883 | 467700628 | —2.514465146334054 | 0.88621028678047746387703277579242

4 1765 | 4.670623793 | —2.497475746154126 | 0.8861623868421112195459594974699
BER | |

1| 265 | | —2.551864737909594 | 0.88728231056206985430559834418961

2| 523 | 4.675899873 | —2.467548655440053 | 0.88639187593569822321531870569661
| 1043 | 467613272 | —2.513787216936584 | 0.88620149972504358736524328296578

41 2083 | 4.670402066 | —2.497175141254314 | 0.88616050215386974275158350982972

TaBLE 7. Quartic Map, Calculation of 6, @ and A, for Period Doubling Starting at (2k + 1);-orbit.

2k+1 _ 32k+1 2k+1 2k+1 _ )2k+1
A 9L d A A

s | @@+ 1), | 6= it | gt ‘ A = =l 2k

of 7 | | |

1 14 | ~1.685016151822741 | 0.96795394159304505710938590181654
2| 28, | 7.257463741 | ~1.689616004337216 | 0.96852661836071093093947880007475
3| 56, | 7.286379135 | —1.690226809471704 | 0.96860664476713929365715844052214
4| 112, | 7.284942740 | —1.690235270778622 | 0.96861762018986771419027828078051
of % | | |

L 18| | ~1.706637878653648 | 0.96810622414370329285875049828089
2| 36, | 8.011416641 | ~1.686501852919600 | 0.96857120079598008323506215342665
3| 72, | 7.142547386 | —1.691119908779726 | 0.96861215098726192735905188554491
4| 144 | 7310491719 | ~1.689505962339770 | 0.96861839106521838957990415362158
o] 1, | | |

1 22, | | ~1.707417466698786 | 0.96820355154025378646036479281196
2| 44y | 8.104519001 | —1.686805041920849 | 0.96858189445359425582754617346914
3| 88, | 712879172 | —1.691103312794999 | 0.96861370315863679308330737084034

4 ‘ 176, ‘ 7.313150062 ‘ —-1.687906060312480 ‘ 0.96861860204728755478902582207586

of % | | |
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1) 18 | | —1.691326896602970 | 0.96796023617845385063351410241339

2| 365 | 7.442423313 | -1.688539412451539 | 0.96853694166575197109039719178152
| 725 | 7.248421264 | —1.690519553189105 | 0.96860779987299731141046980037075

41 1445 ] 7.292133658 | —1.690006740550708 | 0.96861778591379699935954519679743
N | |

1| 225 | | —1.708260498375539 | 0.9681230884282922464955139101004

2| 445 | 8.094606895 | —1.686293933989813 | 0.96857449717045342820862820345668
| 8835 | 7.127647184 | —1.691037152267567 | 0.96861258004120980702800102624212
| 1765 | 7.313418511 | —1.692380649828639 | 0.96861845058231499395485478509606
13

1| 265 | | —1.707280529206626 | 0.96821226051351762376085481275083

2| 523 | 8.103299085 | —1.686936763535888 | 0.9685826506575972170190345396649

3] 1045 | 7.129597110 | —1.691348289167268 | 0.96861381995072885385226162850149

4] 208 | 7.313591663 | —1.678694125925514 | 0.96861861872806814873905892278321

ApPENDIX C. PARAMETER TABLES

The following few pages contain parameter values that we used to construct the tables and figures in this
document. Below is a key outlining the table headers.
e Parameter: the numeric value of the parameter for the associated map
o P: the super stable periodic orbit corresponding to the above parameter value
e A: the appearance number of the periodic orbit corresponding to the parameter value
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TasLe 8. Parameter Values for Lo-
gistic Map f(x) = 44x(1 — x)

Parameter

0.5
0.8090169943749475
0.8746404248319252
0.8886602156922059
0.8916668449640671
0.8925435410844437
0.8925462153481506
0.8925493727315035
0.8925536426542862
0.8925582633384074
0.8925618374268403
0.8925652869739683
0.892573585
0.892582971578052
0.8925860303078793
0.8925889559052782
0.8925934776392263
0.8925977476162251
0.8926000233456378
0.8926020087836917
0.8926169497695979
0.8926273
0.8926273095473648
0.8926424478626298
0.8926468116175647
0.8926516782349787
0.8926574315669168
0.8926586161442951
0.8926614251928092
0.8926652649929492
0.8926842268307457
0.8926913356572714
0.892695290032331
0.8926999134097414
0.8927022801053289
0.8927050057536571
0.8927172512571973

P

1.0
2.0
4.0
8.0
16.0
176.0
144.0
176.0
112.0
176.0
144.0
176.0
80.0
176.0
144.0
176.0
112.0
176.0
144.0
176.0
176.0
48.0
144.0
144.0
176.0
176.0
144.0
176.0
112.0
144.0
112.0
144.0
144.0
144.0
112.0
144.0
112.0

A
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
1.0
3.0
2.0
4.0
1.0
5.0
3.0
6.0
2.0
7.0
4.0
8.0
9.0
1.0
5.0
6.0
10.0
11.0
7.0
12.0
3.0
8.0
4.0
9.0
10.0
11.0
5.0
12.0
6.0

Parameter
0.8927293163954468
0.8927391046311725
0.892745143089132
0.8927531275154216
0.892765612708715
0.8927803546566632
0.8928002912804274
0.8928218666978042
0.8928385565717427
0.8928546647294011
0.89286570826588
0.8928758764598548
0.892893412
0.8929185769659241
0.8929372464436822
0.892951531075995
0.892965194521167
0.8929863118792093
0.8930062532268376
0.8930168810677759
0.8930261525483736
0.8930959299227967
0.893144323
0.8932150514348008
0.8932354347086963
0.8932581641927477
0.8932657490534088
0.8932850347611261
0.8933036890878607
0.8933216260408074
0.8933978510203553
0.8934102079449422
0.8934213197439284
0.8934434098714304
0.8934618867418858
0.8934834850666612
0.8934945442626503
0.8935645266299209
0.8936209165390675
0.8936666925819085
0.893694946890496

P
112.0
112.0
112.0
88.0
72.0
88.0
56.0
88.0
72.0
88.0
112.0
112.0
40.0
112.0
88.0
72.0
88.0
56.0
88.0
72.0
88.0
88.0
24.0
72.0
88.0
88.0
88.0
72.0
56.0
72.0
72.0
56.0
72.0
72.0
72.0
72.0
56.0
56.0
56.0
56.0
56.0

A
7.0
8.0
9.0
1.0
1.0
2.0
1.0
3.0
2.0
4.0
10.0
11.0
1.0
12.0
5.0
3.0
6.0
2.0
7.0
4.0
8.0
9.0
1.0
5.0
10.0
11.0
12.0
6.0
3.0
7.0
8.0
4.0
9.0
10.0
11.0
12.0
5.0
6.0
7.0
8.0
9.0

35
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Parameter
0.8937323239550504
0.8937906969816722
0.8938595743690791
0.8939527169808105
0.8939585734139139
0.8940534775173637
0.8941313720345442
0.8942065586523593
0.894258151388425
0.894387542
0.8945920053348253
0.8946586324286321
0.8947223418891009
0.894820829737213
0.8949138449982476
0.8949634233198132
0.8950067008708713
0.8953321587557187
0.8955574589550901
0.8955574589550902
0.8958862652026675
0.8959812147446011
0.8960872008248462
0.8961224931207159
0.896187724634684
0.8962125114340377
0.8962994172610155
0.8963829388112704
0.8967376720178901
0.8967952385115885
0.8968470365678113
0.8969500795862201
0.8970359452655111
0.8971364940346715
0.8971878607732342
0.897349960937811
0.8975119706948392
0.897773472481103
0.8979846837132985
0.8981144866729309
0.898285536828268
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P

44.0
36.0
44.0
28.0
56.0
44.0
36.0
44.0
56.0
20.0
44.0
36.0
44.0
28.0
44.0
36.0
44.0
44.0
12.0
36.0
36.0
44.0
44.0
44.0
44.0
36.0
28.0
36.0
36.0
28.0
36.0
36.0
36.0
36.0
28.0
16.0
28.0
28.0
28.0
28.0
22.0

A
1.0
1.0
2.0
1.0
10.0
3.0
2.0
4.0
11.0
1.0
5.0
3.0
6.0
2.0
7.0
4.0
8.0
9.0
1.0
5.0
6.0
10.0
11.0
12.0
13.0
7.0
3.0
8.0
9.0
4.0
10.0
11.0
12.0
13.0
5.0
2.0
6.0
7.0
8.0
9.0
1.0

Parameter
0.8985555274564071
0.8988759584501568
0.8993095495931392
0.8993368709151569
0.8997801682018646
0.900145977896958
0.9004988403933514
0.900739199236906
0.9009615610934926
0.9013464593838434
0.9023089359519223
0.9026237070977975
0.9029255119168045
0.9033912545246447
0.9038307061198744
0.9040647384776517
0.904267999021263
0.904899707989313
0.9058068890614333
0.9068893823788807
0.907823200062555
0.9084892763171067
0.908943552643572
0.909446366503746
0.9095331442064777
0.909616877636151
0.9099232980258403
0.9100404763587777
0.9104560684602736
0.9108571928810814
0.9113101549515245
0.9117622003804752
0.9122196907504082
0.9125698915821074
0.9128454558604397
0.9130921658581117
0.9133219453957768
0.913580229382562
0.9137869897027185
0.9140000120689893
0.9142572545642417

P
18.0
22.0
14.0
28.0
22.0
18.0
22.0
28.0
28.0
10.0
22.0
18.0
22.0
14.0
22.0
18.0
22.0
16.0
22.0
6.0
12.0
18.0
22.0
22.0
16.0
22.0
22.0
18.0
14.0
18.0
16.0
10.0
16.0
18.0
14.0
18.0
16.0
18.0
12.0
18.0
16.0

A
1.0
2.0
1.0
10.0
3.0
2.0
4.0
11.0
12.0
1.0
5.0
3.0
6.0
2.0
7.0
4.0
8.0
3.0
9.0
1.0
2.0
5.0
10.0
11.0
4.0
12.0
13.0
6.0
3.0
7.0
5.0
2.0
6.0
8.0
4.0
9.0
7.0
10.0
3.0
11.0
8.0



Parameter
0.9144843071853473
0.9147365695291755
0.9150310389753986
0.9155481259216439
0.9156307240370415
0.9163686307982645
0.9167444770891021
0.9170937820054763
0.9174080707508858
0.9176716828336033
0.9179438449410644
0.918252061590967
0.9185479687517751
0.9187709570364896
0.9189599787371455
0.9191588201786222
0.9193383506312537
0.9194727761973615
0.9195830311115901
0.9196435795904915
0.9196439467055643
0.919644981018353
0.9196457756192704
0.9196459733265683
0.919646584854938
0.9196478947752951
0.9196561008171046
0.9196791956839688
0.9197000311872442
0.9197006174971487
0.9197013110760547
0.9197027892812369
0.9197070458081346
0.9197149184463773
0.919720432954781
0.9197223223802037
0.9197440854758494
0.9198001163269032
0.9198006805909831
0.9198015834347826
0.9198060374454656

P
18.0
14.0
18.0
8.0
16.0
14.0
16.0
12.0
16.0
14.0
16.0
10.0
16.0
14.0
16.0
12.0
16.0
14.0
16.0
27.0
25.0
23.0
31.0
33.0
29.0
21.0
19.0
17.0
33.0
29.0
27.0
25.0
19.0
23.0
31.0
21.0
15.0
29.0
31.0
21.0
25.0
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A
12.0
5.0
13.0
2.0
9.0
6.0
10.0
4.0
11.0
7.0
12.0
3.0
13.0
8.0
14.0
5.0
15.0
9.0
16.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.0
3.0
3.0
3.0
3.0

Parameter
0.9198101479894252
0.9198106458924652
0.9198220811388089
0.9198265854125903
0.919864618020104
0.9199002311171905
0.9199010748389
0.919902361355556
0.9199062616676469
0.919909788780055
0.9199257014200635
0.9199604232996532
0.9199641405971246
0.9199901616901687
0.9200000703977084
0.9200028110917958
0.9200076215315786
0.9200103594866011
0.9200106468302367
0.9200112670767221
0.9200132410614315
0.9200389918663741
0.9200856001137521
0.9201002143603496
0.9201016145225464
0.9201028782109886
0.9201090481341733
0.9201105233194542
0.9201219025506991
0.9201255900181393
0.9201422993862319
0.9202001209047099
0.9202005092526497
0.9202028502440535
0.9202076590267333
0.9202106868115649
0.9202121549955485
0.9202163098045701
0.9202278551537337
0.9202587007006321
0.9203000082728384

P

23.0
33.0
17.0
27.0
19.0
29.0
31.0
23.0
27.0
25.0
13.0
33.0
21.0
19.0
27.0
23.0
25.0
33.0
31.0
29.0
21.0
17.0
19.0
33.0
29.0
25.0
21.0
31.0
23.0
27.0
15.0
33.0
31.0
19.0
27.0
25.0
29.0
23.0
21.0
17.0
33.0

A

3.0
3.0
2.0
3.0
3.0
4.0
4.0
4.0
4.0
4.0
1.0
4.0
4.0
4.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
3.0
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
2.0
7.0
7.0
6.0
7.0
7.0
7.0
7.0
7.0
4.0
8.0

37
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Parameter
0.9203010086311395
0.9203057998429245
0.9203127589957107
0.9203165520944553
0.9203227908438997
0.920342369174139
0.9203571728536436
0.9204296685342831
0.9204767917194359
0.9204782548259948
0.9204811789142139
0.9204886765851206
0.920491177506046
0.9205005434280713
0.9205016326349753
0.9205060640270746
0.9205100093913368
0.9205152878078745
0.9205204912373594
0.9205229230057148
0.9205419557953939
0.9206005784482749
0.9206016043882802
0.9206035067349837
0.9206106074930887
0.9206233780780297
0.9206307692696445
0.9206445592873718
0.9206503319730334
0.9206722630021638
0.920701250060699
0.9207028636238962
0.9207058521120631
0.9207091690061839
0.9207108947869364
0.9207162655093767
0.9207419764574405
0.9207611508956879
0.9208003677980954
0.9208013027396837
0.9208044399266484

U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

P

29.0
23.0
25.0
27.0
19.0
31.0
21.0
11.0
31.0
27.0
25.0
23.0
29.0
27.0
31.0
21.0
33.0
25.0
29.0
23.0
19.0
31.0
27.0
29.0
17.0
25.0
23.0
21.0
33.0
19.0
21.0
33.0
27.0
25.0
29.0
23.0
15.0
31.0
31.0
25.0
27.0

A
8.0
8.0
8.0
8.0
7.0
8.0
8.0
1.0
9.0
9.0
9.0
9.0
9.0
10.0
10.0
9.0
9.0
10.0
10.0
10.0
8.0
11.0
11.0
11.0
5.0
11.0
11.0
10.0
10.0
9.0
11.0
11.0
12.0
12.0
12.0
12.0
3.0
12.0
13.0
13.0
13.0

Parameter
0.9208098673955014
0.9208136718855724
0.9208200470149717
0.9208239900768528
0.9208357735776028
0.9208669721008041
0.9209010909575819
0.9209014409363525
0.9209022018802908
0.9209065639725457
0.9209125024919976
0.9209159028698781
0.9209285533727417
0.9209609162728946
0.9210201003306971
0.9210523200855003
0.9210565730461244
0.921060891466536
0.9210642268502021
0.9210684773689786
0.9210811677775855
0.9210906606157544
0.9211005911749909
0.9211045739676469
0.9211102289158498
0.9211152051517735
0.9211323778639362
0.9211358613331826
0.9211463306470374
0.9211500728400285
0.9211820874871725
0.9212003053975469
0.9212007128291876
0.9212015158659378
0.9212029872773682
0.9212066360711628
0.9212095811496441
0.9212170738871973
0.9212463984436541
0.921300240890266
0.9213006615814194

P

19.0
29.0
33.0
23.0
21.0
17.0
33.0
31.0
29.0
25.0
23.0
27.0
19.0
21.0
13.0
29.0
25.0
31.0
23.0
27.0
21.0
33.0
33.0
25.0
29.0
19.0
23.0
27.0
21.0
31.0
17.0
33.0
29.0
31.0
23.0
27.0
25.0
21.0
19.0
33.0
29.0

A
10.0
13.0
12.0
13.0
12.0
6.0
13.0
14.0
14.0
14.0
14.0
14.0
11.0
13.0
2.0
15.0
15.0
15.0
15.0
15.0
14.0
14.0
15.0
16.0
16.0
12.0
16.0
16.0
15.0
16.0
7.0
16.0
17.0
17.0
17.0
17.0
17.0
16.0
13.0
17.0
18.0



Parameter
0.9213014802403597
0.9213026978247993
0.92130631826283
0.9213262606625509
0.9213588721853865
0.9213762639622086
0.9214035603610099
0.9214107783908108
0.9214153297683447
0.9214200902652883
0.9214216285362573
0.9214288350417134
0.9214310694267652
0.9214438552596709
0.9214845277144422
0.9215001291474537
0.9215010171790381
0.9215049782513212
0.9215095294630585
0.9215112716081109
0.9215121500634174
0.9215262948579038
0.9215608336278994
0.9216002756249053
0.9216008621175658
0.9216017202012348
0.921606307688425
0.9216126226488097
0.921753409712203
0.9217577448964835
0.9217611380044505
0.921804045233538
0.9218590865036999
0.9218641957928685
0.9218709393905855
0.9219718987947105
0.9220111472734216
0.9220160672052569
0.9220166608744411
0.9220183435162941
0.9220208907672919

P
31.0
25.0
27.0
15.0
23.0
21.0
27.0
19.0
31.0
33.0
25.0
23.0
29.0
21.0
17.0
33.0
25.0
27.0
23.0
31.0
29.0
21.0
19.0
33.0
25.0
31.0
23.0
27.0
31.0
29.0
33.0
9.0
33.0
31.0
29.0
33.0
33.0
29.0
27.0
25.0
31.0

SECOND MINIMAL ORBITS

A
18.0
18.0
18.0
4.0
18.0
17.0
19.0
14.0
19.0
18.0
19.0
19.0
19.0
18.0
8.0
19.0
20.0
20.0
20.0
20.0
20.0
19.0
15.0
20.0
21.0
21.0
21.0
21.0
22.0
21.0
21.0
1.0
22.0
23.0
22.0
23.0
24.0
23.0
22.0
22.0
24.0

Parameter
0.9220230674037606
0.9220360043243131
0.9220694892396009
0.9221006939816137
0.9221048175786382
0.9221120027015463
0.9221139584364046
0.9221218006952228
0.922126355265872
0.9221480960567324
0.922159726448752
0.9222002247854527
0.9222005785028199
0.9222011980332242
0.9222057411189049
0.9222129968030404
0.9222166052355004
0.9222244298335882
0.9222597382550419
0.9223138550089415
0.9223381697320739
0.9223393802222187
0.922342562851247
0.9223501969457514
0.9223519582560188
0.9223665449604025
0.922399214446316
0.922406402226228
0.9224096209205783
0.9224112875747574
0.9224161022741247
0.9224297139943903
0.9224411422767945
0.9224669462877152
0.9225049540612161
0.9225111577683214
0.9225127813206834
0.9225156274141197
0.9225191563794206
0.92253694125618
0.922542458896398

P

23.0
21.0
19.0
33.0
21.0
29.0
25.0
23.0
27.0
17.0
31.0
33.0
29.0
31.0
23.0
25.0
27.0
19.0
21.0
15.0
29.0
27.0
25.0
23.0
31.0
21.0
19.0
27.0
25.0
29.0
23.0
21.0
31.0
17.0
21.0
29.0
25.0
27.0
23.0
19.0
31.0

A
22.0
20.0
16.0
25.0
21.0
24.0
23.0
23.0
23.0
9.0
25.0
26.0
25.0
26.0
24.0
24.0
24.0
17.0
22.0
5.0
26.0
25.0
25.0
25.0
27.0
23.0
18.0
26.0
26.0
27.0
26.0
24.0
28.0
10.0
25.0
28.0
27.0
27.0
27.0
19.0
29.0
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40

Parameter
0.9226176193928061
0.9226464425273783
0.9226985119519096
0.9227008178525822
0.9227022407363636
0.922703450274448
0.9227069440391705
0.9227218838495027
0.92275449593336
0.9227598793106112
0.9228004001233571
0.9228055063846784
0.9228208374473782
0.9228318593515585
0.9228424021108256
0.9228457697436099
0.9228555496778423
0.9228834258451859
0.9229008001875197
0.9229053068625388
0.9229128243166754
0.9229176329559665
0.9229222384020115
0.9229271234309651
0.9229611968821689
0.9230008998938598
0.9230025440384575
0.923005640632976
0.9230106288246114
0.9230134345245601
0.9230246352291566
0.9230414320248848
0.923108777775757
0.9231208724973803
0.9231213450951792
0.9231257848675283
0.923132894975511
0.9231366730398138
0.9231477692758365
0.9231797780922061
0.9232022555173477

U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

P

31.0
13.0
27.0
25.0
29.0
27.0
23.0
21.0
19.0
31.0
31.0
25.0
17.0
29.0
23.0
27.0
21.0
19.0
31.0
25.0
21.0
27.0
29.0
23.0
15.0
29.0
25.0
27.0
21.0
31.0
23.0
19.0
17.0
31.0
29.0
25.0
23.0
27.0
21.0
19.0
29.0

A
30.0
3.0
28.0
28.0
29.0
29.0
28.0
26.0
20.0
31.0
32.0
29.0
11.0
30.0
29.0
30.0
27.0
21.0
33.0
30.0
28.0
31.0
31.0
30.0
6.0
32.0
31.0
32.0
29.0
34.0
31.0
22.0
12.0
35.0
33.0
32.0
32.0
33.0
30.0
23.0
34.0

Parameter
0.9232037853402316
0.9232113433701622
0.9232159122244098
0.9233553354446671
0.9234364494843212
0.9234875471606739
0.9234952282874029
0.923505076081172
0.9235127679201179
0.9235155521191672
0.9235372401278704
0.9236101303997307
0.9236248828050347
0.9236279066755088
0.9236491052579816
0.9236796161121292
0.9237031728677695
0.9237111298598573
0.9237162552841238
0.9237638529359127
0.9238051113914373
0.9238079477611446
0.9238158785374112
0.9238460988672327
0.9239112916557798
0.9239255388317077
0.9239488116172666
0.9239796821838245
0.9240118642346291
0.9240168986630016
0.9240988760780329
0.9241659057686024
0.9241874953823742
0.9242056864820108
0.9242202029150759
0.9242516437364504
0.9242901169978515
0.9243274730242318
0.9243566357281391
0.924440039748957
0.9244925837164232

P

25.0
21.0
27.0
11.0
29.0
25.0
27.0
21.0
25.0
27.0
19.0
17.0
27.0
25.0
21.0
19.0
25.0
21.0
27.0
15.0
27.0
25.0
21.0
19.0
17.0
27.0
21.0
19.0
21.0
27.0
13.0
27.0
21.0
27.0
19.0
21.0
17.0
21.0
19.0
15.0
21.0

A
33.0
31.0
34.0
2.0
35.0
34.0
35.0
32.0
35.0
36.0
24.0
13.0
37.0
36.0
33.0
25.0
37.0
34.0
38.0
7.0
39.0
38.0
35.0
26.0
14.0
40.0
36.0
27.0
37.0
41.0
4.0
42.0
38.0
43.0
28.0
39.0
15.0
40.0
29.0
8.0
41.0



Parameter
0.9245216932198678
0.9245488951118092
0.9245822242032017
0.9246362004773152
0.9248291259456144
0.9254422883844889
0.9255708476075072
0.9261810653663104
0.9263695549335671
0.926422205650506
0.926480708392207
0.9265617938148366
0.9266443295176789
0.9267072296096274
0.9267719927018105
0.9268990591234583
0.9270246251963171
0.9270866574862666
0.9271462242414003
0.9272250976785409
0.92730477980184
0.9273649682044417
0.9274246529676042
0.927643837998337
0.9278623135222064
0.9279189741782298
0.9279752930366489
0.9280495878140084
0.9281221075383218
0.9281752606494361
0.9282295925464943
0.92834448677078
0.928460602487508
0.9285154193462041
0.9285688582630766
0.9286415302414859
0.9287139150577448
0.928765286070779
0.9288127175465508
0.9289968814034584
0.9292792068508622

P
19.0
21.0
17.0
19.0
16.0
7.0
14.0
16.0
19.0
17.0
19.0
15.0
19.0
17.0
19.0
13.0
19.0
17.0
19.0
15.0
19.0
17.0
19.0
11.0
19.0
17.0
19.0
15.0
19.0
17.0
19.0
13.0
19.0
17.0
19.0
15.0
19.0
17.0
19.0
16.0
9.0

SECOND MINIMAL ORBITS

A
30.0
42.0
16.0
31.0
17.0
1.0
10.0
18.0
32.0
17.0
33.0
9.0
34.0
18.0
35.0
5.0
36.0
19.0
37.0
10.0
38.0
20.0
39.0
3.0
40.0
21.0
41.0
11.0
42.0
22.0
43.0
6.0
44.0
23.0
45.0
12.0
46.0
24.0
47.0
19.0
2.0

Parameter
0.9295822427339708
0.9298079717433595
0.9299278057808813
0.9300482202563531
0.9302132331790187
0.9303744281142803
0.9304878779751862
0.9306020957994455
0.9308659010883394
0.9311266981784078
0.931234015921366
0.9313370849667829
0.9314786851600155
0.9316127851041636
0.9316990324815639
0.931774933086075
0.931881041671243
0.9320175871084143
0.9321798504486302
0.9324535237980285
0.9327763934958844
0.9330334577962366
0.9333315218062391
0.9336982614806218
0.9347287282426712
0.9354619793333402
0.936004218370594
0.9365481090303157
0.9368470960303923
0.9371045687350086
0.9373251521199856
0.9375492280855212
0.9376188083061392
0.9376870171464302
0.9378666057635101
0.9380019767238563
0.938117088017013
0.9382016815414446
0.9382639401482904
0.9383328148965207
0.938448694765481

P
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
11.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
14.0
16.0
12.0
16.0
14.0
16.0
17.0
5.0
10.0
15.0
17.0
16.0
14.0
16.0
17.0
12.0
17.0
16.0
14.0
16.0
17.0
15.0
17.0
13.0

A
20.0
25.0
13.0
26.0
7.0
27.0
14.0
28.0
4.0
29.0
15.0
30.0
8.0
31.0
16.0
32.0
21.0
11.0
22.0
6.0
23.0
12.0
24.0
33.0
1.0
4.0
17.0
34.0
25.0
13.0
26.0
35.0
7.0
36.0
27.0
14.0
28.0
37.0
18.0
38.0
9.0

41



4

Parameter
0.938569177987284
0.9386465789836986
0.9387244096568935
0.9388708890819253
0.9389691251075292
0.9390695421382402
0.9392151036120271
0.9392926094377416
0.9393698233226494
0.9394928977047089
0.9396153225473503
0.939690024842712
0.9397608915679229
0.9398638787402191
0.9400376250602329
0.9403137986767697
0.94059942667533
0.9407653946677715
0.9408613682291624
0.9409270154265458
0.9409953129169278
0.9411078240980755
0.941219364734741
0.9412866882425523
0.9413532521023238
0.9414673057559139
0.9415765699409272
0.9416867792979688
0.9417978781941158
0.9418617516317436
0.9419252584019139
0.9420287698786108
0.9421288573690431
0.942185810613247
0.9422379080085772
0.9423072956256685
0.942405302536878
0.9425207052272616
0.9426527498373356
0.9427557608876059
0.9428743623740117

U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

P
17.0
15.0
17.0
16.0
11.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
14.0
9.0
14.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
11.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
14.0
16.0
17.0
12.0
17.0

A
39.0
19.0
40.0
29.0
5.0
30.0
41.0
20.0
42.0
10.0
43.0
21.0
44.0
31.0
15.0
3.0
16.0
32.0
45.0
22.0
46.0
11.0
47.0
23.0
48.0
33.0
6.0
34.0
49.0
24.0
50.0
12.0
51.0
25.0
52.0
35.0
17.0
36.0
53.0
8.0
54.0

Parameter
0.9430870153972655
0.9435535472252282
0.9436340122846377
0.9440868779686737
0.9442804882592601
0.944400441261753
0.9445048407326306
0.9446182118866014
0.9447209484546417
0.9448077454709249
0.9448674903684716
0.9449126279511749
0.9449612825801651
0.9450488345622481
0.9451381264415866
0.9451899365694643
0.9452412487095767
0.9453222087248859
0.9454345985777954
0.9455471174411741
0.9456259644051741
0.9456755743657617
0.9457253447634651
0.9458115547312089
0.9458967766826185
0.9459443478465995
0.9459893788372576
0.9460505092541333
0.9461476071342457
0.9462966096162295
0.9464449481328123
0.9465988685328639
0.9467408391711305
0.9468310268519844
0.9468864578791083
0.9469269490048738
0.9469691298705613
0.9470443898694233
0.9471188724630772
0.9471603042130635
0.9472008999953558

P
16.0
7.0
14.0
16.0
17.0
12.0
17.0
16.0
14.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
11.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
14.0
16.0
9.0
16.0
14.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0

A
37.0
2.0
18.0
38.0
55.0
9.0
56.0
39.0
19.0
40.0
57.0
26.0
58.0
13.0
59.0
27.0
60.0
41.0
7.0
42.0
61.0
28.0
62.0
14.0
63.0
29.0
64.0
43.0
20.0
44.0
4.0
45.0
21.0
46.0
65.0
30.0
66.0
15.0
67.0
31.0
68.0



Parameter
0.9472621657601605
0.9473591815013696
0.9474541321755662
0.9475106957943875
0.9475469696260843
0.9476448977552586
0.9477034426138526
0.947733921617124
0.9477966857540892
0.9478462851458759
0.9479006922691185
0.9479516033174422
0.9480053188877896
0.9480607439004328
0.9481160741636439
0.9481796300838617
0.9482435763382607
0.9482944689150308
0.9483413732621206
0.948408642108592
0.9485164441889147
0.9486285476412364
0.9486987975767931
0.9487487242954044
0.9488036471569236
0.9488743597460321
0.9489462845704794
0.949009332533322
0.9490780804877298
0.9491473662644617
0.9492107277102163
0.9492826687713001
0.9493514336511595
0.9494014907276402
0.9494428882786827
0.9495891122434322
0.9497094552611501
0.9497890939253142
0.9498857281645797
0.9501927359686673
0.9502236731934814

P
16.0
11.0
16.0
17.0
15.0
13.0
17.0
15.0
16.0
14.0
16.0
17.0
12.0
17.0
16.0
14.0
16.0
17.0
15.0
17.0
10.0
17.0
15.0
17.0
16.0
14.0
16.0
17.0
12.0
17.0
16.0
14.0
16.0
17.0
15.0
13.0
17.0
15.0
17.0
8.0
16.0

SECOND MINIMAL ORBITS

A
47.0
8.0
48.0
69.0
32.0
16.0
70.0
33.0
49.0
22.0
50.0
71.0
10.0
72.0
51.0
23.0
52.0
73.0
34.0
74.0
5.0
75.0
35.0
76.0
53.0
24.0
54.0
77.0
11.0
78.0
55.0
25.0
56.0
79.0
36.0
17.0
80.0
37.0
81.0
3.0
57.0

Parameter
0.9505347418045125
0.9506352651907028
0.9507189563549525
0.9508487313327707
0.9509575188358351
0.9510088573843923
0.9510544395866831
0.9511093923830842
0.9511864043035728
0.9512673274850394
0.9513363596128612
0.9514221837472476
0.9515089240660483
0.9515790930715127
0.9516631530453461
0.9517463040461553
0.951808892592533
0.9518652770653788
0.9519383831319697
0.9521244725098057
0.9523162411492646
0.9523905365647094
0.9524481238036833
0.9525120069820141
0.9525975616461875
0.9526840291164363
0.9527546685675844
0.9528475463736816
0.9529398694971234
0.9530080745662677
0.9530891576691004
0.9531651619914416
0.9532174331812081
0.9532603361848672
0.9533072546905522
0.9534043196366604
0.9535088561007298
0.9535658791619818
0.9536237513110958
0.9537070876960089
0.9539187227353836

P

17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
14.0
16.0
17.0
12.0
17.0
16.0
14.0
16.0
17.0
15.0
17.0
10.0
17.0
15.0
17.0
16.0
14.0
16.0
17.0
12.0
17.0
16.0
14.0
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
11.0

A
82.0
38.0
83.0
18.0
84.0
39.0
85.0
58.0
26.0
59.0
86.0
12.0
87.0
60.0
27.0
61.0
88.0
40.0
89.0
6.0
90.0
41.0
91.0
62.0
28.0
63.0
92.0
13.0
93.0
64.0
29.0
65.0
94.0
42.0
95.0
19.0
96.0
43.0
97.0
66.0
9.0
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Parameter
0.9541535736642798
0.9542576473407822
0.9543353288341542
0.9544165158088548
0.9545820065186768
0.9547587014626097
0.954852987166387
0.9549467352368605
0.9550714036503227
0.9552867504518042
0.9555838961047767
0.9559280829047855
0.9579685138208287

U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

P
16.0
17.0
15.0
17.0
13.0
17.0
15.0
17.0
16.0
14.0
16.0
17.0
3.0

A
67.0
98.0
44.0
99.0
20.0
100.0
45.0
101.0
68.0
30.0
69.0
102.0
1.0




