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Recently it was shown that in the dynamical model of Chua circuit both the classical self-
excited and hidden chaotic attractors can be found. In this paper the dynamics of the Chua
circuit is revisited. The scenario of the chaotic dynamics development and the birth of self-
excited and hidden attractors is studied. It is shown a pitchfork bifurcation in which a pair of
symmetric attractors coexists and merges into one symmetric attractor through an attractor-
merging bifurcation and a splitting of a single attractor into two attractors. The scenario relating
the subcritical Hopf bifurcation near equilibrium points and the birth of hidden attractors is
discussed.
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1. Introduction

The Chua circuit is one of the well-known and well-studied nonlinear dynamical models [Chua, 1992a,b;
Kuznetsov et al., 1993; Belykh & Chua, 1993; Nekorkin & Chua, 1993; Lozi & Ushiki, 1993; Shilnikov et al.,
2001; Bilotta & Pantano, 2008]. To date in the Chua circuit it has been found chaotic attractors of various
shapes (see, e.g. a gallery of Chua attractors in [Bilotta & Pantano, 2008]). Until recently, all the known
Chua attractors were self-excited attractors, which can be numerically visualized by a trajectory starting
from a point in small neighborhood of an unstable equilibrium.

Definition. [Leonov et al., 2011; Leonov & Kuznetsov, 2013; Leonov et al., 2015b; Kuznetsov, 2016]
An attractor is hidden if its basin of attraction does not intersect with a neighborhood of all equilibria
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(stationary points); otherwise, it is called a self-excited attractor.
For a self-excited attractor, its basin of attraction is connected with an unstable equilibrium and,

therefore, self-excited attractors can be localized numerically by the standard computational procedure in
which after a transient process a trajectory, started in a neighborhood of an unstable equilibrium (e.g.,
from a point of its unstable manifold), is attracted to a state of oscillation and then traces it. Thus, self-
excited attractors can be easily visualized (e.g., the classical Lorenz, Rössler, and Hennon attractors can
be visualized by a trajectory from a vicinity of unstable zero equilibrium).

For a hidden attractor, its basin of attraction is not connected with equilibria, and, thus, the search
and visualization of hidden attractors in the phase space may be a challenging task. Hidden attractors
are attractors in systems without equilibria (see, e.g. rotating electromechanical systems with Sommerfeld
effect described in 1902 [Sommerfeld, 1902; Kiseleva et al., 2016]) and in systems with only one stable
equilibrium (see, e.g. counterexamples [Leonov & Kuznetsov, 2011, 2013] to the Aizerman’s (1949) and
Kalman’s (1957) conjectures on the monostability of nonlinear control systems [Aizerman, 1949; Kalman,
1957]). One of the first related problems is the second part of Hilbert’s 16th problem (1900) [Hilbert, 1901-
1902] on the number and mutual disposition of limit cycles in two-dimensional polynomial systems, where
nested limit cycles (a special case of multistability and coexistence of attractors) exhibit hidden periodic
oscillations (see, e.g., [Bautin, 1939; Kuznetsov et al., 2013a; Leonov & Kuznetsov, 2013]).

The classification of attractors as being hidden or self-excited was introduced by G. Leonov and
N. Kuznetsov in connection with the discovery of the first hidden Chua attractor [Leonov & Kuznetsov,
2009; Kuznetsov et al., 2010; Leonov et al., 2011; Bragin et al., 2011; Leonov et al., 2012; Kuznetsov et al.,
2013b; Leonov & Kuznetsov, 2013; Leonov et al., 2015a] and has captured attention of scientists from
around the world (see, e.g. [Burkin & Khien, 2014; Li & Sprott, 2014; Chen, 2015; Saha et al., 2015; Feng
& Pan, 2017; Zhusubaliyev et al., 2015; Danca, 2016; Kuznetsov et al., 2015; Chen et al., 2015a; Pham
et al., 2014; Ojoniyi & Njah, 2016; Rocha & Medrano-T, 2016; Borah & Roy, 2017; Danca et al., 2017;
Wei et al., 2016; Pham et al., 2016; Jafari et al., 2016; Dudkowski et al., 2016; Singh & Roy, 2017; Zhang
et al., 2017; Messias & Reinol, 2017; Brzeski et al., 2017; Wei et al., 2017; Chaudhuri & Prasad, 2014;
Jiang et al., 2016; Volos et al., 2017]).

Further study of the hidden Chua attractors and their observation in physical experiments can be
found, e.g. in [Li et al., 2014; Chen et al., 2015a; Bao et al., 2015a; Chen et al., 2015c,b; Zelinka, 2016; Bao
et al., 2016; Menacer et al., 2016; Chen et al., 2017a; Rocha et al., 2017; Hlavacka & Guzan, 2017]. The
synchronization of Chua circuits with hidden attractors is discussed, e.g. in [Kuznetsov & Leonov, 2014;
Kuznetsov et al., 2016, 2017b; Kiseleva et al., 2017]. Also some recent results on various modifications of
Chua circuit can be found in [Rocha & Medrano-T, 2015; Bao et al., 2015b; Semenov et al., 2015; Gribov
et al., 2016; Kengne, 2017; Zhao et al., 2017; Chen et al., 2017b; Corinto & Forti, 2017].

In this work the scenario of the chaotic dynamics development and the birth of self-excited and hidden
Chua attractors is studied. It is shown a pitchfork bifurcation in which a pair of symmetric attractors
coexists and merges into one symmetric attractor through an attractor-merging bifurcation and a splitting
bifurcation of a single attractor into two attractors. It is presented the scenario of the birth of hidden
attractor connected with a subcritical Hopf bifurcation near equilibrium points and a saddle-node bifur-
cation of a limit cycles. In general, the conjecture is that for a globally bounded autonomous system of
ordinary differential equations with unique equilibrium point, which is asymptotically stable, the subcritical
Hopf bifurcation leads to the birth of a hidden attractor.1

2. Dynamical regimes of the Chua circuit

The Chua circuit, invented in 1983 by Leon Chua [Chua, 1992a,b], is the simplest electronic circuit ex-
hibiting chaos. The classical Chua circuit can be described by the following differential equations

ẋ = α(y − x)− αf(x),
ẏ = x− y + z,
ż = −(βy + γz),

(1)

1 The conjecture was formulated in 2012 by L. Chua in private communication with N. Kuznetsov and G. Leonov.
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where f(x) = m1x+ 1
2(m0−m1)(|x+1|−|x−1|) is a piecewise linear voltage-current characteristic. Here x,

y, z are dynamical variables; parameters m0, m1 characterize a piecewise linear characteristic of nonlinear
element; parameters α, β, and γ characterize a resistor, a capacitors, and an inductance. It is well known
that model (1) is symmetric with respect to the origin and remains unchanged under the transformation
(x, y, z)→ (−x,−y,−z).

System (1) can be considered as a feedback control system in the Lur’e form

u̇ = Pu+ qφ(r∗u), u = (x, y, z) ∈ R3,

P =

−α(m1 + 1) α 0
1 −1 1
0 −β −γ

 , q =

−α0
0

 , r =

1
0
0

 ,

φ(x) = (m0 −m1) sat(x) =
1

2
(m0 −m1)(|x+ 1| − |x− 1|).

(2)

2.1. Local analysis of equilibrium points

Suppose that

(β 6= −γ) and

((
m0 < − β

γ+β and m1 > − β
γ+β

)
or
(
m1 <

1
2(m0 − β

γ+β ) and m1 > − β
γ+β

)
or(

m0 > − β
γ+β and m1 < − β

γ+β

)
or
(
m1 >

1
2(m0 − β

γ+β ) and m1 < − β
γ+β

))
.

(3)

Then two symmetric equilibrium points:

u1,3eq = ±(uxeq, u
y
eq, uzeq) = ±

( (γ+β)(m0−m1)
γm1+βm1+β

, γ(m0−m1)
γm1+βm1+β

, −β(m0−m1)
γm1+βm1+β

)
, (4)

exist and the corresponding linearizations have the form:

J(u1,3eq ) =

−α(m1 + 1) α 0
1 −1 1
0 −β −γ

 . (5)

For the zero equilibrium u2eq =
(
0, 0, 0

)
we have the following matrix of linearization

J(u2eq) =

−α(m0 + 1) α 0
1 −1 1
0 −β −γ

 . (6)

Remark that for (m0,m1) → (m1,m0) we have
(
J(u1,3eq ), J(u2eq)

)
→
(
J(u2eq), J(u1,3eq )

)
. It means that the

local bifurcations, which occur at the symmetric equilibria u1,3eq and at the zero equilibrium u2eq, are the
same. For the symmetric equilibria, the bifurcations occur, when the parameter m1 is varying, for the zero
equilibrium, when the parameter m0 is varying. The stability of equilibria depends on m0 and m1 and is
determined by the eigenvalues (λ1, λ2, λ3) of the corresponding linearization matrices.

Consider the following values of parameters

α = 8.4, β = 12, γ = −0.005, (7)

which are close to the values, considered in [Leonov et al., 2011] and are used for the construction of a
hidden attractor. Then for all equilibrium points, one of the eigenvalues, λ1 is always real and can be
positive or negative. Two other eigenvalues λ2 and λ3 are complex-conjugated and their real parts can be
also positive or negative. Therefore we consider the following types of equilibria:

- F is a stable focus, λ1 < 0, Re(λ2,3) < 0;
- SF -I is a saddle-focus of the first type: there are an unstable one-dimensional manifold and a stable
two-dimensional manifold, λ1 > 0, Re(λ2,3) < 0;
- SF -II is a saddle-focus of the second type: there are a stable one-dimensional manifold and an unstable
two-dimensional manifold, λ1 < 0, Re(λ2,3) > 0.
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Fig. 1. a) Bifurcation lines of equilibrium points on the parameter plane (m0, m1) for α = 8.4, β = 12, γ = −0.005, the

red lines correspond to u2eq and the blue lines to u1,3eq , the areas of existence of the equilibria u1,3eq are filled by violet color;
b) the dependence of the real eigenvalue (red color) and the real part of the complex conjugate eigenvalues (blue color) on
the parameter m1; c) - e), the examples of the voltage-current characteristics, c) m0 = −0.2, m1 = −1.15; d) m0 = −1.2,
m1 = −1.2; e) m0 = −1.2, m1 = −0.05.

In Fig. 1(a) is shown the plane of parameters (m0,m1) with the bifurcation curves: blue color denotes
the bifurcation curves of the symmetric equilibrium stability, red color denotes the bifurcation curves of
the zero equilibrium stability. Areas, filled by violet color, denote the areas of existence of the symmetric
equilibria u1,3eq . The domains filled by white color correspond to the existence of the only one equilibrium
(see conditions (3)). In Fig. 1(b) are shown the plots of λ1 (red color) and real part of λ2,3 (blue color)
versus the parameter m0 for the equilibrium u2eq, where one can see the changes of the eigenvalues sign
caused by a Hopf bifurcation.

In Fig. 1(a) the following symbols are used for u1,3eq and u2eq:

- l1,3H1
(m1 ≈ −1.0004), l2H1

(m0 ≈ −1.0004) are the lines of the Hopf bifurcation corresponding to the
transition from the saddle-focus of the first type (SF -I) to the stable focus (F );

- l1,3H2
(m1 ≈ −0.939), l2H2

(m0 ≈ −0.939) are the lines of the Hopf bifurcation corresponding to the tran-
sition from the stable focus (F ) to the saddle-focus of the second type (SF -II);

- l1,3H3
(m1 ≈ −0.1761), l2H3

(m0 ≈ −0.1761) are the lines of the Hopf bifurcation corresponding to transi-
tion from the saddle-focus of the second type (SF -II) to the stable focus (F ).

As mentioned above, the parameters m0, m1 are characterized by the slopes of piecewise linear char-
acteristic. In Fig. 1(c)-(e) are shown examples of voltage-current characteristic for the Chua system (1) for
different points of the parameter plane.
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ueq
1

ueq
2

Fig. 2. Dynamics of the Chua system, α = 8.4, β = 12, γ = −0.005, and initial conditions: a) in the vicinity of the zero
equilibrium u2eq, x0 = y0 = z0 = 0.0001; b) in the vicinity of one of the symmetric equilibrium points u1eq, x0 = uxeq + 0.0001,
y0 = uyeq + 0.0001, z0 = uzeq + 0.0001.

2.2. Numerical study of the parameter plane. Bifurcation scenario of the
hidden attractors transformations

Consider numerically the dynamics and the qualitative behavior of the Chua system (1) in terms of
parameters m0, m1.

In Fig. 2 the charts of dynamical regimes are shown on the parameter plane (m0, m1). These charts
are constructed in the following way. The parameter plane (m0, m1) is scanned with a small step. The
dynamical regime, corresponding to a point on the plane, is determined according to the number of different
points in the Poincaré section, defined by z = 0 after a long enough transition process. Initial conditions
are the same for each value of parameters: for the chart in Fig. 2(a) we take initial condition (x0, y0,
z0)=(0.0001, 0.0001, 0.0001) in the vicinity of the zero equilibrium u2eq. For the chart in Fig. 2(b) we

choose initial condition (x0, y0, z0)= (uxeq+0.0001, uyeq+0.0001, uzeq+0.0001) in the vicinity of u1eq (one of
the symmetric equilibria, see (4)). Thus, we expect that the dynamical regimes, which are visualized on

these charts, are self-excited. On the charts the symmetric stable equilibrium points u1,3eq are marked by
pink color, the zero stable equilibrium point u2eq by maroon color, the regime of divergency2 by blue color,

the chaotic dynamics3 by gray color. The periodic oscillations with different periods are distinguished: the
green color for cycles of period-1, the yellow color for cycles of period-2, the dark-blue for cycles of period-3,
the blue color for cycles of period-4 and so on (see the color legend in Fig. 2).

We reveal that the complex dynamics of system (1) is developed only in the case that three equilibria
coexist. Most of the areas where there is only one equilibrium (see white domains in Fig. 1), belongs
to the regime of divergency (see the corresponding domains in Fig. 2). The exceptions are the bands,
corresponding to the stable zero equilibrium u2eq for

m0 > −0.1761 and m1 <
1

2
(m0 −

β

β + γ
),

and the periodic oscillations, associated with the Hopf bifurcation of the zero equilibrium u2eq, for

m1 > −0.1761 and m0 > −
β

β + γ
.

In the case of coexistence of three equilibria the self-excited chaotic attractors are found (gray color).
However besides self-excited attractors, here it is possible to find hidden attractors.

2Regime of divergency corresponds to the regime, when the dynamical variables numerically grow to infinity, the detection of
this regime is realized under the condition

√
x2 + y2 + z2 > 10000.

3Chaotic regime is determined roughly: if the number of discrete points in the Poincaré section is more than 120.
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In Fig. 2 the blue rectangle (I) is the area of the parameter plane where a hidden chaotic attractor
was discovered for the first time [Leonov et al., 2011]. For m0 < −0.1761 (see, the line l2H3

of the Hopf
bifurcation for the zero equilibrium), all the observed attractors are self-excited. In Fig. 3(a) is shown an
example of self-excited Chua attractor from this area of parameters. For m0 > −0.1761, all dynamical
regimes coexist with stable zero equilibrium point. For m0 > −0.1761, hidden attractors are observed (an
example of hidden Chua attractor is in Fig. 3(b), but in some small part of parameter plane a self-excited
attractor is found: the phase trajectories, starting from a small neighborhood of the zero equilibrium u2eq,
tend to the zero stable equilibrium, but the phase trajectories, starting from the vicinity of the symmetric
equilibria u1,3eq , tend to an attractor (a limit cycle of period-1), in which case the attractors are not hidden.
We consider this case in details in Section 3.1.

As mentioned in Section 2.1, the Chua system (1) has symmetry with respect to the parameters m0,
m1. This means that the replacement (m0, m1)→ (m1, m0) in the Chua system (1) leads to the replacement

of stability of the equilibria: u2eq → u1,3eq . Thus, we can consider another area of possible existence of hidden

attractors, which is situated below the line l1,3H3
in Fig. 1(a), i.e. before the Hopf bifurcation at the symmetric

equilibria. This area is denoted by the blue rectangle (II) in Fig. 2. For m1 > −0.1761 (l1,3H3
) there are

hidden attractors which cannot be visualized from the initial conditions in a small vicinity of the equilibria.

a)                                                                                       b)

A se
+

A se
-

A hid
-

A hid
+

x y

z z

x y

equ1

equ2

equ3

equ1

equ3equ2

Fig. 3. Self-excited and hidden attractors in the Chua system (1) with parameters α = 8.4, β = 12, γ = −0.005: a) two
symmetric self-excited Chua attractors (cyan and blue domains Ase

± ) excited from unstable zero equilibrium (parameters

m0 = −0.3, m1 = −1.12); b) two symmetric hidden chaotic Chua attractors (cyan and blue domains Ahid
± ). Red and gray

trajectories from unstable manifold of the symmetric saddle-focuses equilibria u1,3eq (orange dots) are attracted to locally stable

equilibrium u2eq (green dot) and infinity, respectively. Black trajectories are stable manifolds of u1,3eq (parameters m0 = −0.121,
m1 = −1.143).

3. Hidden twin attractors

3.1. Merged twin attractors

Now we consider the dynamics of the Chua system (1) with the parameters corresponding to the rectangle
(I) in Fig. 2, the zoom of which is shown in Fig. 4(a). For this area, for each point of parameter plane the
initial conditions are the same as in the vicinity of equilibrium u1eq. In Fig. 4(b) the same fragment of the
chart is constructed by the so-called continuation method for choosing initial conditions, i.e., for each new
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lH3

2

lH3

2

Fig. 4. a), b) magnified fragment (I) of the chart of dynamical regimes for different initial conditions, α = 8.4, β = 12,
γ = −0.005; c) bifurcation diagram: red and violet colors correspond to different initial conditions, m0 = −0.121; d), e)
magnified fragments of bifurcation diagram.

value of parameter as initial point, the same value is chosen as the final point (obtained from the previous
value of the parameter). We use this method to identify the area where hidden attractors exist. In Fig. 4(b)
we mark a point in which we start our calculations, and the arrows show the direction of scanning.

The analysis of stability of the equilibrium points in this area (see Fig. 1(a)) shows that for m0 = 0 three
equilibrium points exist: two symmetric saddle-focus SF -I and one stable focus F (zero equilibrium). In
Fig. 4(a) and (b) is shown the bifurcation line of the loss of stability of the zero equilibrium form0 ≈ −0.1761
(l2H3

). In the area colored in the maroon, the zero equilibrium point is characterized by one negative real
number and two complex conjugate numbers with negative real part; after crossing the bifurcation line
(l2H3

) the real parts of the conjugate-complex eigenvalues become positive, and a stable focus is transformed
into a saddle-focus with a two-dimensional unstable manifold. For the same parameters there exist also
two symmetric equilibria, which are characterized by one positive real number and two complex-conjugate
eigenvalues with a negative real part.

In the chart of dynamical regimes in Figs. 4(a) and (b), for fixed parameter m0 and decreasing param-
eter m1, one can observe a transition from a limit cycle of period-1 to a chaotic attractor. This transition
corresponds to the Feigenbaum scenario (the cascade of period-doubling bifurcations) and it occurs in both
the self-excited and the hidden attractors.

To analyze the birth of bifurcations, we construct a bifurcation diagram versus parameter m1. In
Fig. 4 are shown bifurcation diagram (c) and its magnified fragments (d, e). In Figs. 4(c)-(e) is shown
the dependence of the variable x, in the Poincaré section by the plane z = 0 (for m0 = −0.1210), on
the parameter m1. In the diagram in Fig. 4(c), we identify the value of the parameter m∗1 ≈ −1.1247
corresponding to the transition from a self-excited attractor to a hidden attractor. For −1.0929 < m1 <
−1.0800 the system exhibits one limit cycle with period-1 in Fig. 4(c). For m1 ≈ −1.0929, the limit cycle is
split into two different period-1 limit cycles via a pitchfork bifurcation. The pitchfork bifurcation is typical
in the Chua system since this system exhibits an inner symmetry. For −1.1317 < m1 < −1.0929 two limit
cycles of period-1 coexist, these cycles are symmetric to each other. Notice that for m1 ≈ −1.1247 these two
period-1 limit cycles become hidden. For m1 ≈ −1.1317 both limit cycles become limit cycles of period-2
via a period doubling bifurcation. By continuous decreasing the parameter m1, after the sequence of period-
doubling bifurcations, as shown in Fig. 4(c), the two limit cycles are transformed into two different hidden
chaotic attractors, respectively. In this case these attractors coexist with a symmetric twin-attractor, and a
stable zero equilibrium point. For m1 ≈ −1.1483 the twin-attractors are merged into one, which by further
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ueq
2

ueq
1

ueq
1

ueq
2

ueq
2Coexisting regimes

period-1 limit 
cycles

stable equilibrium

divergency

a) b)

c) d)

Fig. 5. Basins of attraction of coexisting self-excited attractors of the Chua system with α = 8.4, β = 12, γ = −0.005, m0 =
−0.121: a) limit cycle of period-1 before pitchfork bifurcation m1 = −1.09, in the section defined by the plane z0 = 0.00001;
b) in the section defined by the plane z0 = uzeq; c) period-1 limit cycles after pitchfork bifurcation at m1 = −1.1, in the section
defined by the plane z0 = 0.00001; d) in the section defined by the plane z0 = uzeq.

decreasing the parameter m1, forms an increasingly larger chaotic set. For m1 ≈ −1.1609, a periodic
window of period-5 emerges (in Fig. 4(d) is shown a magnified fragment near the periodic window of
period-5). The same scenario takes place for the period-5 cycle. For m1 ≈ −1.1621 the period-5 limit cycle
is split into two symmetric period-5 limit cycles via a pitchfork bifurcation. For −1.1626 < m1 < −1.1621
two limit cycles of period-5 coexist. For m1 ≈ −1.1621 both limit cycles bifurcate into two limit cycles of
period-10 via a period-doubling bifurcation. Upon further decreasing the parameter m1, after a sequence of
period-doubling bifurcations, two hidden chaotic attractors emerge. Then they merged at m1 ≈ −1.1628,
and collapse with the chaotic set of the previous attractor at m1 ≈ −1.1631.

Upon a further decrease of the parameter m1, a periodic window of period-3 emerges (Fig. 4(e) shows
a magnified fragment near a period-3 window). In this case there is no pitchfork bifurcation, and for
−1.1714 < m1 < −1.1684 two symmetric hidden cycles of period-3 coexist. For m1 ≈ −1.1714 both
period-3 cycles become a pair period-6 limit cycles via a period doubling bifurcation. Further decrease of
the parameter m1 gives rise to a cascades of period-doubling bifurcations. In this case we can not see the
merging of two chaotic attractors, but for m1 ≈ −1.1719 two hidden symmetric attractors merge into a
chaotic set.

To analyze localization of hidden attractors in the phase space, and transition from self-excited to
hidden attractors, we consider the basins of attraction under varying parameter. Firstly, we consider the
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chaos
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1
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a) b)

c) d)

Fig. 6. Basins of attraction of coexisting hidden attractors of the Chua system with α = 8.4, β = 12, γ = −0.005, m0 =
−0.121: a) twin hidden chaotic attractors for m1 = −1.143, in the section defined by the plane z0 = 0.0001; b) in the section
defined by the plane z0 = uzeq; c) merged hidden chaotic attractors for m1 = −1.15, in the section defined by the plane
z0 = 0.0001; d) in the section defined by the plane z0 = uzeq.

case that a self-excited attractor is realized: m0 = −0.121, m1 = −1.09. Since its basin of attraction in
three-dimensional phase space is difficult to analyze, we analyze two-dimensional sections of this volume
at various planes, which correspond to two-dimensional planes of initial conditions. To distinguish between
hidden and self-excited attractors, the dynamical behavior of the model in the vicinity of equilibria is
crucial. That is why we consider two sections of phase volume: in the vicinity of the zero equilibrium u2eq
and in the vicinity of one of the symmetric equilibria u1eq (for the other symmetric equilibrium u3eq, the
structure of the basin is similar).

In Fig. 5 is shown the two-dimensional plane of initial conditions for vicinities of equilibria points and for
different values of parameter m1. The regime of divergency is marked by blue color, the area of attraction of
the stable zero equilibrium is marked by maroon color. The areas of attraction regimes of different period-1
limit cycles are denoted by two different green colors. The location of the equilibrium points in the plane
is identified by white dots. In Fig. 5(a) is shown a two-dimensional plane of initial conditions for fixed
z0 = 0.0001 in the vicinity of the zero equilibrium u2eq (stable focus F ). For m1 = −1.09 in system (1) the
coexistence of a period-1 limit cycle, before the pitchfork bifurcation, and the stable zero equilibrium is
observed. In Fig. 5(a) is shown the structure of the basins of attraction of two coexisting regimes. There is
a rather large basin of attraction surrounding the stable zero equilibrium (maroon color), and a large area
of divergency. Between these two areas we have an area of stable periodic oscillations, which represents the
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basin of attraction of a period-1 limit cycle. The boundary between the areas of divergency and self-excited
limit cycle is indicated by a thick line, which corresponds to the stable zero equilibrium. In Fig. 5(b) is
shown a vicinity of one of the symmetric points z0 = uzeq (saddle-focuses SF-I ). The symmetric equilibrium
state is located on the boundary between the basin of attraction of the stable limit cycle and the area of
divergency. In this case we cannot affirm that the limit cycle is a hidden attractor because if we start to
iterate a trajectory, with a randomly chosen initial state in the vicinity of symmetric equilibrium points,
it can either diverge from the initial state, or tend to the limit cycle.

After the pitchfork bifurcation (m0 = −1.1) two symmetric limit cycles occur. In Figs. 5(c),(d) are
shown two planes of initial conditions with basins of attraction of symmetric limit cycles in the vicinity
of the two equilibria for fixed third initial conditions z0 = 0.00001 and z0 = uzeq, in which case, the two
different green colors correspond to the basins of attraction of the two symmetric limit cycles (m1 = −1.1).
In this case after the pitchfork bifurcation, the basin of attraction of original limit cycle is split into two
basins of attraction of the two symmetric period-1 limit cycles. These basins have a complex but symmetric
structure. In this case the equilibrium u1eq is also situated on the boundary of the basins of attraction of
the two limit cycles, implying that the limit cycles are self-excited for m1 > m∗1.

Next, we decrease parameter m1 such that it becomes less then m∗1. In this case the attractors become
hidden, while bifurcating into chaotic dynamics, and we observe the corresponding changes in the structure
in the plane of initial conditions. In Fig. 4 is shown that hidden twin chaotic attractors exist, for instance,
at m1 ≈ −1.141, and with decreasing parameter m1 these two attractors merged (for m1 ≈ −1.147). In
Fig. 6 are shown the planes of initial conditions for the twin chaotic attractors (a) and (b), and the merged
chaotic attractor (c) and (d). In Figs. 6(a),(b) the basins of attraction of the two different chaotic attractors
are identified by different shaded gray colors. The composition of the basins in the plane of initial states
near the vicinity of the zero equilibrium point is the same as in the case of self-excited limit cycle. We
observe the basins of attraction of the twin chaotic attractors and the basin of attraction of zero stable
equilibrium point in the center. But the structure of the plane of initial states in the section near the
vicinity of the symmetric equilibrium points has a significant distinction. The basin of attraction of the
stable zero equilibrium u2eq at the center is combined with the another part of the basin of attraction of

the stable zero equilibrium point u2eq on the boundary of the area of divergency, and a saddle equilibrium

u1eq is located on the boundary between the basin of attraction of the stable zero equilibrium point and
the area of divergency. Consequently, a twin chaotic attractor becomes hidden because if we choose initial
states near one of the equilibrium points, then we cannot reach the chaotic attractors.

In Figs. 6(c) and d are shown the same illustrations for merged hidden chaotic attractor. In this case
one can see that the basin of attraction of the merged hidden attractor represents the combining of the
areas of attraction of each twin-hidden attractors. In the vicinity of the saddle equilibrium we also see only
two possible regimes: the stable zero equilibrium and the divergency. It follows that the merged attractor
is the hidden one.

3.2. Separated twin-attractors

Now we consider the dynamics of the Chua system (1) and the features of hidden attractors in another
area of the parameter plane, which is marked by the blue rectangles (II) in Fig. 2. In Fig. 7(a) is shown
the zoom of fragment (II). For the continuation method of changing initial conditions, the starting point is
denoted on the parameter plane, and we scan the plane of parameters in different directions in accordance
with the arrows in this figure.

The analysis of stability of equilibria (Fig. 1(a)) shows that in this area there are two symmetric stable
focuses (F1, F2) and one saddle-focus of the first type (SF-I ) at the zero equilibrium point.

By numerical integration the trajectories starting from the vicinity of any equilibrium point in rectangle
(II) can reach only one of the symmetric equilibrium points (Fig. 2). But we can see in Fig. 7(a) that for
some special initial conditions it is possible to observe hidden attractors. In particular, the bifurcation
scenario associated with the hidden attractors from the area of the parameter plane (II) is the same as
that in the area (I): one can observe chaotic dynamics resulting from of a cascade of period-doubling
bifurcations.
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Fig. 7. a) the magnified fragment (II) of the chart of dynamical regimes for continuation method of changing initial conditions,
α = 8.4, β = 12, γ = −0.005; b) bifurcations diagram: black, red, and violet colors correspond to different initial conditions,
m0 = −1.2.
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To analyze the bifurcations and transformations in this case, let us consider a bifurcation diagram. In
Fig. 7(b) are shown diagrams for different initial conditions for m0 = −1.2, as a function of the parameter
m1 in the Poincaré section by the plane z = 0. The black lines correspond to initial condition near the
symmetric equilibrium points (the scanning of parameter m1 was realized by the continuation method to
choose initial conditions), and these lines mark the coexisting stable focuses (F1 and F2). For the red and
violet bifurcation diagrams the initial conditions are chosen in the following way: x0 = ∓1.2, y0 = ∓0.0005,
z0 = 0, respectively. For these initial conditions for m1 = 0 we have two symmetric period-2 limit cycles,
and from these points we scan the parameter intervals m1 [−0.2, 0.1] in two directions (to the right and to
the left).

For m1 = 0.2 there are two symmetric stable equilibrium points. If the parameter m1 decreases, then
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at m1 ≈ 0.15 a limit cycle emerges near each symmetric equilibrium point. In the bifurcation diagram one
can see the hard birth of the cycles, because of the form of nonlinearity (piecewise-linear characteristic
of the Chua circuit). As m1 decreases, we see stable focuses and two coexisting limit cycles, undergoing
a period-doubling bifurcation and transition to chaos. However, for this area of parameter plane there is
no a pitchfork bifurcation of limit cycles and a merging of chaotic attractors. In this case two bifurcation
diagrams in Fig. 7 (b) do not cross each other and are separated by the saddle point at the zero equilibrium.
In Fig. 8 the example of two symmetric hidden chaotic Chua attractors are shown for m1 = −0.05. By red,
gray and green colors in Fig. 8 are shown the stable and unstable manifolds in the vicinity of equilibrium
points. Gray and green trajectories were constructed by integration in inverse time for initial conditions
in the vicinity of equilibrium points (gray lines are near saddle-focus, green lines are near stable focuses).
Red trajectories tend to the symmetric equilibria and are obtained by the integration in forward time near
the zero equilibrium.

To analyze the structure of the phase space and the localization of hidden attractors in the phase space,
we consider two-dimensional planes of initial conditions. Then we can study the basins of attraction of co-
existing attractors. As in the previous case we consider two-dimensional sections of the three-dimensional
phase space of initial states in the vicinity of one of the stable symmetric equilibria u1eq, and in the vicinity

of the zero equilibrium u2eq. In Fig. 9 is shown the structure of areas of attraction for different parameters
of m1 and m0 = −1.2, and for different cross-section of the phase space. In Fig. 9(a) and (b) are shown the
basins of attraction of coexisting attractors for m1 = 0.1 in the vicinity of one stable focus F1 (a) and in
the vicinity of the zero saddle equilibrium (b), the location of equilibrium points are marked in the plane
by black dots. In this case in the bifurcation diagram one can see two coexisting symmetric equilibrium
points and two symmetric cycles of period-1. Also it is observed a new period-1 limit cycle, surrounding
all regimes described above, and the dynamics near the equilibria is developed inside this limit cycle of
sufficiently large radius. So, for this area of parameters we have five coexisting attractors. We shaded the
areas of attraction of different symmetric period-1 limit cycles by green color. The area of attraction of the
outside limit cycle is marked on the plane by light green color. We use the pink and red colors to denote
the basins of attraction of the two symmetric equilibria u1eq and u3eq, respectively.

Firstly, we consider a vicinity of the stable equilibrium (Fig. 9(a)). In the vicinity of the stable equilib-
rium one can see a basin of attraction of one of the symmetric stable equilibrium points. Also, there are the
basin of attraction of another symmetric stable equilibrium point, and the symmetric basins of attraction of
two symmetric limit cycles. The complex structure of their basins is represented by the area of attractions
in the form of bands, which are spiralled together, and their boundaries have self-similar patterns, i.e.,
fractal structures. Also, there is a basin of attraction of the external limit cycle, which surround all other
basins of attraction.

Then we consider a plane of initial conditions and the basins of attraction of different attractors in the
vicinity of the saddle equilibrium point (Fig. 9(b)). We can see that the phase trajectories, starting from
the vicinity of the saddle point, can reach one of the stable symmetric equilibria only. The zero equilibrium
point u2eq is located on a boundary between the attracting areas of different symmetric stable equilibria.
The areas of attraction are symmetric to each other, and a boundary between these areas represents the
stable manifold of the zero saddle-focus. Consequently, if we choose initial conditions in the vicinity of any
equilibrium point, we will reach one of the stable equilibrium points and, thus, all of the limit cycles are
hidden attractors.

Let us decrease the parameter m1 so that chaotic dynamics emerges, and consider the basins of at-
traction of the coexisting stable symmetric equilibria, the chaotic attractors, and the external limit cycle.
In Fig. 9(c) and (d) are shown two planes of initial conditions in the vicinity of the equilibrium points for
m1 = −0.05. By two shades of gray color we identify the basins of attraction of the coexisting twin-chaotic
attractors. It is rather easy to distinguish the basins of attraction for these chaotic attractors because the
attractors in the phase space are separated by the zero saddle equilibrium. For decreasing parameter m1

the structure of the basin of attraction persists. In place of the areas of two symmetric period-1 limit cycles
one sees the basins of attraction of the symmetric chaotic attractors. In this case the order of alternation
of the basin of attraction of different attractors remains the same. The structure of the basin of attraction
in the vicinity of the saddle equilibrium point persists: the saddle point is located on the boundary of
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Fig. 9. Basins of attraction of coexisting attractors of the Chua system (1) α = 8.4, β = 12, γ = −0.005, m0 = −1.2:
a) twin hidden period-1 attractors with m1 = 0.1, and cross-section by the plane z0 = uzeq; b) cross-section by the plane
z0 = 0.0001; c) twin hidden chaotic attractors with m1 = −0.05, cross-section by the plane z0 = uzeq; d) cross-section by the
plane z0 = 0.0001.

the basins of attraction of two symmetric equilibrium points, and the boundary corresponds to an stable
manifold of the saddle point.

In Fig. 10 (a),(b) is shown a structure of the phase space in the above case, where we see a coexisting
large stable limit cycle (orange color in Fig. 10 (a)) and two separated hidden chaotic Chua attractors (blue
and cyan domains Fig. 10 (b)) from Fig. 8. The basins of attraction of periodic and chaotic attractors do
not intersect with a small neighborhood of the equilibria, thus, the attractors are hidden. Therefore in this
case there are 5 coexisting attractors: two stable equilibria, one hidden limit cycle, and two hidden “twin”
attractors.
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Fig. 10. Multistability with 5 coexisting attractors in the Chua system (1) with α = 8.4, β = 12, γ = −0.005, m0 = −1.2,
m1 = −0.05. Coexistence of hidden periodic attractor (orange trajectory Ahid

limCyc is a stable limit cycle) and two symmetric
hidden chaotic Chua attractors (blue and cyan domains). Here the basins of attraction of the periodic and the two symmetric
Chua attractors do not intersect with a small neighborhood of the equilibria, thus, the attractors are hidden.

Thus, we reveal two area on the parameter plane (m0, m1), where we observe hidden attractors.
Observe that for the physical realization of the Chua circuit and observation of hidden attractors we
need nonnegative parameters α, β, γ. For example, both configurations of hidden attractors cited above
are observed for the case γ = 0 in [Rocha & Medrano-T, 2015, 2016]; and for the positive γ one may
consider, for example, the following two sets of parameters: α = 8.4562, β = 12.0732, γ = 0.0052,m0 =
−0.1768,m1 = −1.1468 and α = 8.4, β = 12, γ = 0.005,m0 = −0.12,m1 = −1.143.

Note that the existence of hidden attractors in the Chua system can be effectively predicted by the
describing function method (DFM) [Leonov et al., 2011; Rocha & Medrano-T, 2015; Kuznetsov et al.,
2017a]. The classical DFM (see, e.g. [Krylov & Bogolyubov, 1947; Khalil, 2002]) is only an approximate
method which gives the information on the frequency and amplitude of periodic orbits. However DFM may
lead to wrong conclusions4 about the existence of periodic orbits and does not provide initial data for the
localization of periodic orbits. But for the systems of special type with a small parameter, DFM can be
rigorously justified. For this purpose, following references [Leonov et al., 2011; Leonov & Kuznetsov, 2013],
we introduce a coefficient k and represent the linear part and nonlinearity in (2) as follows:

P0 = P + kqr∗ =

−α(m1 + 1 + k) α 0
1 −1 1
0 −β −γ

 ,

ψ(σ) = φ(σ)− kσ = (m0 −m1) sat(σ)− kσ,

(8)

where λP0
1,2 = ±iω0, λ

P0
3 = −d < 0. Then we consider a small parameter ε, change ψ(·) by εψ(·), and reduce

4 Well-known Aizerman’s and Kalman’s conjectures on the absolute stability of nonlinear control systems are valid from the
standpoint of DFM which may explain why these conjectures were put forward. Nowadays, various counterexamples to these
conjectures (nonlinear systems, where the only equilibrium, which is stable, coexists with a hidden periodic oscillation) are
known (see, e.g. [Pliss, 1958; Fitts, 1966; Barabanov, 1988; Bernat & Llibre, 1996; Leonov et al., 2010; Leonov & Kuznetsov,
2011] and surveys [Bragin et al., 2011; Leonov & Kuznetsov, 2013]; the corresponding discrete examples are considered in
[Alli-Oke et al., 2012; Heath et al., 2015]).
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Fig. 11. Bifurcation diagram of the Chua system (1), α = 8.4, β = 12, γ = −0.005, m1 = −0.05.

by a non-singular linear transformation w = Su system (8) to the following form

ẇ = Aw + bεψ(u∗y),

A =

 0 −ω0 0
ω0 0 0
0 0 −d

 , b =

 b1b2
b3

 , c =

 1
0
−h

 .
(9)

Theorem [Leonov et al., 2011; Leonov & Kuznetsov, 2013; Kuznetsov et al., 2017a] Consider

the describing function Φ(a) =
∫ 2π/ω0

0 ψ(a cos(ω0t)) cos(ω0t)dt. If there exists a positive a0 such that
Φ(a0) = 0, b1Φ

′(a0) < 0, then system (9) has a stable5 periodic solution with the initial data w0 =(
a0 +O(ε), 0, O(ε)

)
and period T = 2π

ω0
+O(ε).

This theorem gives an initial point for the numerical computation of periodic solution (starting attrac-
tor) in the system with small parameter. Then, using the method of numerical continuation and gradually
increasing ε, one can numerically follow the transformation of the starting attractor.

It turns out that for the numerical localization of the considered hidden attractors we can skip
the multistep procedure based on numerical continuation and use the initial data u0 = S−1w0 for the
localization of hidden attractors in the initial system (). For the parameters α = 8.4, β = 12, γ =
−0.005,m0 = −1.2,m1 = −0.05 we get: a) k = −0.8890, ω0 = 2.0260, a0 = 1.5187 and the corresponding
initial data ±(1.5187, 0.0926,−2.1682) allows us to visualize two symmetric hidden chaotic attractors; b)
k = −0.1244, ω0 = 3.2396, a0 = 11.7546 and the corresponding initial data (11.7546, 9.7044,−16.7367)
allows us to localize the hidden periodic attractor (see Fig. 10). For the parameters α = 8.4, β = 12, γ =
−0.005,m0 = −0.121,m1 = −1.143 we get k = 0.2040, ω0 = 2.0260, a0 = 6.3526 and the corresponding
initial data ±(6.3526, 0.3874,−9.0694) allows us to visualize two symmetric hidden chaotic attractors (see
Fig. 3(b)).

4. Scenario of the birth of hidden attractors

In Sections 3.1 and 3.2 we have shown the opportunity of existence of hidden attractors in different areas of
the parameter plane. In order to study the scenario of the emergence of hidden attractors we use numerical
bifurcation analysis by the software package XPP AUTO [Ermentrout, 2002].

4.1. Formation of separated hidden attractors

Firstly we consider hidden attractors from the area (II) in the parameter plane (m0, m1) (Fig. 2). In
Fig. 11(a) is shown the bifurcation diagram of the Chua system (1) for parameters (7) and m1 = −0.05. In
the diagram red and black color denote stable and unstable equilibrium points, green and blue colors denote
stable and unstable limit cycles, respectively. At m0 ≈ −0.1761 the Hopf bifurcation (H2

3 ) takes place,
that is in a good agreement with the results obtained by linear analysis in Section 2.1 and by numerical

5See detailed discussion in [Leonov & Kuznetsov, 2013].
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Fig. 12. Bifurcation diagram for the Chua system (1) with α = 8.4, β = 12, γ = −0.005, m1 = −1.11.

simulations in Section 3.2. In this case the supercritical Hopf bifurcation occurs: the zero equilibrium point
loses stability and a limit cycle AhidlimCyc is born. With decreasing of parameter m0 the radius of limit

cycle is increased. At m0 ≈ −0.939 a second Hopf bifurcation (H2
2 ) emerges, where the zero equilibrium

becomes stable, which is accompanied by the hard birth of an unstable limit cycle C1. The radius of the
internal unstable cycle C1 surrounding the zero equilibrium increases initially according to square root of
2, upon a further decrease of the parameter m0. At m0 ≈ −1.0004 occurs a third Hopf bifurcation (H2

1 ),
which is a pitchfork bifurcation of the zero equilibrium, in which case two stable symmetric equilibria are
born, and the zero equilibrium become unstable. In this case the limit cycle C1 surrounds all equilibria,
splits the limit cycle AhidlimCyc and equilibria in the phase space, and forms the boundary of the basin of

attraction of the limit cycle AhidlimCyc. The pitchfork bifurcation (H2
1 ) is accompanied by the occurrence of

two symmetric pairs of limit cycles Cst2 and Cunst2 , which are denoted in the magnified fragment of the
diagram in Fig. 11(b). The birth of the limit cycles is a result of a saddle-node bifurcation, i.e. a pair of
limit cycles (stable and unstable) are born, along with its identical symmetric pair. Thus, the stable limit
cycle Cst2 is surrounded by the unstable limit cycle C1 on the one side, and by the unstable limit cycle
Cunst2 on the other side, making it unreachable from the vicinity of stable equilibria points and also from
the vicinity of unstable equilibrium points. Thus, the limit cycles Cst2 , and the chaotic attractor, which
occur on the base of this limit cycle are hidden.

4.2. Formation of merged hidden attractors

Formation of hidden attractors in the area (I) in the parameter plane (m0, m1) is as follows. In Fig. 12 the
corresponding bifurcation diagrams are shown. In this case it is better to exam the bifurcation diagrams
by increasing the parameter m0. At m0 ≈ −1.0004 the Hopf bifurcation (H2

1 ) occurs, where the unstable
zero equilibrium point becomes stable, simultaneously with pitchfork bifurcation, and as a result of which
two unstable equilibria are born. At m0 ≈ −0.939 the zero equilibrium point undergoes a supercritical
Hopf bifurcation (H2

2 ), and as a result the zero equilibrium point loses stability and a stable limit cycle
C1 is born, where it is situated between two symmetric unstable equilibria in projections onto the x and z
variables, where it surrounds all equilibria in a projection of y-variable. Upon increasing the parameter m0,
the limit cycle undergoes a symmetry breaking bifurcation (it is the same as a pitchfork bifurcation), and
splits into two stable symmetric limit cycles Cst12 , Cst22 and one unstable limit cycle Cunst2 . At m0 ≈ −0.1761
(H2

3 ) the zero equilibrium point changes stability again. In this case the bifurcation is subcritical, and as
a result the unstable limit cycle C3 is born. The limit cycle C3 forms boundaries of the basin of attraction
of the zero stable equilibrium point. In Fig. 12(b) is shown the projection of the y-variable. Thus, for
m0 > −0.1761 (H2

3 ) the limit cycles Cst12 and Cst22 are isolated from all equilibria by the unstable limit
cycle C3, and these symmetric limit cycles Cst12 and Cst22 and chaotic attractors, which occur on the base
of these cycles for another set of parameters, are hidden.
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5. Conclusion

The dynamics of the Chua circuit gives a complex picture in the space of controlling parameters. The
areas with similar behavior exist, and the detailed study of the dynamics of the Chua system in these
areas allows one to reveal new hidden attractors. It is shown that the formation of hidden attractors is
connected with the subcritical Hopf bifurcations of equilibrium points and the saddle-node bifurcations of
the limit cycles. In general, the conjecture is that for a globally bounded autonomous system of ODE with
asymptotically stable equilibrium point, the subcritical Hopf bifurcation leads to the birth of a hidden
attractor. In two different areas of parameter plane it was found two types of hidden attractors, namely,
merged and separated attractors. These features of hidden attractors are connected with the location of
stable and unstable equilibria and with the associated with them unstable limit cycles in the phase space.
The open questions are what is the maximum number of coexisting attractors6 that can be exhibited in
the Chua system (1) and how many of the coexisting attractors can be hidden.
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