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Abstract. This paper introduces the notion of second minimal n-periodic orbit of the continuous map on the
interval according as if n is a successor of the minimal period of the map in Sharkovski ordering. We pursue
classification of second minimal 7-orbits in terms of cyclic permutations and digraphs. It is proved that there
are 9 types of second minimal orbits with accuracy up to inverses. The result is applied to the problem on
the distribution of periodic windows within the chaotic regime of the bifurcation diagram of the one-parameter
family of unimodal maps. It is revealed that by fixing the maximum number of appearances of the periodic
windows there is a universal pattern of distribution. In particular, the first appearance of all the orbits is always a
minimal orbit, while the second appearance is a second minimal orbit. It is observed that the second appearance
of 7-orbit is a second minimal 7-orbit with Type 1 digraph. The reason for the relevance of the Type 1 second
minimal orbit is the fact that the topological structure of the unimodal map with single maximum is equivalent to
the structure of the Type 1 piecewise monotonic endomorphism associated with the second minimal 7-orbit. Yet
another important report of this paper is the revelation of the universal pattern dynamics with respect to increased
number of appearances.

1. Introduction andMain Result

Let f : I → I be a continuous endomorphism, and I be a non-degenerate interval on the real line. Let
f n : I → I be an nth iteration of f . A point c ∈ I is called a periodic point of f with period m if f m(c) = c,
f k(c) , c for 1 ≤ k < m. The set of m distinct points

c, f (c), · · · , f m−1(c)

is called the orbit of c, or briefly m-orbit or periodic m-cycle. In his celebrated paper [15], Sharkovski
discovered a law on the coexistence of periodic orbits of continuous endomorphisms on the real line.

Theorem 1.1 (Sharkovskii). [15] Let the positive integers be totally ordered in the following way:

(1) 1 / 2 / 22 / 23 / · · · / 22 · 5 / 22 · 3 / · · · / 2 · 5 / 2 · 3 / · · · / 9 / 7 / 5 / 3.

If a continuous endomorphism, f : I → I, has a cycle of period n and m / n, then f also has a periodic orbit
of period m.

This result played a fundamental role in the development of the theory of discrete dynamical systems. A
conceptually novel proof was given in [5]. Following the standard approach, we characterize each periodic
orbit with cyclic permutations and directed graphs of transitions or digraphs. Consider m-orbit:

B = {β1 < β2 < · · · < βm}

Definition 1.2. If f (βi) = βsi for 1 ≤ si ≤ m, with i = 1, 2, ...,m, then B is associated with cyclic permutation

π =

[
1 2 . . . m
s1 s2 . . . sm

]
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Definition 1.3. Let ω be the order reversing permutation

ω =

[
1 2 . . . m − 1 m
m m − 1 . . . 2 1

]
Then, given a cyclic permutation π, it’s inverse is obtained as π−1 = ω ◦ π ◦ ω.

In the sequel < a, b > means either [a, b] or [b, a].

Definition 1.4. Let Ji = [βi, βi+1]. The digraph of m-orbit is a directed graph of transitions with vertices
J1, J2, · · · , Jm−1 and oriented edges Ji → Js if Js ⊂ < f (βi), f (βi+1) >.

Definition 1.5. The inverse digraph of m-orbit is a digraph associated with inverse cyclic permutation π−1.
Equivalently, inverse digraph is obtained from the digraph of m-orbit by replacing each Ji with Jm−i.

Proof of the Sharkovskii’s theorem significantly uses the concept of minimal orbit.

Definition 1.6. n-orbit of f is called minimal if n is the minimal period of f in Sharkovski’s ordering.

Definition 1.7. Digraph of the m-orbit contains the red edge Ji→Js if Js =< f (βi), f (βi+1) >.

The structure of the minimal orbits is well understood [16, 2, 3, 4]. Minimal odd orbits are called Stefan
orbits, due to the following characterization:

Theorem 1.8 (Stefan). [16, 4] The digraph of a m = 2k +1 minimal odd orbit has the unique structure given
in Figure 1 up to an inverse.

Jk+2

Jk

Jk+1

Jk+3

Jk−1

. . .

. . .

J4

J3

J2k

J2

J1

Figure 1. Digraph of Minimal Odd Orbit

Similar characterization of 2(2k + 1)-orbits (k > 1) is given in [1].

Theorem 1.9. [1] The digraph of a minimal 2(2k + 1)-orbit (k > 1) has one of four types up to their inverses
(Type I is shown in Figure 2).

The main idea of the constructive proof of [1] is based on the fact that each half of the minimal 2(2k + 1)-
orbit is minimal 2k + 1 orbit of f 2. Therefore, the digraph of the minimal 2(2k + 1)-orbit is designed as one
of the possible four ”unions” of two Stefan digraphs of f 2. The result of Theorem 1.9 can be generalized as
follows:

Theorem 1.10. The digraph of any minimal 2n(2k + 1)-orbit, k > 1, has one of 22n+1−2 types up to their
inverses. Furthermore, each digraph is strongly simple and can be constructed from the digraphs of two
minimal and strongly simple 2n−1(2k + 1)-orbits in f 2.

The main goal of this paper is the characterization of second minimal odd orbits.

Definition 1.11. An n-orbit, n ≥ 7, of f is called second minimal if n is the successor of the minimal orbit
of f in the Sharkovskii ordering.
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J2k+1

. . .

. . .

. . .

J2k

Jk+2 Jk−1 Jk+1 JkJ2k−2J2J2k−1J1

J2k+2 J2k+3 J3k J3k+1

J2(2k+1)−1 J2(2k+1)−2 J3k+3 J3k+2

Figure 2. Type I digraph of minimal 2(2k + 1)-orbit

(
1 2 3 4 5 6 7
4 5 7 6 3 2 1

)1 (
1 2 3 4 5 6 7
3 7 5 6 4 2 1

)2 (
1 2 3 4 5 6 7
6 4 7 5 3 2 1

)3

(
1 2 3 4 5 6 7
7 4 6 5 3 1 2

)4 (
1 2 3 4 5 6 7
4 6 7 5 2 3 1

)5 (
1 2 3 4 5 6 7
4 6 7 5 3 1 2

)6

(
1 2 3 4 5 6 7
4 7 6 5 2 1 3

)7 (
1 2 3 4 5 6 7
3 7 6 5 2 4 1

)8 (
1 2 3 4 5 6 7
4 7 5 6 2 3 1

)9

Table 1. All Second Minimal 7 cycles

For example, if map has a second minimal 7-orbit, then it has a minimal 5-orbit, but no 3-orbit. Our main
result reads:

Theorem 1.12. The second minimal 7-orbit has one of 9 possible types up to their inverses. The associated
cyclic permutations are listed in Table 1; digraphs and piecewise linear representatives are demonstrated in
Appendix 1.

The method of the proof of Theorem 1.12 is extended to prove that the second minimal 9, 11, and 13
orbits have respectively 13, 17, and 21 possible types up to their inverse. We conjecture the following result:

Conjecture 1.13. The digraph of any second minimal (2k + 1)-orbit, k ≥ 3, has one of 4k − 3 possible types
up to their inverses.

We adress the proof of the Conjecture 1.13 in a forthcoming paper.
The structure of the remainder of the paper is as follows: In Section 2, we recall some preliminary facts.

Theorem 1.12 is proved in Section 3. In Section 4, we describe a new universal law of the distribution
of periodic windows within the chaotic regime of the bifurcation diagram of the one-parameter family of
unimodal maps. First we recall the celebrated Feigenbaum scenario of the transition from periodic to chaotic
behaviour through successful period doublings and outline the rigorous universality theory in the class of
C 1-unimodal maps [8, 6, 7]. In subsection 4.1, we report the numerical reslts which reveal fascinating
pattern of distribution of all the superstable periodic orbits when parameter changes in the range between
the Feigenbaum transition point to chaos and the value when superstable 3-orbit appears for the first time.
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In fact, this parameter range is divided into infinitely many Sharkovski s-blocks where all the 2s(2k + 1)-
orbits are distributed and the pattern is independent of s. Subsection 4.2 demonstartes that the convergence
of the successive parameter values for superstable 2s(2k + 1)-orbits within each s-block is exponential with
the rate which is independent of the appearance index. Finally, in subsection 4.3, we report the numerical
results which demonstrate that any superstable odd orbit in the indicated parameter range is going through
successful period doublings according to the Feigenbaum scenario when the parameter decreases to a critical
transition point. This indicates that Feigenbaum Universality is true in more general classes of maps, which
are the (2k + 1)st iteration of the class of C 1-unimodal maps. We end Section 4 with the brief outline of the
anticipated rigorous universality theory in general classes of maps.

2. Preliminary Results

Lemma 2.1. The digraph of an m-orbit, B = {β1 < β2 < · · · < βm}, m > 2, possesses the following properties
[4]:

(1) The digraph contains a loop: ∃r∗ such that Jr∗ → Jr∗ .
(2) ∀r, ∃r′ and r′′ such that Jr′ → Jr → Jr′′ ; moreover, it is always possible to choose r′ , r unless m

is even and r = m/2, and it is always possible to choose r′′ , r unless m = 2.
(3) If

[
β′, β′′

]
,

[
β1, βm

]
, β′, β′′ ∈ B, then ∃Jr′ ⊂

[
β′, β′′

]
and ∃Jr′ *

[
β′, β′′

]
such that Jr′ → Jr′′ .

(4) The digraph of a cycle with period m > 2 contains a subgraph Jr∗ → · · · Jr for any 1 ≤ r ≤ m − 1.

Definition 2.2. A cycle in a digraph is said to be primitive if it does not consist entirely of a cycle of smaller
length described several times.

Lemma 2.3 (Straffin). [17, 4] If f has a periodic point of period n > 1 and it’s associated digraph contains
a primitive cycle J0 → J1 → · · · → Jm−1 → J0 of length m, then f has a periodic point y of period m such
that f k(y) ∈ Jk, (0 ≤ k < m).

3. Proof of Theorem 1.12

Let f : I → I be a continuous endomorphism that has a 7-orbit which is second minimal. Let B =

{β1 < β2 < · · · < β7} be the ordered elements of this orbit; Let r∗ = max {i | f (βi) > βi}. Such an r∗ exists
since f (β1) > β1 and f (β2k+1) < β2k+1. So, we have a loop: Jr∗ → Jr∗ ; Let

B− =
{
β ∈ B | β ≤ βr∗

}
, B+ =

{
β ∈ B | β > βr∗

}
.

Then, |B−| + |B+| = 7, where |X| denotes the number of elements of the set X. Hence, |B−| , |B+|. Assume
that |B−| > |B+|. Then let r = max

{
i < r∗ | f (βi) ≤ βr∗

}
so f (βr) ≤ βr∗ ; f (βr+1) > βr∗ ⇒ Jr → Jr∗ . According

to Lemma 2.1 there is a subgraph

(11) � Jr∗ → · · · → Jr → Jr∗

Assume that this is the shortest path. Then its length is at most 7, since there are 6 different intervals,
and if any interval is repeated twice, one can get shorter path by removing all the intervals between the
repetitions (including one of the repetitions). From another side the length is at least 5, since if it is 4 we
will deduce by Lemma 2.3 the existence of 3-orbit. The same conclusion is true if the length is shorter than
4, since if necessary we can always add Jr∗ to the right end of the subgraph (11). Hence, the length can be 5,

6, or 7; In the sequel < a, b > indicates either [a, b] or [b, a];
a
b or a ∧ b imply either of the entries a or b are

valid choices for mappings of a given node; Jri → [a, b] means f (βri ) = a and f (βri+1 ) = b.
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Case 1 length is 7⇒ all 6 intervals are represented in the cycle (11). Choose r1 = r∗, r6 = r and write

(12) � Jr1 → Jr2 → Jr3 → Jr4 → Jr5 → Jr6 → Jr1

Since� Jr1 → Jr2 , but Jr1 9 Jr j , j = 3, · · · , 6 ⇒ Jr2 must be adjacent to Jr1 , so either Figure 3 or
Figure 4 is relevant.

Jr2 Jr1

Figure 3. Case 1.1

Jr1 Jr2

Figure 4. Case 1.2

Continuing in this manner we get either Figure 5 or Figure 6. Both are Stefan orbits, and the first
one is the right one satisfying |B−| = 4 > 3 = |B+|, while the second one is its inverse satisfying
|B+| = 4 > 3 = |B−|. But Stefan orbit excludes 5-orbit and so we dismiss this case as irrelevant.

1 2 3 4 5 6 7

Jr6 Jr4 Jr2 Jr1 Jr3 Jr5

Figure 5. Case 1.1

1 2 3 4 5 6 7

Jr5 Jr3 Jr1 Jr2 Jr4 Jr6

Figure 6. Case 1.2

Case 2 length is 6; Choose r1 = r∗, r5 = r and write

(13) � Jr1 → Jr2 → Jr3 → Jr4 → Jr5 → Jr1

We have

Jr1 → Jr1 , Jr1 → Jr2 , Jr1 9 Jr3 , Jr4 , Jr5(14a)
Jr2 → Jr3 , Jr2 9 Jr1 , Jr4 , Jr5(14b)
Jr3 → Jr4 , Jr3 9 Jr1 , Jr5 (Jr3 → Jr4 optional)(14c)
Jr4 → Jr5 , Jr4 9 Jr1 , Jr2 (Jr4 → Jr5 optional)(14d)
Jr5 → Jr1 , Jr5 9 Jr3 (Jr5 → Jr2 , Jr4 optional)(14e)

Hence, we have two possible orders among five intervals Jri , i = 1 · · · 5. Either
Since there are 6 different intervals, only one interval is missing. Let us denote this interval J̃, and
try to find its place. We have Jr5 → Jr1 but Jr5 9 Jr3 . This implies that the missing interval J̃ must
be between Jr1 and Jr3 . Case 2.2 corresponds to |B−| > |B+| so we restrict our discussion to this case.

(15)

 1 2 3 4∗ 5 6 7
3
4 < 5, 7 > 6

3
4 2 1


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Jr4 Jr2 Jr1 Jr3 Jr5

Figure 7. Case 2.1, The
dashed path demonstrates
Jr5 → Jr1

Jr5 Jr3 Jr1 Jr2 Jr4

Figure 8. Case 2.2, The
dashed path demonstrates
Jr5 → Jr1

Hence, constructing a general cyclic permutation from the rules we have the the 2 × 7 matrix 15.
It follows that either f (5) = 3 or f (5) = 4. Now, if f (5) = 3, according to the rules we must have
f (3) = 7 and f (1) = 4 and this leads to a valid second minimal 7 orbit. Alternatively, if f (5) = 4
then we cannot have f (2) = 5 else we have a closed 4 cycle. Thus, f (2) = 7 and we have a another
valid second minimal 7 orbit. Both of these are displayed in Table 1 indexed as 1 and 2 respectively
and the digraph for the case f (2) = 7 is presented in Figure 9.

J4

J5

J3

J6

J2

J1

Figure 9. Case 2.2 Digraph when f (2) = 7

Finally, in order to show that the orbit above is indeed a valid second minimal odd orbit, it must
be proven that there are no odd orbits of length less than 2k − 1. In the case of a second minimal
7 orbit, it must be proven that no 3 orbits are present. Assuming that there is an orbit of length 3,
we immediately have two options. Either J1 is included in the 3 orbit, or it isn’t included. If J1
isn’t included, then J6 can’t be included either, because it only maps to J1. J4 also can’t be included
because only J1 and J4 map to J4. If J1 isn’t in the orbit, and J4 is, then J4 will only map to itself
in the form: J4 → J4 → J4, as no other orbit will map back to it. The only remaining orbits
are {J2, J3, J5}. Note that these intervals can only form orbits of even length, by splicing together
various combinations of the two orbits: J3 → J5 → J3, and J2 → J5 → J2. Thus, it is impossible
for a 3 orbit to be present in the above digraph, which does not contain J1.

Suppose now, that the assumed 3 orbit does contain J1. J1 can map to either: J6, J5, or J4. If J1
maps to J6, the shortest path back to J1 is: J1 → J6 → J1, which has a length of 2. If J1 maps to J5,
the shortest path back to J1 is J1 → J5 → J2 → J6 → J1, which has a length of 4. If J1 maps to J4,
the shortest path back to J1 is: J1 → J4 → J5 → J2 → J6 → J1, which has a length of 5. Thus, it is
impossible to form a 3 orbit, regardless if J1 is or isn’t contained. If a 3 orbit is proven impossible,
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and a 5 orbit and a 7 orbit where observed during construction of the orbit, then the above cyclic
permutation represents a valid second minimal 7 orbit.

It is in this way that the validity of the second minimal orbits are proven. Note that, for all cyclic
permutations depicted in Table 1, this same method can be used to effectively prove the fact that no
3 orbits exist. This can also be done by simple observation, as digraphs for a 7 orbit can only have
a finite number of interactions.

Case 3 length is 5; (four different intervals are included and two are missing.) Let r1 = r∗, r4 = r, so we
have

(16) � Jr1 → Jr2 → Jr3 → Jr4 → Jr1

then we have

Jr1 → Jr1 , Jr1 → Jr2 , Jr1 9 Jr3 , Jr4(17a)
Jr2 → Jr3 , Jr2 9 Jr1 , Jr2 , Jr4(17b)
Jr3 → Jr4 , Jr3 9 Jr1 , Jr3 (Jr3 → Jr2 optional)(17c)
Jr4 → Jr1 , Jr4 9 Jr2 , Jr4 (Jr4 → Jr3 optional)(17d)

So we have either Case 3.1: Jr4 Jr2 Jr1 Jr3 or Case 3.2: Jr3 Jr1 Jr2 Jr4

1 2 3 4 5

Jr4 Jr2 Jr1 Jr3

Figure 10. Case 3.1, Where
we have 3 points in B−, 2 in
B+; 2 remaining points can’t
go to B+

1 2 3 4 5

Jr3 Jr1 Jr2 Jr4

Figure 11. Case 3.2, Where
we have 2 points in B−, 3 in
B+; so we need to add both
points to B− and at least one of
them should be mapped to B−.

Consider Case 3.1, where should the remaining intervals go (call them J̃, Ĵ)? Case 3.1.1, assume
one is between Jr1 , Jr3 and the other is between Jr4 , Jr2 . Now, we adjust Figure 10 in one of the two
ways illustrated in Figures 12 and 13.

1 2 3 4 5 6 7

Jr4 Ĵ Jr2 Jr1 J̃ Jr3

Figure 12. Case 3.1.1

1 2 3 4 5 6 7

Jr4 Ĵ Jr2 Jr1 J̃ Jr3

Figure 13. Case 3.1.2

Now, we can continue to construct possible orbits graphically in this way and demonstrate which
settings for Ĵ and J̃ result in valid second minimal 7 cycles however, to better communicate the
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possible settings, we adopt a slightly different tactic - we will study the cyclic permutations asso-
ciated with each possible setting in order to extract the relevant cycles. To construct these cyclic
permutations first observe in Figures 10 and 11 that there are 5 possible locations in which to insert
the extra two intervals Ĵ and J̃ and we can insert these, assuming we assign Ĵ first and J̃ second, as
demonstrated below in 18:

(18)

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
(2, 2) (2, 3) (2, 4) (2, 5)

(3, 3) (3, 4) (3, 5)
(4, 4) (4, 5)

(5, 5)

To construct the cyclic permutation determine where each interval Jri , i = 1 · · · 4, is mapped to then
combine all the mappings. We begin with Case 3.1. We furnish an example of how to construct
the cyclic permutation for the setting (2, 4) which corresponds to the setting for Figures 12 and 13.
First, determine where each interval is mapped according to the rules

Jr1 = [4, 5]→
[
5
6,

2
3

]
Jr3 = [6, 7]→

〈
1,

2
3
4

〉

Jr2 = [3, 4]→
[
7,

5
6

]
Jr4 = [1, 2]→

〈
4,

5
6
7

〉
Then, construct the associated cyclic permutation

(19)

 1 2 3 4∗ 5 6 7

< 4,
5
6 > 7

6
5

2
3 < 1,

3
2 >


Since f (3) = 7⇒ f (7) , 3⇒ f (7) = 1 or 2.

(a) Case (2, 4)1: f (7) = 1⇒ either f (6) = 2, f (5) = 3 or f (6) = 3, f (5) = 2
(b) Case (2, 4)1,1: f (7) = 1, f (6) = 2, f (5) = 3 or

(20)

 1 2 3 4 5∗ 6 7

< 4,
5
6 > 7

6
5 3 2 1


(c) Case (2, 4)1,1,1: f (4) = 6⇒ J1→J4. Now, f (1) = 5 implies period 4-suborbit {1, 3, 5, 7} which

is a contradiction. If f (1) = 4 we get the second minimal 7 orbit with index 1 in Table 1.
(d) Case (2, 4)1,1,2: f (4) = 5 ⇒ either f (1) = 4, f (2) = 6 or f (1) = 6, f (2) = 4 however since

f (6) = 2 the former implies a period 2-suborbit {2, 6} which is a contradiction. The latter case
implies the second minimal 7 orbit with index 3 in Table 1.

(e) Case (2, 4)1,2: f (7) = 1, f (6) = 3, f (5) = 2 or

(21)

 1 2 3 4 5∗ 6 7

< 4,
5
6 > 7

6
5 2 3 1


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(f) Case (2, 4)1,2,1: f (4) = 6 ⇒ f (1) = 5, f (2) = 4. The digraph of the associated cyclic per-
mutation contains the subgraph J2 → J4 → J5 → J2 and by Straffin’s lemma this implies the
existence of a 3-orbit, a contradiction.

(g) Case (2, 4)1,2,2] f (4) = 5 ⇒ either f (1) = 4 or f (1) = 6. The latter implies a period 4-suborbit
{1, 3, 6, 7}, a contradiction. The former implies the second minimal 7 orbit with index 5 in
Table 1.

(h) Case (2, 4)2: f (7) = 2⇒ f (6) = 1, f (5) = 3 or

(22)

 1 2 3 4 5∗ 6 7

< 4,
5
6 > 7

6
5 3 1 2


Considering the alternative we have f (6) = 1⇒ f (1) = 5 or f (1) = 4.

(a) Case (2, 4)2,1: If f (1) = 5 the digraph of the associated cyclic permutation contains the sub-
graph J2 → J4 → J5 → J2 which implies the existence of a 3-orbit, a contradiction.

(b) Case (2, 4)2,2: f (1) = 4 ⇒ either f (2) = 5, f (4) = 6 or f (2) = 6, f (4) = 5. In the former case
we have a period 4-suborbit {2, 3, 5, 7}, a contradiction. In the latter case we get the second
minimal 7 orbit with index 6 in Table 1.

Now, proceeding in this fashion we will analyze each of the 15 settings to extract valid second
minimal 7 orbits.

Setting (1,1) We have the cyclic permutation

(23)


1 2 3 4 5∗ 6 7

2
3

1
3 5 7 6 4

1
2
3


Observe, letting f (7) = 3 would force a period 2-suborbit {1, 2} and period 5-suborbit {3, 4, 5, 6, 7}
so f (7) = 1 or f (7) = 2 which implies J2 → [1, 5] or J2 → [3, 5] both of which lead to the
subgraph J4 → J6 → J2 → J4. By Straffin’s lemma this implies the existence of a 3-orbit, a
contradiction.

Setting (1,2) From 17a and 17b if follows f (5) = 6, f (4) = 7, from 17a it follows Jr4 = [2, 3]→< 5, 6∧ 7 >
and hence either f (2) = 6 or f (3) = 7 which is a contradiction since three nodes are mapped to
6 and 7.

Setting (1,3) From 17a and 17b⇒ f (5) = 6 , f (6) = 3, and Jr2 = [3, 4] →< 6, 7 > which is a contradiction
since three nodes {3, 4, 5} are mapped to {6, 7}.

Setting (1,4) Jr1 = [4, 5] → [5 ∧ 6, 3], Jr4 = [2, 3] → [4, 7], and Jr3 = [6, 7] →< 3 ∧ 4, 1 ∧ 2 >; Since
f (5) = 3⇒ either f (6) = 4 or f (7) = 4; but we also have f (2) = 4, a contradiction.

Setting (1,5) We have the cyclic permutation

(24)


1 2 3 4∗ 5 6 7
2
6
7

4
7
6 5 3

1
2

2
1
6


(i) Case (1, 5)1: f (7) = 6⇒ f (3) = 7⇒ f (1) = 2, and f (6) = 1. The digraph of this cyclic

permutation contains the subgraph J6 → J1 → J3 → J6 and by Straffin’s lemma this
implies the existence of a 3-orbit, a contradiction.

(ii) Case (1, 5)2: f (7) = 1⇒ f (3) = 6 or f (3) = 7
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(iii) Case (1, 5)2,1: f (7) = 1, f (3) = 6 ⇒ f (6) = 2, f (1) = 7 and this implies the 2-suborbit
{1, 7} and the 5-suborbit {2, 3, 4, 5, 6}.

(iv) Case (1, 5)2,2: f (7) = 1, f (3) = 7 ⇒ f (6) = 2, f (1) = 6 and we get the valid second
minimal 7-cycle indexed as 3 in Table 1.

(v) Case (1, 5)3: f (7) = 2 ⇒ f (6) = 1; since f (1) = 6 ⇒ 2-suborbit {1, 6} so we must have
f (1) = 7 and f (3) = 6 and this implies the valid cyclic permutation indexed as 4 in Table
1.

Setting (2,2) From 17b Jr2 = [4, 5]→ [7, 6] and from 17d Jr4 = [1, 2]→< 5, 6∧7 >which is a contradiction
since we have 2 nodes being mapped to 6 and 7.

Setting (2,3) From 17a and From 17b Jr1 = [5, 6] → [6, 2 ∧ 3] and Jr2 = [3, 4] →< 6, 7 > so f (5) = 6 and
either f (3) = 6 or f (4) = 6, a contradiction.

Setting (2,4) See above.
Setting (2,5) We have the cyclic permutation

(25)

 1 2 3 4∗ 5 6 7

< 4,
6
7 >

7
6 5

2
3 1

3
2


(i) Case (2, 5)1: If f (5) = 3 ⇒ f (7) = 2 ⇒ f (2) , 7 or we have period 2-suborbit {2, 7}.

Now, either f (3) = 6 or f (3) = 7
(ii) Case (2, 5)1,1: f (5) = 3, f (3) = 6 ⇒ f (2) = 4, f (1) = 7 ⇒ valid second minimal 7-orbit

indexed as 4 in Table 1.
(iii) Case (2, 5)1,2: f (5) = 3, f (3) = 7⇒ Jr4 = [1, 2]→< 4, 6 >.
(iv) Case (2, 5)1,1,1: f (5) = 3, f (3) = 7, f (2) = 6 ⇒ f (1) = 4 ⇒ valid second minimal

7-orbit indexed as 6 in Table 1.
(v) Case (2, 5)1,1,2: f (5) = 3, f (3) = 7, f (2) = 4 ⇒ f (1) = 6 ⇒ a period 2-suborbit {1, 6}

and a period 5-suborbit {2, 3, 4, 5, 7}, a contradiction.
(vi) Case (2, 5)2: If f (5) = 2 ⇒ f (7) = 3 ⇒ f (3) , 7 or we get period 2-suborbit {3, 7}, so

f (3) = 6 and either f (1) = 4 or 7.
(vii) Case (2, 5)2,1: f (5) = 2, f (7) = 3, f (3) = 6, f (1) = 4 ⇒ a valid second minimal cycle

indexed as 7 in Table 1.
(viii) Case (2, 5)2,2: f (5) = 2, f (7) = 3, f (3) = 6, f (1) = 7 ⇒ period 3-suborbit {2, 4, 5}, a

contradiction.
Setting (3,3) From 17a, 17b Jr1 = [5, 6]→ [6, 2] and Jr2 = [2, 3]→< 6, 7 > so f (5) = 6 and either f (2) = 6

or f (3) = 6, a contradiction.
Setting (3,4) We have the cyclic permutation

(26)

 1 2 3 4∗ 5 6 7
3
4 <

6
5, 7 >

5
6 2 < 1,

4
3 >


(i) Case (3, 4)1: f (4) = 5 and either f (1) = 3 or f (1) = 4.

(ii) Case (3, 4)1,1: f (4) = 5, f (1) = 4 and f (6) = 1 or 3.
(iii) Case (3, 4)1,1,1: f (4) = 5, f (1) = 4, f (2) = 6, f (6) = 3 ⇒ f (3) , 6 or we get period

2-suborbit {3, 6}, thus f (3) = 7 giving valid second minimal 7 cycle indexed by 5 in
Table 1.

(iv) Case (3, 4)1,1,2: f (4) = 5, f (1) = 4, f (6) = 1 ⇒ f (7) = 3 ⇒ f (3) , 7, or we get
period 2-suborbit {3, 7}, thus f (3) = 6 giving valid second minimal 7 cycle indexed by 7
in Table 1.
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(v) Case (3, 4)1,2: f (4) = 5, f (1) = 3 and either f (6) = 1 or f (6) = 4
(vi) Case (3, 4)1,2,1: f (4) = 5, f (1) = 3, and f (6) = 1 then f (3) , 6 or we have period

3-suborbit {1, 3, 6} so f (3) = 7. Then the digraph of the cyclic permutations has the
subgraph J1 → J3 → J5 → J1 and by Straffin’s lemma this implies the existence of a
period 3-suborbit, a contradiction.

(vii) Case (3, 4)1,2,2: f (4) = 5, f (1) = 3, and f (6) = 4 then f (2) , 6 or we have a period
3-suborbit {1, 3, 7} so f (2) = 7⇒ valid second minimal 7 cycle indexed by 8 in Table 1.

(viii) Case (3, 4)2: f (4) = 6 and f (2) = 5 ⇒ period 2-suborbit {2, 5} so f (2) = 7 and f (6) = 1
or f (6) = 3 since f (6) = 4⇒ period 2-suborbit {4, 6}.

(ix) Case (3, 4)2,1: f (4) = 6, f (2) = 7, f (6) = 1⇒ f (1) = 3 or f (1) = 4.
(x) Case (3, 4)2,1,1: f (4) = 6, f (2) = 7, f (6) = 1, f (1) = 3⇒ digraph contains the subgraph

J1 → J3 → J5 → J1, a contradiction.
(xi) Case (3, 4)2,1,2: f (4) = 6, f (2) = 7, f (6) = 1, f (1) = 4 ⇒ a period 3-suborbit {1, 4, 6}, a

contradiction.
(xii) Case (3, 4)2,2: f (4) = 6, f (2) = 7, f (6) = 3⇒ f (7) = 1⇒ valid second minimal 7 cycle

indexed by 9 in Table 1.
Setting (3,5) From 17a, 17b Jr1 = [4, 5] → [5, 2] and Jr2 = [2, 3] →< 5, 6 ∧ 7 > so f (4) = 5 and either

f (2) = 5 or f (3) = 5, a contradiction.
Setting (4,4) From 17a, 17c, 17d we have Jr1 = [3, 4] → [4 ∧ 5 ∧ 6, 2], Jr3 = [6, 7] →< 1, 2 ∧ 3 >, and

Jr4 = [1, 2]→ [3, 7]. So f (4) = 2 and f (1) = 3 but either f (6) or f (7) is 2 or 3, a contradiction.
Setting (4,5) From 17a, 17c, 17d we have Jr1 = [3, 4] → [4 ∧ 5, 2], Jr3 = [5, 6] →< 1, 2 ∧ 3 >, and

Jr4 = [1, 2] → [3, 6 ∧ 7]. So f (4) = 2 and f (1) = 3 but either f (5) or f (6) is 2 or 3, a
contradiction.

Setting (5,5) We have the cyclic permutation

(27)
(

1 2 3∗ 4 5 6 7
3 7 4 2 1 5 6

)
The digraph of this cycle admits several subgraphs of length 3; one of which is J1 → J6 →

J5 → J1 and by Straffin’s lemma this implies a 3-suborbit, a contradiction.
Proceeding in the same fashion for Case 3.2 generates the inverses of the valid cycles already found. Count-
ing all distinct valid second minimal 7 orbits we see there are exactly 9, unique up to an inverse. The
topological structure and digraph associated with each of these cyclic permutations are listed in Appendix
A.

4. Universality in Chaos

In this section we present some fascinating results pertaining to universal behavior in the route to chaos for
a family of unimodal maps. Specifically, we study continuous endomorphisms, dependent on a parameter,
from an interval to itself: fλ : [0, 1] → [0, 1] satisfying f (0) = f (1) = 0 with a single maximum at some
point, xmax, interior to the interval [0, 1] under the iterative relation xn+1 = fλ(xn). We are interested in the
asymptotic behavior of xn for n → ∞ and how this behavior depends on the parameter λ. A prototypical
example is the logistic map

(28) xn+1 = 4λxn (1 − xn)

In 1978, Fiegenbaum [9, 10, 11] discovered a universal transition mechanism to Chaos through successful
period doubling bifurcations. As λ increases, the behaviour of xn for large n changes from periodic to
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chaotic via bifurcations from the 2n periodic cycle to the 2n+1 periodic cycle. Two universal constants
δ = 4.6692016... and α = −2.502907875... qualitatively characterize the universal transition route. Let λ1

n
be the value of the parameter when 2n-orbit is superstable, i.e. critical point xmax is one of the elements of
the orbit, and let d1

n be directed distance from xmax to the closest element of the orbit:

d1
n = xmax − f 2n−1

λ1
n

(xmax).

Then λ1
n ↑ λ∞, and for a class of unimodal maps with a quadratic maximum of 1 has

(29) lim
n→∞

λ1
n−1 − λ

1
n−2

λ1
n − λ

1
n−1

= δ, lim
n→∞

d1
n

d1
n+1

= α.

Having discovered the universality of δ and α numerically, Feigenbaum proposed the mechanism of it based
on the renormalization group approach to critical phenomena in statistical mechanics. He revealed that both
of these constants are related to a universal function that governs the period doubling route to chaos and
expresses this function as the fixed point of some functional operator. The rigorous proof of Feigenbaum’s
suggested theory was completed for a class of unimodal maps with quadratic maximum in [8, 6, 12]. The
following is the brief summary of the rigorous universality theory ([7]).

Map ψ : [−1, 1] → [−1, 1] is called C 1-unimodal, if ψ ∈ C[−1, 1], ψ(0) = 1; ψ is strictly increasing on
[−1, 0] and strictly decreasing on [0, 1]; ψ′(x) , 0 if x , 0. Let � be the space of symmetric C 1-unimodal
maps. Choose ψ ∈ � and define

a = a(ψ) = −ψ(1), b = b(ψ) = ψ(a).

Assume that

(30) 0 < ψ(b) = ψ2(a) < a < b < 1.

This condition guarantees that the second iteration ψ2 maps [−a, a] to itself. Therefore, the doubling trans-
formation

(31) Fψ(x) = −
1
a
ψ2(−ax).

maps [−1, 1] to itself. The following properties of F are key features of the universality theory:

• F has a fixed point g with a = −α−1. Namely, g solves the functional equation

(32) g(x) = αg2
( x
α

)
, g(0) = 1.

• The Frechet derivative of F at the fixed point g has a simple eigenvalue equal to δ; the remainder
of the spectrum is contained in the open unit disk. Therefore, F has a one-dimensional unstable
manifold Wu and a co-dimension one stable manifold Ws at g.

• Wu intersects transversally the co-dimension one surface Σ1 of maps with superstable 2-orbits:

Σ1 = {ψ : ψ(1) = 0}

• Consider a set Σk of maps with superstable 2k-orbits (inverse images of Σ1), i.e.

Σk = F −(k−1)Σ1 = {ψ : ψ = F k−1φ, φ ∈ Σ1}, k = 2, 3, ...

Then the distance between Σk and Ws decreases like δ−k for large k.
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• Consider an arbitrary one-parameter family µ → ψµ of maps and treat it as a curve in �. Assume
that this curve crosses the stable manifold Ws at µ∞ with a non-zero transverse velocity. This implies
that for all large k, there will be a unique µk near µ∞, such that ψµk ∈ Σk is a map with superstable
2k-orbit. Then

lim
j→∞

F j−kψµ j = gk, k = 1, 2, 3, ... lim
j→∞

F jψµ∞ = g

where gk is an intersection of Σk with Wu; g is a fixed point of F which solves (32). All the functions
gk and g are universal functions.

The rigorous theory was only developed for a special class of C 1-unimodal maps of the form

ψ(x) = f (|x|1+ε)

where the function f is analytic in a complex neighborhood of [0, 1], ε > 0. The typical example would be

ψ(x) = 1 − µ|x|1+ε .

The perturbative analysis of [8] requires ε to be sufficiently small. The case ε = 1 was completed in [6].
In [13] periodic orbits are characterised through patterns, which is the sequence of R’s and L’s, the kth

letter expressing the fact that the kth element of the cycle is on the right or left side of the critical point of
the map. In particular, paper [13] presents a table of relative position of periodic orbits of period p ≤ 11 for
the logistic map. Much of the work in this direction was inspired by the paper [14], where the calculus for
describing the qualitative behaviour of successive iterates of piecewise monotone maps of the interval was
invented. We refer to [7] which presents an extensive description of this approach.

In this paper, in addition to the logistic map we will present numerical results for the sine map,

(33) fλ(x) = λ sin(πx)

the cubic map,

(34) fλ(x) =
3
√

3
2

λx(1 − x2)

and the quartic map

(35) fλ(x) = λ − λ(2x − 1)4 f

Note that xmax = 0.5 in (28), (33), (35) and xmax = 1/
√

3 in (34). Moreover, only logistic and sine
maps are symmetric around xmax. All three maps demonstrate Feigenbaum transition route to chaos through
successful period doubling from 2n to 2n+1-orbits. Feigenbaum constants δ and α are the same for logistic,
sine and cubic maps. For the quartic map we have δ = 7.31..., and α = −1.69....

It is well-known that for λ > λ∞, one can observe all possible periodic orbits within the chaotic regime.
Figure 15 demonstrates the bifurcation diagram - asymptotic behaviour of the sequence xn as n → +∞

(periodic orbits or chaotic attractors) as a function of the parameter of the map. One can clearly see periodic
windows in the chaotic regime, the period 3 window being the largest. Let λ = λ3

0 be the value of the
parameter when superstable 3-orbit appears first time when λ > λ∞ increases. In fact, periodic orbits of all
possible periods appear when λ ∈ [λ∞, λ3

0]. Our goal in this section is to continue the results reported in a
recent paper [1] and to reveal and analyze a fascinating pattern of distribution of all the periodic windows in
this range of the parameter.
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(a) Logistic map: xn+1 = 4λxn(1 − xn)

(b) Cubic Map (c) Sine Map (d) Quartic Map

Figure 14. Bifurcation Diagrams

4.1. Ordering in Terms of the Number of Appearences of Orbits. For any odd number q > 1, and
nonnegative integer s, let Λ

q
s denotes the set of values λ ∈ [λ∞, λ3

0] such that fλ has a superstable 2sq-orbit.
In fact, the cardinality |Λq

s | of Λ
q
s is non-zero and finite for all q and s. In particular,

Λ3
0 = {λ3

0}, |Λ
3
0| = |Λ

5
0| = 1, |Λ7

0| = 2, |Λ9
0| = 4, |Λ11

0 | = 9, ...

It is well known that the number of appearances of orbits exponentially increases by increasing the period.
Let

Λ
q
s =

{
λ

q
s,1 < λ

q
s,2 < · · · < λ

q
s,|Λq

s |

}
,

where λq
s,i denotes the value of the parameter which marks the ith appearance of the superstable 2sq-orbit

when the parameter λ increases in the range [λ∞, λ3
0]. Furthermore this orbit will be called (2sq)i-orbit. Note

that λ3
0,1 = λ3

0.
Assume that we are looking only first appearance of all the orbits in the indicated parameter range.

Numerical results of [1] demonstrate that the first appearances of all the orbits are distributed according to
Sharkovskii ordering (1) when parameter λ decreases from λ3

0 to λ∞. This is reflected in the first row of the
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Table 3. Moreover, the first appearance of all the orbits is always a minimal orbit. For example, the first
appearance of all the odd orbits is always a Stefan orbit and its digraph is as in Figure 1 of Theorem 1.8. First
appearance of all the 2(2k + 1)-orbits always has Type I digraph as in Figure 2 of Theorem 1.9. The reason
of relevance of exactly Type I minimal 2(2k + 1)-orbit is hidden in the fact the topological structure of the
unimodal map with single maximum is equivalent to the topological structure of the piecewise monotonic
map associated with the Type I digraph of Figure 2. In fact, if we iterate the unimodal map with single
minimum then inverse Type I digraph will be relevant.

Assume now that we are looking to first and second appearances of all the 2sq-orbits with odd q ≥ 7,
and the first appearance of 2sq-orbits with q = 3, 5, while the parameter increases from λ∞ to λ3

0. Numerical
results of [1] and this paper demonstrate the distribution of periodic windows as in (36)-(39). Note that we
use a notation n ← m meaning that parameter decreases from the value giving superstable m-orbit down to
the value giving superstable n-orbit.

· · · ← (2n11)2 ← (2n7)1 ← (2n9)2 ← (2n5)1 ← (2n7)2 ← (2n3)1 ← · · ·(36)

...

· · · ← 361 ← 442 ← 281 ← 362 ← 201 ← 282 ← 121 ← · · ·(37)
· · · ← 181 ← 222 ← 141 ← 182 ← 101 ← 142 ← 61 ← · · ·(38)
· · · ← 132 ← 91 ← 112 ← 71 ← 92 ← 51 ← 72 ← 31 ← · · ·(39)

and we have the pattern λ2k−1
n,1 < λ2k+1

n,2 < λ2k−3
n,1 for k = 3, 4, . . . ; n = 0, 1, . . . and in particular notice that while

decreasing the parameter λ, (2sq)-orbits are changed with respect to q according to pattern +4− 2; while the
index of appearance is changed according to the simple pattern 1, 2, 1, 2, . . . . This pattern is expressed in
the second row of the Table 3. Interestingly, the second appearance of all the odd orbits is second minimal
odd orbit. In fact, this numerically observed fact was a motivation to introduce the notion of second minimal
orbit as in Definition 1.11. In fact, in all four maps the second appearance of the 7-orbit is exactly Type
I second minimal orbit with cyclic permutation and digraph demonstrated in Table 1 of Theorem 1.12 and
Fig. 29 in Appendix. The reason of the relevance of exactly Type 1 second minimal 7-orbit is hidden in
the fact that the topological structure of the single maximum unimodal map is equivalent to the topological
structure of the piecewise monotonic map associated with Type 1 second minimal 7-orbit of Fig. 29. In fact,
according to Theorem 1.12 among all possible 9 types of second minimal 7-orbits (Figures 29-37), Type
1 7-orbit is the only one with a unimodal structure with a single maximum point. In fact, if we iterate the
unimodal endomorphism with a single minimum point, then the inverse Type I digraph would be relevant.

Assume now that we are identifying up to third appearances of all the 2sq-orbits when the parameter in-
creases from λ∞ to λ3

0. Numerical results for all four maps demonstrate the distribution of periodic windows
as in (40)-(43).

· · · ← (2n11)3 ← (2n9)2 ← (2n5)1 ← (2n9)3 ← (2n7)2 ← (2n3)1 ← · · ·(40)

...

· · · ← 281 ← 443 ← 362 ← 201 ← 363 ← 282 ← 121 ← · · ·(41)
· · · ← 141 ← 223 ← 182 ← 101 ← 183 ← 142 ← 61 ← · · ·(42)

· · · ← 132 ← 91 ← 133 ← 112 ← 71 ← 113 ← 92 ← 51 ← 93 ← 72 ← 31 ← · · ·(43)
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Note that we have the pattern λ2k−1
n,1 < λ2k+3

n,3 < λ2k+1
n,2 < λ2k−3

n,1 for k = 3, 4, . . . ; n = 0, 1, . . . and in particular
notice that while decreasing the parameter λ, (2sq)-orbits are changed with respect to q according to pattern
+4+2-4; while index of appearance is changed according to pattern 1,2,3,... This pattern is expressed in the
third row of the Table 3.

Continuing this process reveals the structure presented in Table 3. As an example assume that we are
identifying up to 9th appearances of all the 2sq-orbits when the parameter increases from λ∞ to λ3

0. Nu-
merical results for all four maps demonstrate the distribution of periodic windows according to the pattern
expressed in the ninth row of the Table 3. It is satisfactory to explain the pattern only for q-orbits, q is odd
number, since the pattern is preserved for 2nq-orbits. As it is demonstrated in (44), when the parameter
λ decreases from λ3

0 to λ∞, superstable q-orbits appear according to pattern +8-2+2-4+4-2+2+2-8 starting
with superstable 3-orbit (written in red in (44)), while index of appearance changes according to pattern
1,8,4,7,2,6,3,5,9,...

(44) 51
−8
← 139

+2
← 115

+2
← 93

−2
← 116

+4
← 72

−4
← 117

+2
← 94

−2
← 118

+8
← 31

To construct the table in general, first consider only appearances that are powers of 2. Now, say we
wanted to construct the 2n row of the table, then the two outermost entries, that is, the first and 2n-th entries
are set to +2(n + 1) and −2n respectively. Then, the two entries exactly in the middle of the 1st and 2nth,
namely the 2n−1st and 2n−1 + 1st entries are set to −2(n−1) and +2(n−1) respectively. Now, find the median
entries between the two halves, 1 to 2n−1 and 2n−1 + 1 to 2n and set them to −2(n − 2) and +2(n − 2), and
continue in this fashion setting each new set of median entries to −2(n − i) and +2(n − i) for i = 3, · · · , n − 1
as illustrated in Figure 15.

To generate the N-th row that is not a power of 2 say 2n < N < 2n+1

(1) Find the pattern for 2n row
(2) Let J = N − 2n

(3) Replace the last J values,
{
p1, p2, · · · , p j, · · · , pJ

}
, of the 2n pattern according to the following rule:

(a) If p j > 0, p j →
{
p j + 2,−2

}
(b) If p j < 0, p j →

{
+2, p j − 2

}
The procedure to generate the indices is recursive. Given a pattern corresponding to row i of the table to

generate the row i + 1, first counting from 1, left to right, identify the position of i, say it’s in position m and
insert the new one between positions m − 2 and m − 1, unless position m − 1 is 1, in which case insert the
new (highest) index at the end of the list or in the (i + 1)th position. For example, to go from row 7 to row
8, we start with row 7 and observe that the highest index, 7, is in position 3 so we insert the new index, 8,
in between the index 1 in position 1 and the index 4 in position 2. However, in going from row 8 to row 9
observe that 8 is in position 2 so position m − 1 is 1. So, we insert 9 at the end of the list in position 9.

4.2. Constant Shift in Appearences. Numerical results demonstrate that for all four maps, parameter range
[λ∞, λ3

0] is divided into infinitely many blocks. For arbitrary fixed appearance index j = 1, 2, ... we have

λ2k+1
s, j ↓ λ

∞
s , as k ↑ ∞; s = 0, 1, 2, . . . ,(45)

λ3
0 > λ

∞
0 > · · · > λ∞s > λ∞s+1 > · · · > λ∞; λ∞s ↓ λ∞, as s ↑ ∞.(46)

Note that the limit values λ∞s in (45) are independent of j. Moreover, the results presented in a Table 2
demonstrate exponential convergence in (45):

(47) λ2k+1
s, j − λ

∞
s ∼ Cδ−k

s , as k ↑ ∞,
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where C is some positive constant, and δs is a convergence rate. With the notation
m
δ in Table 2, we expressed

the fact that m is the highest period of orbit used for the approximation of the convergence rate δ. For exam-
ple, δ0 = 2.817... is calculated for up to a 31-orbit and it is approximately the same up to the 5th appearance
of all the odd orbits. This results demonstrates that for any fixed two appearance indices, the ratio of dis-
tances of parameter values for respective appearances of superstable 2s(2k + 1)-orbits is an asymptotically
positive constant for large k, i.e. for any fixed positive integers i and j we have

lim
k→∞

λ2k+1
s, j − λ

∞
s

λ2k+1
s,i − λ∞s

= C > 0.

Table 2. Convergence Rates
(
λs−1−λs−2
λs−λs−1

)
for 2s(2k + 1) orbits

s Appearance
highest orbit used

Convergence Rate

Logistic Sine Cubic Quartic

0 1
31

2.81758
31

2.93749
31

2.96453
31

3.95368

0 2
31

2.81747
31

2.93741
31

2.96448
31

3.95363

0 3
31

2.81734
31

2.93731
31

2.96437
31

3.95362

0 4
31

2.81712
31

2.93713
31

2.96421
31

3.95358

0 5
31

2.81707
31

2.93710
31

2.96402
31

3.95351

1 1
30

2.92338
38

2.94158
38

2.94044
38

4.54383

1 2
42

2.95071
42

2.93561
42

2.93446
42

4.53395

1 3
38

2.91317
38

2.89814
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4.3. Feigenbaum Universlity in General Classes. Numerical results demonstrate that all the odd orbits
which appear in the parameter window (λ∞0 , λ

3
0] are going to go through infinitely many period doubling

transformations when λ decreases towards λ∞. This is demonstrated in the diagram (40)-(43) if we consider
periods up to 3rd appearances. Let us fix any positive integer J as highest appearance index, and deduce
from the Jth row of the Table 3 the distribution of all the odd orbits up to Jth appearance in the parameter
window (λ∞0 , λ

3
0] (e.g. if J = 9 then the portion of the odd orbits up to 9th appearnces between 31 and 51 are

demonstrated in (44)). All these orbits are going to go through infinitely many bifurcations when λ decreases
towarsd λ∞, and for any positive integer s, the sth bifurcation appears in the parameter window (λ∞s+1, λ

∞
s ).

It is fascinating that all these transition routes to chaos follow Feigenbaum universality. In particular, it is
revealed that the Feigenbaum universality is relevant in very general classes of maps beyond the unimodal
smooth endomorphisms.

Let integers k ≥ 1 and j ∈ [1, |Λ2k+1
0 |] be fixed. Recall that λ2k+1

0, j is the value of the parameter λ when
superstable (2k + 1)-orbit appears jth time while increasing λ from λ∞ to λ3

0. Numerical results demonstrate
that for all four maps we have

λ2k+1
s, j ↓ λ∞, as s ↑ ∞;(48)

lim
s→∞

λ2k+1
s−1, j − λ

2k+1
s−2, j

λ2k+1
s,i − λ2k+1

s−1, j

= δ,(49)

λ2k+1
s, j − λ∞ ∼ Cδ−s, as s ↑ ∞,(50)

where δ = 4.6692... in the case of logistic, sine and cubic maps (Tables 4, 5, 6); δ = 7.31... in the case of
the quartic map (Table 7); C > 0. Hence, we see that the convergence rate of the sequence of parameter
values for superstable (2s(2k + 1)) j-orbits to critical value λ∞ as s → +∞ from above is the same as the
convergence rate of the sequence of parameter values for the superstable 2s-orbits to the same value λ∞
from below. To clarify if Feigenbaum universality mechanism is indeed relevant we check asymptotical
properties of the scaling factor for successful period doublings from (2s(2k + 1)) j- to (2s+1(2k + 1)) j-orbits.
Let d2k+1

s, j be a directed distance from the maximum point of the map to the closest element of the superstable
(2s+1(2k + 1)) j-orbit, i.e.

(51) d2k+1
s, j = xmax − f 2s(2k+1)

λ2k+1
s+1, j

(xmax).

Numerical results in Tables 4-7 demonstrate that for all four models we have

(52) lim
s→∞

d2k+1
s−1, j

d2k+1
s, j

= α,

where α = −2.5029... in the case of logistic, sine and cubic maps (Tables 4, 5, 6); α = −1.69... in the case
of the quartic map (Table 7). Hence, we see that the scaling factor of the successive bifurcations of the
superstable (2s(2k + 1)) j-orbits when λ converges to critival value λ∞ as s → +∞ from above is the same
as the scaling factor of the successive bifurcations of the superstable 2s-orbits when λ converges to critical
value λ∞ from below. This indicates that the doubling transformation (31) with scaling factor a = α is a
driving force for the transition to chaos through successful bifurcations of superstable (2s(2k +1)) j-orbits for
s = 0, 1, 2, .... Therefore, Feigenbaum’s universality theory should be valid beyond the class of C 1-unimodal
maps - the classes of maps whose structure is defined with qth iteration of unimodal maps, where q = 2k + 1
is any fixed odd number. Following Feigenbaum [9, 10] define the functions

(53) g2k+1
m (x) = lim

s→∞
(−α)s f 2s(2k+1)

λ2k+1
s+m, j

(
x

(−α)s

)
, m = 1, 2, ...
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a−a

a

−a

b = ψ(a)

3
6

Figure 16. Period doubling mechanism for 31 showing the scaling

(54) g2k+1(x) = lim
m→∞

gk
m(x) = lim

s→∞
(−α)s f 2s(2k+1)

λ∞

(
x

(−α)s

)
, k = 1, 2, ...

Numerical results demonstarte that for any fixed non-negative integer k, family of functions in (53), (54) are
universal functions. The case k = 0 in (53), (54) is a particular case of classical Feigenbaum universality
theory explaining the transition from 2s-orbits, s = 0, 1, 2, ... to chaos through successful period doublings
(see (29) and following description of the rigorous universality theory). In this case g(1) = g is a fixed point
of the doubling operator F as in (32); each g(1)

m = gm is the intersection of Σm with the one-dimensional
unstable manifold passing through g. Figure 17 demonstrates the convergence to the universal function g1
in Figure 23(a) for the logistic map after calculation of the few terms under the limit sign in (53).

Figures 18, 19, 20, 21, 22 demonstrate the convergence in (53) to universal functions g2k+1
1 via successive

bifurcations of superstable (2s3)1-, (2s7)1-, (2s7)2-, (2s9)1-, (2s9)2-orbits respectively under the transition
(48)-(50) for the logistic map. Note that the side length of the green square in each of the Figures 18-22 is
equal to respective value of d2k+1

s, j , and Figures 23(b),(c), 24(a)(b) demonstrate the first four terms of the limit
expression in (53).

In fact, the universal functions g2k+1, k = 1, 2, ... in (54) are fixed points of the doubling operator F , and
solve the functional equation in (32). That is the reason that the convergence rate of parameter sequences in
(48)-(50) is the same universal constant δ. Moreover, It is easy to prove that if function g solves functional
equation (32), then any iteration of g is also a solution of the same equation. The normalization condition
g(0) = 1 can be arranged by replacing g with gµ = µg(x/µ), and by choosing the constant µ appropriately.
Indeed, for arbitrary µ , 0, gµ is a solution of the functional equation (53) if g is so. Hence, universal
functions g2k+1 must be exactly 2k + 1st iterations of the universal function g (which is the justification of
our notation), which is the fixed point of the doubling operator in the class of C 1-unimodal maps. For any
fixed k = 1, 2, ..., g2k+1 represents a fixed point of the doubling operator (and hence solving the functional
equation in (32)) in the more complicated class of maps which is the (2k + 1)st iteration of the class of
C 1-unimodal maps.

Hence, the numerical analysis suggests that the known rigorous universality theory ([7]) must be true in
a much larger class of maps than C 1-unimodal maps, and this generalization is a driving force of infinitely
many Feigenbaum scenarios of transition to chaos through successive bifurcations of all possible odd or-
bits as it is outlined in (48)-(54). We end our presentation with the description of the anticipated rigorous
universality theory in the particular case of k = 1, or in the class of maps which is the 3rd iteration of the
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C 1-unimodal maps. Let

�
3 = {φ : φ = ψ3, ψ ∈ �}.

Assume that ψ ∈ � satisfies (30). Since ψ is continuous, there exists e ∈ (a, 1) such that ψ(e) = 0, and
ψ2 is increasing and maps [0, e] onto [−a, 1]; ψ2 is decreasing and maps [e, 1] onto [b, 1]. By continuity
there exists d ∈ (0, a) such that ψ2(d) = 0. Now consider symmetric function φ = ψ3. φ is increasing and
maps [0, d] onto [b, 1]; φ is decreasing and maps [d, e] onto [−a, 1]; φ is increasing and maps [e, 1] onto
[−a, ψ(b)]; This guarantees that the second iteration φ2 = ψ6 maps [−a, a] to itself. Indeed, first of all from
(30) it follows that φ(a) > b, and hence, φ maps [−a, a] to [b, 1]. Also, since ψ2 maps [−a, a] to itself,
we have φ(b) = ψ4(a) ≤ a. Accordingly, φ maps [b, 1] into [−a, a], and hence φ2 maps [−a, a]] to itself.
Therefore, the doubling transformation F maps [−1, 1] into itself. Figure 16 demonstrates the structure of
φ = ψ3 and φ2 = ψ6 under the condition (30).

The following properties of F are key features of the universality theory in the class �3:

• F has a fixed point g3 with a = −α−1. Namely, g3 solves the functional equation in (32) in the class
�3. In fact, g3 is precisely 3rd iteration of the fixed point of the doubling operator F in the class of
C 1-unimodal maps, defined in (32).

• The Frechet derivative of F at the fixed point g3 has a simple eigenvalue equal to δ; the remainder
of the spectrum is contained in the open unit disk. Therefore, F has a one-dimensional unstable
manifold Wu and a codimension one stable manifold Ws at g3.

• Wu intersects transversally the codimension-one surface Σ3
1 of maps with superstable 2-orbits:

Σ3
1 = {φ ∈ �3 : φ2(0) = 0}

• Consider a set Σ3
m of maps with superstable 2m-orbits (inverse images of Σ3

1), i.e.

Σ3
m = F −(m−1)Σ3

1 = {φ : φ = F m−1φ0, φ0 ∈ Σ3
1}, m = 2, 3, ...

Then the distance between Σ3
m and Ws decreases like δ−m for large m.

• Consider arbitrary one-parameter family µ→ φµ of maps and treat it as a curve in �3. Assume that
this curve crosses stable manifold Ws at µ∞ with non-zero transverse velocity. This implies that for
all large m, there will be a unique µm near µ∞ such that φµm ∈ Σ3

m is a map with superstable 2m-orbit.
Then

lim
j→∞

F j−mφµ j = g3
m,m = 1, 2, 3, ... lim

j→∞
F jψµ∞ = g3

where g3
m is an intersection of Σm with Wu; g3 is a fixed point of F which solves functional equation

in (32) in the class �3. All the functions g3
m and g3 are universal functions.

For example, numerical calculation of the universal function g3
1 is demonstrated in Figure 24(b).

Similar description of the rigorous universality theory can be outlined in various classes

�
2k+1 = {φ : φ = ψ2k+1, ψ ∈ �}, k = 2, 3, 4, ...
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Figure 17. The Period Doubling Mechanism
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Figure 18. The Period Doubling Mechanism for 31
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Figure 19. The Period Doubling Mechanism for 71
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Figure 20. The Period Doubling Mechanism for 72
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Figure 21. The Period Doubling Mechanism for 91
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Figure 22. The Period Doubling Mechanism for 92
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Figure 23. Universal Function g1 for first appearance odds, Logistic Map.
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Figure 24. Universal Function g1 for first appearance odds, Logistic Map.
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Figure 25. Universal Function g1 for first appearance odds, Sine and Quartic Maps.
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5. Conclusions

The following are the main conclusions of this paper:
• We indroduced the notion of a second minimal orbit with respect to the Sharkovski ordering, for

continuous endomorphisms on the real line. It is proved that there are 9-types of second minimal
orbits up to their inverses. It is conjectured that there are 4k − 3-types of second minimal (2k + 1)-
orbits, with accuracy up to their inverses. The proof of this conjecture is addressed in a forthcoming
paper.

• We demonstrate the numerical results which reveal a fascinating universal pattern of the distribution
of periodic orbits within the chaotic regime of the bifurcation diagram of the one-parameter family
of unimodal maps, when the parameter changes in the range between the Feigenbaum transition
point to chaos and the value when the superstable 3-orbit appears for the first time. Numerical
results demonstarte that this parameter range is divided into infinitely many Sharkovski s-blocks
where all the 2s(2k + 1)-orbits are distributed and the pattern is independent of s.

• The first appearance of any orbit in the indicated parameter range is always a minimal orbit [1].
Numerical results of this paper demonstrate that the second appearances of all odd orbits are always
second minimal orbits with a Type 1 digraph. The reason for the relevance of exactly Type 1 second
minimal (2k+1)-orbits are hidden in the fact that the topological structure of the single maximum
unimodal map is equivalent to the topological structure of the piecewise monotonic map associated
with Type 1 second minimal (2k+1)-orbits.

• Numerical results demonstrate that the convergence of the successive parameter values for super-
stable 2s(2k + 1)-orbits within each s-block is exponential with a rate independent of the appearance
index. In particular, for any fixed two appearance indices, the ratio of distances of parameter values
for respective appearances of superstable 2s(2k + 1)-orbits is asymptotically constant for large k.
Otherwise speaking, there is an asymptotically constant shift in appearances.

• Numerical results demonstrate that any superstable odd orbits in the indicated parameter range are
going through successful period doublings, according to the Feigenbaum scenario when the parame-
ter decreases to the critical transition point. In particular, this reveals that the Feigenbaum universal-
ity is true in very general classes of maps, such as the class of maps which are the (2k +1)st iteration
of the class of C 1-unimodal maps. This generalization is a driving force of infinitely many Feigen-
baum scenarios of transition to chaos through successive bifurcations of all possible odd orbits in
the indicated range when the parameter decreases towards the first transition value to chaos.

• This paper outlines the elements of the rigorous Feigenbaum universality theory in the general class
of maps, which are the (2k + 1)st iteration of the class of C 1-unimodal maps.
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Appendix A. Topological Structure and Digraphs of SecondMinimal 7 Periodic Orbits
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Appendix B. Period Doubling Universality

Table 4. Logistic Map, Calculation of δ, α and λ∞ for Period Doubling Starting at (2k + 1) j-orbit.

s (2s(2k + 1)) j δ =
λ2k+1

s−1, j−λ
2k+1
s−2, j

λ2k+1
s,i −λ

2k+1
s−1, j

d2k+1
s−1, j

d2k+1
s, j

λ∞ =
λ2k+1

s, j −λ
2k+1
s−1, j

δ
+ λ2k+1

s, j

0 31

1 61 −2.454268432041252 0.89594979661707406416946181313487

2 121 4.507542941 −2.488688613626316 0.89313050797449905484309938153867

3 241 4.695932444 −2.499742045692276 0.89262750317573161723282801462988

4 481 4.667366742 −2.502259346885118 0.89251658164785687538727952773507

0 51

1 101 −2.461541495514402 0.8941969996574211991975179787555

2 201 4.797049170 −2.491558266385502 0.89289715499887409729439954015805

3 401 4.657504624 −2.500470850008986 0.89257341510864992280823790529933

4 801 4.671681878 −2.502380674035116 0.89250508785064221181203172037547

0 71

1 141 −2.476379655788202 0.89371271769926124261883715641013

2 281 4.878393687 −2.493625548299273 0.89280544741336308632755221705384

3 561 4.647942857 −2.499064991443559 0.89255347664146957131650654244597

4 1121 4.673628954 −2.499927161986120 0.89250081855148633129248533587511

0 72

1 142 −2.441360908576077 0.89478972189272774184345603394886

2 282 4.686149745 −2.488711635264935 0.89298530741659061037348218804723

3 562 4.671758208 −2.499866778948107 0.89259341442273037490686165466147

4 1122 4.669957285 −2.502262858497064 0.89250934498693109803019762752248

0 92
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1 182 −2.482362906116526 0.8939065325251966362138889769849

2 362 4.843746928 −2.490050317301194 0.89284322757970466863615377406862

3 722 4.652331109 −2.501126509692929 0.89256167561679316836096148965078

4 1442 4.671925051 -2.502292842294823 0.89250257204997931300986240368201

0 112

1 222 −2.493231131576156 0.89363322498180204977764031226799

2 442 4.879885441 −2.491347078570966 0.89278521816361457832345187927146

3 882 4.648157894 −2.501549958092916 0.89254921933905617305287183231895

4 1762 4.672309401 −2.502583102468284 0.89249990372894738969949420976901

Table 5. Sine Map, Calculation of δ, α and λ∞ for Period Doubling Starting at (2k + 1) j-orbit.

s (2s(2k + 1)) j δ =
λ2k+1

s−1, j−λ
2k+1
s−2, j

λ2k+1
s,i −λ

2k+1
s−1, j

d2k+1
s−1, j

d2k+1
s, j

λ∞ =
λ2k+1

s, j −λ
2k+1
s−1, j

δ
+ λ2k+1

s, j

0 31

1 61 −2.458609821276883 0.86873961050980452273981931736855

2 121 4.730427896 −2.492752378392625 0.86627858717481051811520136603587

3 241 4.689585511 −2.500535459353473 0.86573097100235693427121291937719

4 481 4.673272858 −2.502381199234309 0.86561183926284564115177937682167

0 51

1 101 −2.469638603784021 0.86753566714689360352714389016132

2 201 4.729401371 −2.495394712087649 0.86601487306407749630463253677485

3 401 4.680960160 −2.501268413804899 0.86567323757086173705919319289625

4 801 4.671707451 −2.502538204015066 0.86559942426768431025803197603423

0 71

1 141 −2.478098385927731 0.86709477011987882601778050648816

2 281 4.723917393 −2.497172992020666 0.86591599556540358179793949158351

3 561 4.677996484 −2.501655211509605 0.86565177172897623001957487637671

4 1121 4.671133912 −2.502632946021479 0.86559481485612672660444462402538

0 72

1 142 −2.458318467171219 0.86797819747052140648782279162278

2 282 4.731506379 −2.493322400484982 0.86611299007141507247691453285609

3 562 4.684043797 −2.500817171563748 0.86569462994922612770574190372751
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4 1122 4.672304839 −2.502470979507185 0.86560402258559291281598155802608

0 92

1 182 −2.473348814781689 0.86727607974117952905046531828577

2 362 4.726421035 −2.496081537357099 0.86595668844377796622573295012107

3 722 4.679197352 −2.501449848132213 0.86566059506957407320639774974063

4 1442 4.671371561 −2.502598648169756 0.86559670934974347986564146576437

0 112

1 222 −2.478761450016932 0.86700129994787830356496279859269

2 442 4.721501647 −2.497198146435454 0.86589475408483849677912881221641

3 882 4.677401460 −2.501644350274001 0.86564717264860741565372582983376

4 1762 4.671023240 −2.502808956533517 0.86559382810117226060517481733585

Table 6. Cubic Map, Calculation of δ, α and λ∞ for Period Doubling Starting at (2k + 1) j-orbit.

s (2s(2k + 1)) j δ =
λ2k+1

s−1, j−λ
2k+1
s−2, j

λ2k+1
s,i −λ

2k+1
s−1, j

d2k+1
s−1, j

d2k+1
s, j

λ∞ =
λ2k+1

s, j −λ
2k+1
s−1, j

δ
+ λ2k+1

s, j

0 72

1 142 −2.372145654798267 0.88804789214496225396997450138614

2 282 4.723797089 −2.531319536769563 0.88657074923765426350764650677041

3 562 4.679053349 −2.485852964973201 0.88624011561640477208179462882797

4 1122 4.671403318 −2.508524126657965 0.8861687905436954155321253795437

0 92

1 182 −2.392012536453845 0.88752721358053912198938524464942

2 362 4.68688313 −2.529350970159389 0.88644662175937664880268598598709

3 722 4.677220605 −2.488427281068384 0.88621331661356273506496985070365

4 1442 4.670698719 −2.507942183936122 0.88616303735274261404172741003216

0 112

1 222 −2.401139119219189 0.88730862290022364353463470838554

2 442 4.676860906 −2.528386409182592 0.88639767157841350475029194748652

3 882 4.676259561 −2.489467206157571 0.88620274999149280074214812466681

4 1762 4.670438970 −2.507685078672229 0.88616077018890463311199243290913

0 93

1 183 −2.554658949633893 0.88793016259195921272846049892483

2 363 4.68688313 −2.458084127102111 0.88654154523392702086619986540302
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3 723 4.677220605 −2.515688945322818 0.88623381029921983303969637851815

4 1443 4.671226897 −2.496763200983061 0.88616743555663080275354412407428

0 113

1 223 −2.552146100063579 0.88746619745994215376313738384434

2 443 4.682776145 −2.464930838112400 0.88643257966021943800101347433979

3 883 4.67700628 −2.514465146334054 0.88621028678047746387703277579242

4 1763 4.670623793 −2.497475746154126 0.8861623868421112195459594974699

0 133

1 263 −2.551864737909594 0.88728231056206985430559834418961

2 523 4.675899873 −2.467548655440053 0.88639187593569822321531870569661

3 1043 4.67613272 −2.513787216936584 0.88620149972504358736524328296578

4 2083 4.670402066 −2.497175141254314 0.88616050215386974275158350982972

Table 7. Quartic Map, Calculation of δ, α and λ∞ for Period Doubling Starting at (2k + 1) j-orbit.

s (2s(2k + 1)) j δ =
λ2k+1

s−1, j−λ
2k+1
s−2, j

λ2k+1
s,i −λ

2k+1
s−1, j

d2k+1
s−1, j

d2k+1
s, j

λ∞ =
λ2k+1

s, j −λ
2k+1
s−1, j

δ
+ λ2k+1

s, j

0 72

1 142 −1.685016151822741 0.96795394159304505710938590181654

2 282 7.257463741 −1.689616004337216 0.96852661836071093093947880007475

3 562 7.286379135 −1.690226809471704 0.96860664476713929365715844052214

4 1122 7.284942740 −1.690235270778622 0.96861762018986771419027828078051

0 92

1 182 −1.706637878653648 0.96810622414370329285875049828089

2 362 8.011416641 −1.686501852919600 0.96857120079598008323506215342665

3 722 7.142547386 −1.691119908779726 0.96861215098726192735905188554491

4 1442 7.310491719 −1.689505962339770 0.96861839106521838957990415362158

0 112

1 222 −1.707417466698786 0.96820355154025378646036479281196

2 442 8.104519001 −1.686805041920849 0.96858189445359425582754617346914

3 882 7.12879172 −1.691103312794999 0.96861370315863679308330737084034

4 1762 7.313150062 −1.687906060312480 0.96861860204728755478902582207586

0 93
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1 183 −1.691326896602970 0.96796023617845385063351410241339

2 363 7.442423313 −1.688539412451539 0.96853694166575197109039719178152

3 723 7.248421264 −1.690519553189105 0.96860779987299731141046980037075

4 1443 7.292133658 −1.690006740550708 0.96861778591379699935954519679743

0 113

1 223 −1.708260498375539 0.9681230884282922464955139101004

2 443 8.094606895 −1.686293933989813 0.96857449717045342820862820345668

3 883 7.127647184 −1.691037152267567 0.96861258004120980702800102624212

4 1763 7.313418511 −1.692380649828639 0.96861845058231499395485478509606

0 133

1 263 −1.707280529206626 0.96821226051351762376085481275083

2 523 8.103299085 −1.686936763535888 0.9685826506575972170190345396649

3 1043 7.129597110 −1.691348289167268 0.96861381995072885385226162850149

4 2083 7.313591663 −1.678694125925514 0.96861861872806814873905892278321

Appendix C. Parameter Tables

The following few pages contain parameter values that we used to construct the tables and figures in this
document. Below is a key outlining the table headers.

• Parameter: the numeric value of the parameter for the associated map
• P: the super stable periodic orbit corresponding to the above parameter value
• A: the appearance number of the periodic orbit corresponding to the parameter value
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Table 8. Parameter Values for Lo-
gistic Map fλ(x) = 4λx(1 − x)

Parameter P A
0.5 1.0 1.0
0.8090169943749475 2.0 1.0
0.8746404248319252 4.0 1.0
0.8886602156922059 8.0 1.0
0.8916668449640671 16.0 1.0
0.8925435410844437 176.0 1.0
0.8925462153481506 144.0 1.0
0.8925493727315035 176.0 2.0
0.8925536426542862 112.0 1.0
0.8925582633384074 176.0 3.0
0.8925618374268403 144.0 2.0
0.8925652869739683 176.0 4.0
0.892573585 80.0 1.0
0.892582971578052 176.0 5.0
0.8925860303078793 144.0 3.0
0.8925889559052782 176.0 6.0
0.8925934776392263 112.0 2.0
0.8925977476162251 176.0 7.0
0.8926000233456378 144.0 4.0
0.8926020087836917 176.0 8.0
0.8926169497695979 176.0 9.0
0.8926273 48.0 1.0
0.8926273095473648 144.0 5.0
0.8926424478626298 144.0 6.0
0.8926468116175647 176.0 10.0
0.8926516782349787 176.0 11.0
0.8926574315669168 144.0 7.0
0.8926586161442951 176.0 12.0
0.8926614251928092 112.0 3.0
0.8926652649929492 144.0 8.0
0.8926842268307457 112.0 4.0
0.8926913356572714 144.0 9.0
0.892695290032331 144.0 10.0
0.8926999134097414 144.0 11.0
0.8927022801053289 112.0 5.0
0.8927050057536571 144.0 12.0
0.8927172512571973 112.0 6.0

Parameter P A
0.8927293163954468 112.0 7.0
0.8927391046311725 112.0 8.0
0.892745143089132 112.0 9.0
0.8927531275154216 88.0 1.0
0.892765612708715 72.0 1.0
0.8927803546566632 88.0 2.0
0.8928002912804274 56.0 1.0
0.8928218666978042 88.0 3.0
0.8928385565717427 72.0 2.0
0.8928546647294011 88.0 4.0
0.89286570826588 112.0 10.0
0.8928758764598548 112.0 11.0
0.892893412 40.0 1.0
0.8929185769659241 112.0 12.0
0.8929372464436822 88.0 5.0
0.892951531075995 72.0 3.0
0.892965194521167 88.0 6.0
0.8929863118792093 56.0 2.0
0.8930062532268376 88.0 7.0
0.8930168810677759 72.0 4.0
0.8930261525483736 88.0 8.0
0.8930959299227967 88.0 9.0
0.893144323 24.0 1.0
0.8932150514348008 72.0 5.0
0.8932354347086963 88.0 10.0
0.8932581641927477 88.0 11.0
0.8932657490534088 88.0 12.0
0.8932850347611261 72.0 6.0
0.8933036890878607 56.0 3.0
0.8933216260408074 72.0 7.0
0.8933978510203553 72.0 8.0
0.8934102079449422 56.0 4.0
0.8934213197439284 72.0 9.0
0.8934434098714304 72.0 10.0
0.8934618867418858 72.0 11.0
0.8934834850666612 72.0 12.0
0.8934945442626503 56.0 5.0
0.8935645266299209 56.0 6.0
0.8936209165390675 56.0 7.0
0.8936666925819085 56.0 8.0
0.893694946890496 56.0 9.0



36 U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

Parameter P A
0.8937323239550504 44.0 1.0
0.8937906969816722 36.0 1.0
0.8938595743690791 44.0 2.0
0.8939527169808105 28.0 1.0
0.8939585734139139 56.0 10.0
0.8940534775173637 44.0 3.0
0.8941313720345442 36.0 2.0
0.8942065586523593 44.0 4.0
0.894258151388425 56.0 11.0
0.894387542 20.0 1.0
0.8945920053348253 44.0 5.0
0.8946586324286321 36.0 3.0
0.8947223418891009 44.0 6.0
0.894820829737213 28.0 2.0
0.8949138449982476 44.0 7.0
0.8949634233198132 36.0 4.0
0.8950067008708713 44.0 8.0
0.8953321587557187 44.0 9.0
0.8955574589550901 12.0 1.0
0.8955574589550902 36.0 5.0
0.8958862652026675 36.0 6.0
0.8959812147446011 44.0 10.0
0.8960872008248462 44.0 11.0
0.8961224931207159 44.0 12.0
0.896187724634684 44.0 13.0
0.8962125114340377 36.0 7.0
0.8962994172610155 28.0 3.0
0.8963829388112704 36.0 8.0
0.8967376720178901 36.0 9.0
0.8967952385115885 28.0 4.0
0.8968470365678113 36.0 10.0
0.8969500795862201 36.0 11.0
0.8970359452655111 36.0 12.0
0.8971364940346715 36.0 13.0
0.8971878607732342 28.0 5.0
0.897349960937811 16.0 2.0
0.8975119706948392 28.0 6.0
0.897773472481103 28.0 7.0
0.8979846837132985 28.0 8.0
0.8981144866729309 28.0 9.0
0.898285536828268 22.0 1.0

Parameter P A
0.8985555274564071 18.0 1.0
0.8988759584501568 22.0 2.0
0.8993095495931392 14.0 1.0
0.8993368709151569 28.0 10.0
0.8997801682018646 22.0 3.0
0.900145977896958 18.0 2.0
0.9004988403933514 22.0 4.0
0.900739199236906 28.0 11.0
0.9009615610934926 28.0 12.0
0.9013464593838434 10.0 1.0
0.9023089359519223 22.0 5.0
0.9026237070977975 18.0 3.0
0.9029255119168045 22.0 6.0
0.9033912545246447 14.0 2.0
0.9038307061198744 22.0 7.0
0.9040647384776517 18.0 4.0
0.904267999021263 22.0 8.0
0.904899707989313 16.0 3.0
0.9058068890614333 22.0 9.0
0.9068893823788807 6.0 1.0
0.907823200062555 12.0 2.0
0.9084892763171067 18.0 5.0
0.908943552643572 22.0 10.0
0.909446366503746 22.0 11.0
0.9095331442064777 16.0 4.0
0.909616877636151 22.0 12.0
0.9099232980258403 22.0 13.0
0.9100404763587777 18.0 6.0
0.9104560684602736 14.0 3.0
0.9108571928810814 18.0 7.0
0.9113101549515245 16.0 5.0
0.9117622003804752 10.0 2.0
0.9122196907504082 16.0 6.0
0.9125698915821074 18.0 8.0
0.9128454558604397 14.0 4.0
0.9130921658581117 18.0 9.0
0.9133219453957768 16.0 7.0
0.913580229382562 18.0 10.0
0.9137869897027185 12.0 3.0
0.9140000120689893 18.0 11.0
0.9142572545642417 16.0 8.0



SECOND MINIMAL ORBITS 37

Parameter P A
0.9144843071853473 18.0 12.0
0.9147365695291755 14.0 5.0
0.9150310389753986 18.0 13.0
0.9155481259216439 8.0 2.0
0.9156307240370415 16.0 9.0
0.9163686307982645 14.0 6.0
0.9167444770891021 16.0 10.0
0.9170937820054763 12.0 4.0
0.9174080707508858 16.0 11.0
0.9176716828336033 14.0 7.0
0.9179438449410644 16.0 12.0
0.918252061590967 10.0 3.0
0.9185479687517751 16.0 13.0
0.9187709570364896 14.0 8.0
0.9189599787371455 16.0 14.0
0.9191588201786222 12.0 5.0
0.9193383506312537 16.0 15.0
0.9194727761973615 14.0 9.0
0.9195830311115901 16.0 16.0
0.9196435795904915 27.0 1.0
0.9196439467055643 25.0 1.0
0.919644981018353 23.0 1.0
0.9196457756192704 31.0 1.0
0.9196459733265683 33.0 1.0
0.919646584854938 29.0 1.0
0.9196478947752951 21.0 1.0
0.9196561008171046 19.0 1.0
0.9196791956839688 17.0 1.0
0.9197000311872442 33.0 2.0
0.9197006174971487 29.0 2.0
0.9197013110760547 27.0 2.0
0.9197027892812369 25.0 2.0
0.9197070458081346 19.0 2.0
0.9197149184463773 23.0 2.0
0.919720432954781 31.0 2.0
0.9197223223802037 21.0 2.0
0.9197440854758494 15.0 1.0
0.9198001163269032 29.0 3.0
0.9198006805909831 31.0 3.0
0.9198015834347826 21.0 3.0
0.9198060374454656 25.0 3.0

Parameter P A
0.9198101479894252 23.0 3.0
0.9198106458924652 33.0 3.0
0.9198220811388089 17.0 2.0
0.9198265854125903 27.0 3.0
0.919864618020104 19.0 3.0
0.9199002311171905 29.0 4.0
0.9199010748389 31.0 4.0
0.919902361355556 23.0 4.0
0.9199062616676469 27.0 4.0
0.919909788780055 25.0 4.0
0.9199257014200635 13.0 1.0
0.9199604232996532 33.0 4.0
0.9199641405971246 21.0 4.0
0.9199901616901687 19.0 4.0
0.9200000703977084 27.0 5.0
0.9200028110917958 23.0 5.0
0.9200076215315786 25.0 5.0
0.9200103594866011 33.0 5.0
0.9200106468302367 31.0 5.0
0.9200112670767221 29.0 5.0
0.9200132410614315 21.0 5.0
0.9200389918663741 17.0 3.0
0.9200856001137521 19.0 5.0
0.9201002143603496 33.0 6.0
0.9201016145225464 29.0 6.0
0.9201028782109886 25.0 6.0
0.9201090481341733 21.0 6.0
0.9201105233194542 31.0 6.0
0.9201219025506991 23.0 6.0
0.9201255900181393 27.0 6.0
0.9201422993862319 15.0 2.0
0.9202001209047099 33.0 7.0
0.9202005092526497 31.0 7.0
0.9202028502440535 19.0 6.0
0.9202076590267333 27.0 7.0
0.9202106868115649 25.0 7.0
0.9202121549955485 29.0 7.0
0.9202163098045701 23.0 7.0
0.9202278551537337 21.0 7.0
0.9202587007006321 17.0 4.0
0.9203000082728384 33.0 8.0



38 U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

Parameter P A
0.9203010086311395 29.0 8.0
0.9203057998429245 23.0 8.0
0.9203127589957107 25.0 8.0
0.9203165520944553 27.0 8.0
0.9203227908438997 19.0 7.0
0.920342369174139 31.0 8.0
0.9203571728536436 21.0 8.0
0.9204296685342831 11.0 1.0
0.9204767917194359 31.0 9.0
0.9204782548259948 27.0 9.0
0.9204811789142139 25.0 9.0
0.9204886765851206 23.0 9.0
0.920491177506046 29.0 9.0
0.9205005434280713 27.0 10.0
0.9205016326349753 31.0 10.0
0.9205060640270746 21.0 9.0
0.9205100093913368 33.0 9.0
0.9205152878078745 25.0 10.0
0.9205204912373594 29.0 10.0
0.9205229230057148 23.0 10.0
0.9205419557953939 19.0 8.0
0.9206005784482749 31.0 11.0
0.9206016043882802 27.0 11.0
0.9206035067349837 29.0 11.0
0.9206106074930887 17.0 5.0
0.9206233780780297 25.0 11.0
0.9206307692696445 23.0 11.0
0.9206445592873718 21.0 10.0
0.9206503319730334 33.0 10.0
0.9206722630021638 19.0 9.0
0.920701250060699 21.0 11.0
0.9207028636238962 33.0 11.0
0.9207058521120631 27.0 12.0
0.9207091690061839 25.0 12.0
0.9207108947869364 29.0 12.0
0.9207162655093767 23.0 12.0
0.9207419764574405 15.0 3.0
0.9207611508956879 31.0 12.0
0.9208003677980954 31.0 13.0
0.9208013027396837 25.0 13.0
0.9208044399266484 27.0 13.0

Parameter P A
0.9208098673955014 19.0 10.0
0.9208136718855724 29.0 13.0
0.9208200470149717 33.0 12.0
0.9208239900768528 23.0 13.0
0.9208357735776028 21.0 12.0
0.9208669721008041 17.0 6.0
0.9209010909575819 33.0 13.0
0.9209014409363525 31.0 14.0
0.9209022018802908 29.0 14.0
0.9209065639725457 25.0 14.0
0.9209125024919976 23.0 14.0
0.9209159028698781 27.0 14.0
0.9209285533727417 19.0 11.0
0.9209609162728946 21.0 13.0
0.9210201003306971 13.0 2.0
0.9210523200855003 29.0 15.0
0.9210565730461244 25.0 15.0
0.921060891466536 31.0 15.0
0.9210642268502021 23.0 15.0
0.9210684773689786 27.0 15.0
0.9210811677775855 21.0 14.0
0.9210906606157544 33.0 14.0
0.9211005911749909 33.0 15.0
0.9211045739676469 25.0 16.0
0.9211102289158498 29.0 16.0
0.9211152051517735 19.0 12.0
0.9211323778639362 23.0 16.0
0.9211358613331826 27.0 16.0
0.9211463306470374 21.0 15.0
0.9211500728400285 31.0 16.0
0.9211820874871725 17.0 7.0
0.9212003053975469 33.0 16.0
0.9212007128291876 29.0 17.0
0.9212015158659378 31.0 17.0
0.9212029872773682 23.0 17.0
0.9212066360711628 27.0 17.0
0.9212095811496441 25.0 17.0
0.9212170738871973 21.0 16.0
0.9212463984436541 19.0 13.0
0.921300240890266 33.0 17.0
0.9213006615814194 29.0 18.0



SECOND MINIMAL ORBITS 39

Parameter P A
0.9213014802403597 31.0 18.0
0.9213026978247993 25.0 18.0
0.92130631826283 27.0 18.0
0.9213262606625509 15.0 4.0
0.9213588721853865 23.0 18.0
0.9213762639622086 21.0 17.0
0.9214035603610099 27.0 19.0
0.9214107783908108 19.0 14.0
0.9214153297683447 31.0 19.0
0.9214200902652883 33.0 18.0
0.9214216285362573 25.0 19.0
0.9214288350417134 23.0 19.0
0.9214310694267652 29.0 19.0
0.9214438552596709 21.0 18.0
0.9214845277144422 17.0 8.0
0.9215001291474537 33.0 19.0
0.9215010171790381 25.0 20.0
0.9215049782513212 27.0 20.0
0.9215095294630585 23.0 20.0
0.9215112716081109 31.0 20.0
0.9215121500634174 29.0 20.0
0.9215262948579038 21.0 19.0
0.9215608336278994 19.0 15.0
0.9216002756249053 33.0 20.0
0.9216008621175658 25.0 21.0
0.9216017202012348 31.0 21.0
0.921606307688425 23.0 21.0
0.9216126226488097 27.0 21.0
0.921753409712203 31.0 22.0
0.9217577448964835 29.0 21.0
0.9217611380044505 33.0 21.0
0.921804045233538 9.0 1.0
0.9218590865036999 33.0 22.0
0.9218641957928685 31.0 23.0
0.9218709393905855 29.0 22.0
0.9219718987947105 33.0 23.0
0.9220111472734216 33.0 24.0
0.9220160672052569 29.0 23.0
0.9220166608744411 27.0 22.0
0.9220183435162941 25.0 22.0
0.9220208907672919 31.0 24.0

Parameter P A
0.9220230674037606 23.0 22.0
0.9220360043243131 21.0 20.0
0.9220694892396009 19.0 16.0
0.9221006939816137 33.0 25.0
0.9221048175786382 21.0 21.0
0.9221120027015463 29.0 24.0
0.9221139584364046 25.0 23.0
0.9221218006952228 23.0 23.0
0.922126355265872 27.0 23.0
0.9221480960567324 17.0 9.0
0.922159726448752 31.0 25.0
0.9222002247854527 33.0 26.0
0.9222005785028199 29.0 25.0
0.9222011980332242 31.0 26.0
0.9222057411189049 23.0 24.0
0.9222129968030404 25.0 24.0
0.9222166052355004 27.0 24.0
0.9222244298335882 19.0 17.0
0.9222597382550419 21.0 22.0
0.9223138550089415 15.0 5.0
0.9223381697320739 29.0 26.0
0.9223393802222187 27.0 25.0
0.922342562851247 25.0 25.0
0.9223501969457514 23.0 25.0
0.9223519582560188 31.0 27.0
0.9223665449604025 21.0 23.0
0.922399214446316 19.0 18.0
0.922406402226228 27.0 26.0
0.9224096209205783 25.0 26.0
0.9224112875747574 29.0 27.0
0.9224161022741247 23.0 26.0
0.9224297139943903 21.0 24.0
0.9224411422767945 31.0 28.0
0.9224669462877152 17.0 10.0
0.9225049540612161 21.0 25.0
0.9225111577683214 29.0 28.0
0.9225127813206834 25.0 27.0
0.9225156274141197 27.0 27.0
0.9225191563794206 23.0 27.0
0.92253694125618 19.0 19.0
0.922542458896398 31.0 29.0



40 U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

Parameter P A
0.9226176193928061 31.0 30.0
0.9226464425273783 13.0 3.0
0.9226985119519096 27.0 28.0
0.9227008178525822 25.0 28.0
0.9227022407363636 29.0 29.0
0.922703450274448 27.0 29.0
0.9227069440391705 23.0 28.0
0.9227218838495027 21.0 26.0
0.92275449593336 19.0 20.0
0.9227598793106112 31.0 31.0
0.9228004001233571 31.0 32.0
0.9228055063846784 25.0 29.0
0.9228208374473782 17.0 11.0
0.9228318593515585 29.0 30.0
0.9228424021108256 23.0 29.0
0.9228457697436099 27.0 30.0
0.9228555496778423 21.0 27.0
0.9228834258451859 19.0 21.0
0.9229008001875197 31.0 33.0
0.9229053068625388 25.0 30.0
0.9229128243166754 21.0 28.0
0.9229176329559665 27.0 31.0
0.9229222384020115 29.0 31.0
0.9229271234309651 23.0 30.0
0.9229611968821689 15.0 6.0
0.9230008998938598 29.0 32.0
0.9230025440384575 25.0 31.0
0.923005640632976 27.0 32.0
0.9230106288246114 21.0 29.0
0.9230134345245601 31.0 34.0
0.9230246352291566 23.0 31.0
0.9230414320248848 19.0 22.0
0.923108777775757 17.0 12.0
0.9231208724973803 31.0 35.0
0.9231213450951792 29.0 33.0
0.9231257848675283 25.0 32.0
0.923132894975511 23.0 32.0
0.9231366730398138 27.0 33.0
0.9231477692758365 21.0 30.0
0.9231797780922061 19.0 23.0
0.9232022555173477 29.0 34.0

Parameter P A
0.9232037853402316 25.0 33.0
0.9232113433701622 21.0 31.0
0.9232159122244098 27.0 34.0
0.9233553354446671 11.0 2.0
0.9234364494843212 29.0 35.0
0.9234875471606739 25.0 34.0
0.9234952282874029 27.0 35.0
0.923505076081172 21.0 32.0
0.9235127679201179 25.0 35.0
0.9235155521191672 27.0 36.0
0.9235372401278704 19.0 24.0
0.9236101303997307 17.0 13.0
0.9236248828050347 27.0 37.0
0.9236279066755088 25.0 36.0
0.9236491052579816 21.0 33.0
0.9236796161121292 19.0 25.0
0.9237031728677695 25.0 37.0
0.9237111298598573 21.0 34.0
0.9237162552841238 27.0 38.0
0.9237638529359127 15.0 7.0
0.9238051113914373 27.0 39.0
0.9238079477611446 25.0 38.0
0.9238158785374112 21.0 35.0
0.9238460988672327 19.0 26.0
0.9239112916557798 17.0 14.0
0.9239255388317077 27.0 40.0
0.9239488116172666 21.0 36.0
0.9239796821838245 19.0 27.0
0.9240118642346291 21.0 37.0
0.9240168986630016 27.0 41.0
0.9240988760780329 13.0 4.0
0.9241659057686024 27.0 42.0
0.9241874953823742 21.0 38.0
0.9242056864820108 27.0 43.0
0.9242202029150759 19.0 28.0
0.9242516437364504 21.0 39.0
0.9242901169978515 17.0 15.0
0.9243274730242318 21.0 40.0
0.9243566357281391 19.0 29.0
0.924440039748957 15.0 8.0
0.9244925837164232 21.0 41.0



SECOND MINIMAL ORBITS 41

Parameter P A
0.9245216932198678 19.0 30.0
0.9245488951118092 21.0 42.0
0.9245822242032017 17.0 16.0
0.9246362004773152 19.0 31.0
0.9248291259456144 16.0 17.0
0.9254422883844889 7.0 1.0
0.9255708476075072 14.0 10.0
0.9261810653663104 16.0 18.0
0.9263695549335671 19.0 32.0
0.926422205650506 17.0 17.0
0.926480708392207 19.0 33.0
0.9265617938148366 15.0 9.0
0.9266443295176789 19.0 34.0
0.9267072296096274 17.0 18.0
0.9267719927018105 19.0 35.0
0.9268990591234583 13.0 5.0
0.9270246251963171 19.0 36.0
0.9270866574862666 17.0 19.0
0.9271462242414003 19.0 37.0
0.9272250976785409 15.0 10.0
0.92730477980184 19.0 38.0
0.9273649682044417 17.0 20.0
0.9274246529676042 19.0 39.0
0.927643837998337 11.0 3.0
0.9278623135222064 19.0 40.0
0.9279189741782298 17.0 21.0
0.9279752930366489 19.0 41.0
0.9280495878140084 15.0 11.0
0.9281221075383218 19.0 42.0
0.9281752606494361 17.0 22.0
0.9282295925464943 19.0 43.0
0.92834448677078 13.0 6.0
0.928460602487508 19.0 44.0
0.9285154193462041 17.0 23.0
0.9285688582630766 19.0 45.0
0.9286415302414859 15.0 12.0
0.9287139150577448 19.0 46.0
0.928765286070779 17.0 24.0
0.9288127175465508 19.0 47.0
0.9289968814034584 16.0 19.0
0.9292792068508622 9.0 2.0

Parameter P A
0.9295822427339708 16.0 20.0
0.9298079717433595 17.0 25.0
0.9299278057808813 15.0 13.0
0.9300482202563531 17.0 26.0
0.9302132331790187 13.0 7.0
0.9303744281142803 17.0 27.0
0.9304878779751862 15.0 14.0
0.9306020957994455 17.0 28.0
0.9308659010883394 11.0 4.0
0.9311266981784078 17.0 29.0
0.931234015921366 15.0 15.0
0.9313370849667829 17.0 30.0
0.9314786851600155 13.0 8.0
0.9316127851041636 17.0 31.0
0.9316990324815639 15.0 16.0
0.931774933086075 17.0 32.0
0.931881041671243 16.0 21.0
0.9320175871084143 14.0 11.0
0.9321798504486302 16.0 22.0
0.9324535237980285 12.0 6.0
0.9327763934958844 16.0 23.0
0.9330334577962366 14.0 12.0
0.9333315218062391 16.0 24.0
0.9336982614806218 17.0 33.0
0.9347287282426712 5.0 1.0
0.9354619793333402 10.0 4.0
0.936004218370594 15.0 17.0
0.9365481090303157 17.0 34.0
0.9368470960303923 16.0 25.0
0.9371045687350086 14.0 13.0
0.9373251521199856 16.0 26.0
0.9375492280855212 17.0 35.0
0.9376188083061392 12.0 7.0
0.9376870171464302 17.0 36.0
0.9378666057635101 16.0 27.0
0.9380019767238563 14.0 14.0
0.938117088017013 16.0 28.0
0.9382016815414446 17.0 37.0
0.9382639401482904 15.0 18.0
0.9383328148965207 17.0 38.0
0.938448694765481 13.0 9.0



42 U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

Parameter P A
0.938569177987284 17.0 39.0
0.9386465789836986 15.0 19.0
0.9387244096568935 17.0 40.0
0.9388708890819253 16.0 29.0
0.9389691251075292 11.0 5.0
0.9390695421382402 16.0 30.0
0.9392151036120271 17.0 41.0
0.9392926094377416 15.0 20.0
0.9393698233226494 17.0 42.0
0.9394928977047089 13.0 10.0
0.9396153225473503 17.0 43.0
0.939690024842712 15.0 21.0
0.9397608915679229 17.0 44.0
0.9398638787402191 16.0 31.0
0.9400376250602329 14.0 15.0
0.9403137986767697 9.0 3.0
0.94059942667533 14.0 16.0
0.9407653946677715 16.0 32.0
0.9408613682291624 17.0 45.0
0.9409270154265458 15.0 22.0
0.9409953129169278 17.0 46.0
0.9411078240980755 13.0 11.0
0.941219364734741 17.0 47.0
0.9412866882425523 15.0 23.0
0.9413532521023238 17.0 48.0
0.9414673057559139 16.0 33.0
0.9415765699409272 11.0 6.0
0.9416867792979688 16.0 34.0
0.9417978781941158 17.0 49.0
0.9418617516317436 15.0 24.0
0.9419252584019139 17.0 50.0
0.9420287698786108 13.0 12.0
0.9421288573690431 17.0 51.0
0.942185810613247 15.0 25.0
0.9422379080085772 17.0 52.0
0.9423072956256685 16.0 35.0
0.942405302536878 14.0 17.0
0.9425207052272616 16.0 36.0
0.9426527498373356 17.0 53.0
0.9427557608876059 12.0 8.0
0.9428743623740117 17.0 54.0

Parameter P A
0.9430870153972655 16.0 37.0
0.9435535472252282 7.0 2.0
0.9436340122846377 14.0 18.0
0.9440868779686737 16.0 38.0
0.9442804882592601 17.0 55.0
0.944400441261753 12.0 9.0
0.9445048407326306 17.0 56.0
0.9446182118866014 16.0 39.0
0.9447209484546417 14.0 19.0
0.9448077454709249 16.0 40.0
0.9448674903684716 17.0 57.0
0.9449126279511749 15.0 26.0
0.9449612825801651 17.0 58.0
0.9450488345622481 13.0 13.0
0.9451381264415866 17.0 59.0
0.9451899365694643 15.0 27.0
0.9452412487095767 17.0 60.0
0.9453222087248859 16.0 41.0
0.9454345985777954 11.0 7.0
0.9455471174411741 16.0 42.0
0.9456259644051741 17.0 61.0
0.9456755743657617 15.0 28.0
0.9457253447634651 17.0 62.0
0.9458115547312089 13.0 14.0
0.9458967766826185 17.0 63.0
0.9459443478465995 15.0 29.0
0.9459893788372576 17.0 64.0
0.9460505092541333 16.0 43.0
0.9461476071342457 14.0 20.0
0.9462966096162295 16.0 44.0
0.9464449481328123 9.0 4.0
0.9465988685328639 16.0 45.0
0.9467408391711305 14.0 21.0
0.9468310268519844 16.0 46.0
0.9468864578791083 17.0 65.0
0.9469269490048738 15.0 30.0
0.9469691298705613 17.0 66.0
0.9470443898694233 13.0 15.0
0.9471188724630772 17.0 67.0
0.9471603042130635 15.0 31.0
0.9472008999953558 17.0 68.0



SECOND MINIMAL ORBITS 43

Parameter P A
0.9472621657601605 16.0 47.0
0.9473591815013696 11.0 8.0
0.9474541321755662 16.0 48.0
0.9475106957943875 17.0 69.0
0.9475469696260843 15.0 32.0
0.9476448977552586 13.0 16.0
0.9477034426138526 17.0 70.0
0.947733921617124 15.0 33.0
0.9477966857540892 16.0 49.0
0.9478462851458759 14.0 22.0
0.9479006922691185 16.0 50.0
0.9479516033174422 17.0 71.0
0.9480053188877896 12.0 10.0
0.9480607439004328 17.0 72.0
0.9481160741636439 16.0 51.0
0.9481796300838617 14.0 23.0
0.9482435763382607 16.0 52.0
0.9482944689150308 17.0 73.0
0.9483413732621206 15.0 34.0
0.948408642108592 17.0 74.0
0.9485164441889147 10.0 5.0
0.9486285476412364 17.0 75.0
0.9486987975767931 15.0 35.0
0.9487487242954044 17.0 76.0
0.9488036471569236 16.0 53.0
0.9488743597460321 14.0 24.0
0.9489462845704794 16.0 54.0
0.949009332533322 17.0 77.0
0.9490780804877298 12.0 11.0
0.9491473662644617 17.0 78.0
0.9492107277102163 16.0 55.0
0.9492826687713001 14.0 25.0
0.9493514336511595 16.0 56.0
0.9494014907276402 17.0 79.0
0.9494428882786827 15.0 36.0
0.9495891122434322 13.0 17.0
0.9497094552611501 17.0 80.0
0.9497890939253142 15.0 37.0
0.9498857281645797 17.0 81.0
0.9501927359686673 8.0 3.0
0.9502236731934814 16.0 57.0

Parameter P A
0.9505347418045125 17.0 82.0
0.9506352651907028 15.0 38.0
0.9507189563549525 17.0 83.0
0.9508487313327707 13.0 18.0
0.9509575188358351 17.0 84.0
0.9510088573843923 15.0 39.0
0.9510544395866831 17.0 85.0
0.9511093923830842 16.0 58.0
0.9511864043035728 14.0 26.0
0.9512673274850394 16.0 59.0
0.9513363596128612 17.0 86.0
0.9514221837472476 12.0 12.0
0.9515089240660483 17.0 87.0
0.9515790930715127 16.0 60.0
0.9516631530453461 14.0 27.0
0.9517463040461553 16.0 61.0
0.951808892592533 17.0 88.0
0.9518652770653788 15.0 40.0
0.9519383831319697 17.0 89.0
0.9521244725098057 10.0 6.0
0.9523162411492646 17.0 90.0
0.9523905365647094 15.0 41.0
0.9524481238036833 17.0 91.0
0.9525120069820141 16.0 62.0
0.9525975616461875 14.0 28.0
0.9526840291164363 16.0 63.0
0.9527546685675844 17.0 92.0
0.9528475463736816 12.0 13.0
0.9529398694971234 17.0 93.0
0.9530080745662677 16.0 64.0
0.9530891576691004 14.0 29.0
0.9531651619914416 16.0 65.0
0.9532174331812081 17.0 94.0
0.9532603361848672 15.0 42.0
0.9533072546905522 17.0 95.0
0.9534043196366604 13.0 19.0
0.9535088561007298 17.0 96.0
0.9535658791619818 15.0 43.0
0.9536237513110958 17.0 97.0
0.9537070876960089 16.0 66.0
0.9539187227353836 11.0 9.0



44 U.G.ABDULLA, R.U.ABDULLA, M.U.ABDULLA, AND N.H.IQBAL

Parameter P A
0.9541535736642798 16.0 67.0
0.9542576473407822 17.0 98.0
0.9543353288341542 15.0 44.0
0.9544165158088548 17.0 99.0
0.9545820065186768 13.0 20.0
0.9547587014626097 17.0 100.0
0.954852987166387 15.0 45.0
0.9549467352368605 17.0 101.0
0.9550714036503227 16.0 68.0
0.9552867504518042 14.0 30.0
0.9555838961047767 16.0 69.0
0.9559280829047855 17.0 102.0
0.9579685138208287 3.0 1.0


