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The application of synchronization theory to build up new cryptosystems has been a hot topic
during the last two decades. In this paper we analyze a recent proposal in this field. We pinpoint
the main limitations of the software implementation of chaos-based systems designed on the
grounds of synchronization theory. In addition, we show that the cryptosystem under evaluation
possesses serious security problems that imply a clear reduction of the key space.
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1. Introduction

The connection between the basics of information encryption and the theory of dynamical systems is very
well known from the seminal work of Claude Shannon [Shannon, 1949]. This connection has been profusely
exploited from Baptista’s work in 1998 [Baptista, 1998] and it has originated the so-called chaos-based
cryptography. Although it is possible to build up secure chaos-based cryptosystems, along these years
plenty of works have been published highlighting security and efficiency weaknesses of those encryption
systems [Alvarez et al., 2011]. From a general point of view, chaos-based cryptosystems can be divided
into schemes based on chaotic synchronization and those working in discrete time domain. Regarding the
former group, their nature makes them vulnerable according to the security standards in cryptography.
Certainly, it is not difficult to find works (see [Alvarez et al., 2011] for a survey of them) underlining that
the properties of chaotic synchronization can be either applied to conduct encryption and to infer the secret
key or part of the secret key of these type of chaotic cryptosystems [Orue et al., 2009, 2010].

In [Vidal et al., 2012] an encryption scheme was proposed on the grounds of chaotic synchronization.
The authors of that paper sustain that their proposal incorporates some important characteristics of
quantum communications. As a matter of fact, quantum communications can be used to ease key exchange
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through optical channels, but also in free-space [Garcia-Martinez et al., 2013]. In this paper we show some
limitations of what the authors of [Vidal et al., 2012] tipified as quantum properties of their encryption
scheme. Moreover, along this paper we show that their cryptosystem suffers from some of the most relevant
problems in analog chaos-based cryptography '. Namely, it is possible to get an estimation of some of
the secret parameters of the cryptosystems just by direct observation of the information in the public
communication channel. Additionally, the cryptosystem has some configuration problems that result in an
efficency degradation.

The rest of the paper is organized as follows. First, the cryptosystem described in [Vidal et al., 2012]
is introduced. In Sec. 3 some important shortcomings of the cryptosystem are discussed, whereas Sec. 4 is
focused on the recovery of the secret key by an attacker. The main consequences of the previous perfomance
and security analysis are provided in Sec. 5.

2. Description of the encryption technique

The encryption system defined in [Vidal et al., 2012] is determined by the following dynamical system:
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where ¢, € [0.1,1.1] and ¢, € [0.1,1.1].

The above set of equations determines two identical hyperchaotic dynamical systems, controlled by
three common parameters a, b, u; each one has four variables x,y, z, w. Both systems are interconnected
through two coupling strength parameters ¢, and e,, that help to achieve the synchronization of both
systems. Once the systems are synchronized, there exists a common keystream that is applied for encryp-
tion. Consequently, the scheme introduced in [Vidal et al., 2012] is a stream cipher built upon chaotic
synchronization. Accordingly, the communication protocol between Alice and Bob (the transmitter and
the receiver) is secure if they share the parameters a,b, u and choose values for e, ¢, and for the initial
values leading to synchronization. More in detail, the encryption procedure comprises five stages:

Stage 1. Alice and Bob set up their respective dynamical systems using the same a, b, u parameters; but
with two different sets of random initial conditions of the variables and coupling strengths, that are kept
secret by Alice and Bob and are not interchanged between them, nor published. The initial conditions of
the variables x 40, Y40, 240, Wao and o, YBo, 2B0, Wpo are generated at random in the range [—0.5,0.5],
by Alice and Bob respectively. These initial conditions change randomly each time the communication
protocol starts.

Stage 2. Alice and Bob are interconnected using a communication channel, through which the values of
the variables z4 from Alice and xp from Bob are interchanged. As the initial conditions of each system
are different, the initial trajectories of the variables of each system will be different.

Stage 3. When synchronization is achieved, we have x4 = xp, 24 = zp, and thus the coupling terms
ex(zp —x4a) of Eq.(1) and €,(24 — zp) of Eq.(7) (which can be interpreted as feedback signals) vanish.
This being the case, Alice and Bob detect that the synchronization has occurred and stop transmitting z4

In the context of chaos-based cryptography, those cryptosystems built upon the synchronization of the underlying dynamical
systems are coined as analog chaos-based cryptosytems [Li et al., 2007].
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and zg. Hence, if an eavesdropper is connected to the communication channel after this moment, she will
not obtain enough information to break the system.

Stage 4. Each system keeps computing a numerically generated trajectory without any kind of information
exchange during some time. After this transient time, Alice and Bob check again whether there is complete
or generalized synchronization, that is done by checking whether the reconstructed attractor of either x5 or
z 4 has only two positive Lyapunov exponents. In this case, a symbolic sequence is derived from the chaotic
orbit. In [Vidal et al., 2012] this transformation is defined by locating the local minima of the chaotic orbit,
and assigning a “0” (“1”) to that value if it is a negative (positive) value. In order to avoid the dynamical
reconstruction of the chaotic orbit, the symbolic sequence is sampled according to the Shannon’s rate.
Stage 5. Information exchange is concealed by a Vernam cipher, using as one-time pad keystream the
symbolic sequence created in the previous step. The Vernam cipher consists of combining the bits of the
plaintext with the bits of the ciphering sequence by the Boolean exclusive-or (XOR) function.

3. Performance analysis

The tradeoff between usability and security is the crux of modern cryptography. Any encryption system
must guarantee security and pave the way for end-users adoption. In this concern it is critical to propose
encryption algorithms with low computational needs, otherwise the resulting cryptosystems would be
discarded by any potential user. This commitment is not met by the proposal given in [Vidal et al., 2012].

>
|

Fig. 1. Generation of symbolic sequences from a chaotic orbit according to the criterion defined in [Vidal et al., 2012].

As it has been commented in Sec. 2, in the system under evaluation encryption is conducted by a
keystream obtained through a quantization process focused on the local minima of the chaotic orbits
determined by Egs. (1) and (7). A major problem arises if encryption is performed on-line, since it is not
possible to get a bit of the keystream as the plaintext is being processed. Therefore, the implementation
of the cryptosystem as described in [Vidal et al., 2012] calls for the buffering of plaintext until a new bit
of the keystream is obtained.

Let us take as example the chaotic orbit in Fig. 1. That chaotic orbit contains 10° samples, and the
number of local minima is 92. Next, we define the throughput of the coding scheme as the ratio between
the number of samples of a chaotic orbit and the number of local minima in the same orbit. Accordingly,
we can conclude that the codification scheme proposed in [Vidal et al., 2012] has a very low throughput?.

’In addition, we have to take into account that in [Vidal et al., 2012] it is further recommended to sample this original binary
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In order to confirm this fact a set of 1000 chaotic orbits were generated using random values for the control
parameters and the initial values. The number of samples per orbit was 10°, and the average throughput
was 0.14%. Therefore, we can conclude that the coding technique proposed in [Vidal et al., 2012] is far to
be considered efficient and erodes the usability of the related cryptosystem. On this point it is advisable to
recall that the maximum entropy of a dynamical system is obtained when orbit quantization is done through
the so-called generating partition [Sinai, 1968]. Consequently, if our goal is to maximize the throughput of
the coding procedure applied to chaotic orbits, we should consider some approximation of the generating
partition without leaking information that an attacker could use to reconstruct the underlying dynamics
[Arroyo et al., 2009a].
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Fig. 2. Effect of finite precision computation on chaotic dynamics. In the top panel it is shown the orbit of length 10% obtained
from the system defined in [Vidal et al., 2012] for a = —0.924402423687748, b = 0.438971098170411, p = 0.711718876046661,
T4, = 0.162590738289674, ya, = —0.442583550778422, z4, = 0.141686475255563, w4, = —0.194570102178438, zp, =
0.0601842136547941, yp, = 0.148286931043714, zp, = —0.307154096319608, wp, = 0.313998502860319. The bottom panel
gives an analysis of the dynamics of the orbits by means of a Morlet Continuous Wavelet Transform (CWT). The transition
from chaos to limit cycle is given by the replacement of spread frequency components by more focused components in the
scalogram of the CWT.

The application of continuous-time dynamical system to define discrete-time operations should be dis-
carded, since it loads efficiency and reduce the throughput. As it was highlighted in [Arroyo et al., 2009b], it
is a much better option to select discrete-time dynamical systems to design digital cryptosystems. Moreover,
the implementation of continuous-time dynamical systems is built upon numerical integration methods as
Runge-Kutta’s. These methods are parameter-dependent, which implies that the orbits calculated using

sequence to get a more robust protection against dynamics reconstruction by potential attackers. In specific, the authors of
[Vidal et al., 2012] establish as a good protection level to select one bit of every ten generated from the local minima of the
chaotic orbits.
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them are different for each selection of the set of parameters. As the Kerkchoffs’ principle calls [Menezes
et al., 1997, p. 14], in the concrete field of chaotic cryptography it is necessary to include the parameters
of the numerical integration methods as part of the public parameters or the secret key of the system.

Another key component in chaotic cryptography is the development of adequate procedures to avoid the
so-called digital degradation [Wang et al., 2016]. The implementation of chaotic dynamics in finite precision
environments is not possible, since any chaotic orbit finally leads to a periodic orbit. As a matter of fact,
the concretion of chaotic dynamics is not possible in finite precision unless some anti-control technique is
incorporated [Hu et al., 2014]. Along previous works this matter was underlined and typified as an intrinsic
limitation of chaos-based cryptography [Arroyo et al., 2011; Alvarez et al., 2011], and in the case of [Vidal
et al., 2012] we have verified experimentally the erosion of chaos due to finite precision arithmetics®. Indeed,
although two positive Lyapunov exponents for the system given in [Vidal et al., 2012] is a necessary and
sufficient condition to have chaos, from a practical point of view this is just a necessary condition. To
back up this assertion we have conducted a series of experiments. In all the simulations performed we have
verified that the initial chaotic behaviour of configurations with only two positive Lyapunov exponents
collapses into a limit cycle, as it is depicted in Fig. 2. This transition from chaotic behaviour into a limit
cycle has been detected using a time-frequency analysis [Chandre et al., 2003; Chen et al., 2011].
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Fig. 3. Different behaviour of the dynamical system given in [Vidal et al., 2012] for the same set of control pa-
rameters (a = —0.924402423687748, b = 0.438971098170411, p = 0.711718876046661) and different initial conditions
(in (a) the initial conditions are x4, = 0.162590738289674, y4, = —0.442583550778422, z4, = 0.141686475255563,
wy, = —0.194570102178438, zp, = 0.0601842136547941, yp, = 0.148286931043714, zp, = —0.307154096319608,
wp, = 0.313998502860319; in (b) the initial conditions are x4, = 0.162590738289674, vy, = —0.442583550778422,
za, = 0.141686475255563, w4, = —0.194570102178438, xp, = 0.473704902674984, yp, = 0.472305555688457, zp, =

0.143698049421405, wp, = 0.360098876854161). The initial conditions of the transmitter are the same for both configurations:
only the initial conditions of the receiver are modified.

3Furthermore, as it is shown in [Li, 2003], the adoption of floating-point over fixed-point computation implies additional
problems. These problems are even more critical if we consider mobile devices as a possible application context (https:
//developer.android.com/training /articles /perf-tips.html# AvoidFloat, Last accessed 2016-08-31).
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3.1. Synchronization problems

According to the authors of [Vidal et al., 2012], their cryptosystem possesses quantum properties and can
be used in VoIP communications. Regarding the quantum properties, it is possible to confirm that they are
impaired by the inner characteristics and restrictions of chaotic synchronization in their setup. Taken for
granted the analogy between chaotic synchronization and quantum communications, the coupling between
the transmitter and the receiver should be of such a nature that synchronization is guaranteed when both
ends of communication select initial conditions random and independently. In the case of the dynamical sys-
tem selected in [Vidal et al., 2012] this is not always satisfied. As the authors underline, the set determined
by Egs. (1) and (7) is not attracting. Futhermore, the existence of riddle basins in the synchronization
manifold is both a protection against brute-force attacks and a problem in a practical context where the
implementation of the dynamical systems must be done with finite precision computations. To highlight
this last consideration we have carried out a rigorous analysis of the stability of the synchronization mani-
fold. First, we have selected a set of control parameters and initial conditions determining only two positive
Lyapunov exponents. Second, we have updated randomly the initial conditions of the receiver, whereas the
rest of elements conforming the secret key and public parameters were kept as they were selected during
the first stage of the experiments. From the experiments we have realized we got a rate of 33% of config-
urations where synchronization between the transmitter and the receiver is not achieved when the initial
conditions of the receiver are changed. To further illustrate this matter, we show in Fig. 3 an example of
how a synchronization state of the system given in [Vidal et al., 2012] can be destroyed just by modifying
the initial conditions of the receiver. This situation means that the initial conditions of the trasmitter and
the receiver cannot be established independently, and this is against the quantum properties claimed by
the authors of the cryptosystem in [Vidal et al., 2012].

On the other hand, we should evaluate whether the synchronization between transmitter and receiver
is affected by time-delays in the communication channel. Certainly, if one considers a setup as the one given
in Fig. 4 and introduces a transmission delay, then synchronization should not be degraded. However, it
is possible to confirm experimentally that a small time-delay could determine two different fixed points in
the transmitter and receiver (see Fig. 5), which is not the expected chaotic sychronized state.

3.2. Comments about the selection of adequate values for the control
parameters and the secret key

As it has been highlighted in recent cryptanalysis works [Liu et al., 2015; Li et al., 2013], the selection of
adequate values of the control parameters and initial conditions is a critical point in chaotic cryptography.
In this regard we have to underline that there is not an explicit definition of key space in [Vidal et al., 2012],
since there is not a clear description of the control parameters and initial conditions to force hyperchaotic
regimen. Nevertheless, this paper is based on [Vidal, 2011], where two different configurations leading to
hyperchaotic behavior are provided:

o a=—1,b=1.1, u=0.88 [Vidal, 2011, p.53].
e a=-1,b=0.9, p> 0 [Vidal, 2011, p. 46].

Nonetheless, we have verified in our experiments that these two configurations not always determine a
hyperchaotic behaviour. Moreover, hyperchaoticity can be achieved using other configurations from those
given in [Vidal, 2011]. The problem here is that the criterion to select adequate values of the control
parameters and the initial conditions is based on the evaluation of Lyapunov exponents, which resorts to
the computation of millions of iterations of the differential equations [Vidal & Mancini, 2009, p. 722]. This
fact determines a degradation of the efficiency of the cryptosystem described in [Vidal et al., 2012].

4. Security analysis
4.1. First constderations about the key space

Recalling Kerkchoffs’ principle, the definition of a cryptosystem must incorporate the clear concretion of
its secret key, i.e., the cryptosystem’s secret parameters are only known by legitimate users, and also it is
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Fig. 4. (a) Trajectories of 4 and zp;(b) Projection of the attractor on the phase plane (z,z). The configuration used in
this simulation was: a = —0.815215556019668, 11 = 0.697158139176817, b = 0.724394324457102, x4, = —0.45779369216014,
YA, = —0.170731117605469, 24, = 0.312585918469052, w4, = —0.0302306179511633, xp, = —0.164151025323075, yp, =
—0.324330970324339, zp, = —0.291053326006865, wpr, = 0.405153559004464.
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Fig. 5. Effect of a transmission delay of 10ms on synchronization: (a) trajectories of z 4 and = g; (b) trajectory of the attractor
projected on the phase plane (z, z).

necessary to clarify the possible values of those parameters. In the cryptosystem here considered the secret
key is given by the eight initial conditions of the system and the coupling parameters. If those values are
codified as in [Vidal et al., 2012] using 11 digits, the cardinality of the key space is (101)% x (10!!)8 = 1019
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4. Nevertheless, the previous value is only correct if all parameters included in a secret key are independent
and unknown by a potential attacker. This is not the case of the cryptosystem that we are analyzing. First
of all, an eavesdropper has access to the values zp, and z4,, since both values are transmitted in plain at
the beginning of the communication session. Consequently, this implies a reduction of the key space and
thus its cardinality is (101)% x (101)6 = 10%8.

Secondly, an attacker does not need to get all initial conditions to recover the keystream. In fact, the
attacker tipically possesses either the transmitter or the receiver and tries to infer the corresponding initial
conditions and the coupling factor. Once the eavesdropper has recovered the initial conditions of Alice, or
the ones of Bob, she can generate the keystream generated by the synchronization procedure. Hence, we
have a further reduction of the key space which is of cardinality 101! x (10!1)3 = 10%.
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Fig. 6. NMSE associated to the estimation of wg, from the only observable variable z4. Two configurations were con-
sidered, sharing the same configuration for the control parameters (a = —0.815215556019668, b = 0.724394324457102,
p = 0.697158139176817, e = 0.797694334249407, e, = 0.840527637336788), along with the initial conditions for Alice
(x4, = —0.45779369216014, y4, = —0.170731117605469, z4, = 0.312585918469052, w,, = —0.0302306179511633). The
initial conditions for Bob were (a) zp, = 0.289073514938958, yp, = 0.352263890343846, zp, = 0.00563661757175615,
wp, = 0.135661388861377; (b) xzp, = 0.238640291995402, yp, = 0.0859870358264758, zp, = —0.253265474014025,

wp, = 0.166416217319468.

4.2. Information leaking through the analysis of the synchronism error

On this point we are going to consider an attacker, Eve (E), that tries to reproduce Alice’s system through
the following set of equations:

4Here we should note that the definition of the key space in [Vidal et al., 2012] is not correct. The key space is determined
by the set of all possible values for the parameters that are unkown by any potential attacker. In the cryptosystem under
evaluation, these parameters are the eight initial conditions and the two coupling parameters.
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ip =Yg +eég, (T —TE) (9)
YE = WTE +xp (a(m%—l—z%)—i—bz%) (10)
ZE = WE (11)
wp = pzp + zp (a(zh + 23) + b)) (12)

Eve knows the value of z4, since it is transmitted in clear by Alice. She knows also the value of zp,
which is sent in clear by Bob (take into account that Eve is actually performing a Man-In-The-Middle-
Attack -MITMA-). To fully reproduce the system of Alice, Eve needs to determine exactly the values of
the variables x 4., ya,, wa,, and the coupling factor €,. Hereafter, we refer the estimation of such variables
as Tg,, YE,» WE,, ahd €g,. From the general point of view of optimization theory, Eve tackles the inverse

problem defined as
1 (T (24— 25 ) 2
arg min — — ) dt 13
ge T /o < ZA (13)

with © = (yg,, 2B, WE,» €E, ), 24 defined by Eq. (7) and zg determined through Eq. (11). At a first
attempt to perform parameters estimation, Eve ponders the sensibility of the Normalized Mean Squared
Error (NMSE) as implicitly defined in Eq. (13) with respect to the unknown control parameter and the
initial conditions. As a matter of fact, z4 is related to wg through a low-pass filtering, which can be further
confirmed experimentally just by conducting a bi-search estimation of wg, from the minimum value of the
NMSE of zg with respect to z4.

On these grounds, we have played the role of Eve performing 100 runs of the bi-search estimation
using different configurations for Alice and Bob. In all the different configurations we have computed the
Lyapunov exponents to confirm hyperchaoticity, and we have also verified that the synchronization is
achieved. In the assumed MITMA scenario Eve does not know the value of z4,, y4,, wa, and €. Since
Eve’s goal in this stage is to get an estimation wg, of wy,, in our experiments we have assigned random
values to the other three unknown parameters. We have verified that for almost all the random values
generated the function drawn by computing the NMSE with respect to wg, is convex around the exact
value of w4, . In Fig. 6 we can see this convexity for two settings of Alice. In fact, in our 100 experiments we
have confirmed a mean error of order 1071? in the estimation of w,, through a naive bi-search algorithm.
Nevertheless, it means a clear reduction of the sub-key space associated to such a variable. This being the
case, the key space is (again) compressed to 10" x (10!1)2 x 10?2 = 1035,

4.3. Further reduction of the key space

Recalling Eq. (13) for © = ¢,, the next step in the security analysis is to determine whether is possible to
get an estimation of other initial conditions. To achieve such a goal we are going to conduct a two-steps
procedure. First, we perform a coarse grained exploration of the definition interval of €, £ 4,, and y4,. In
short, the definition space of ¢, is splitted into M equal-width intervals, and we keep the lower bounds
of such intervals. The same procedure is applied to x4, and ya,, although in this case the cardinality of
the resulting set is N. As a result, we have got M x N2 possible Alice’s configurations. The NMSE of
zp with respect to z4 is calculated, and we keep the values of €g,, g, and yg, that lead to a minimun
value of the NMSE figure. Accordingly, we obtain an estimation of the unknown variables of Alice. In the
second stage of our procedure we apply those estimations, along with the estimation of wg,, to perform an
Ordinary-Differential-Equation (ODE) parameter fitting using some global optimization technique. In this
work we have applied the pattern search algorithm for such a goal [Torczon, 1997], since the outcome of
the previous stage informs about the existence of multiple local minima and that can be a problem when
applying gradient-based optimization procedures. In order to confirm whether this two-fold methodology
determine a further reduction of the key space, we have selected 100 different configurations leading to
hyperchaotic behavior and the Matlab patternsearch function has been used for the parameters fitting.
Along the different simulations it is possible to observe the convexity of the NMSE as defined in Eq. (13)
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Fig. 7. NMSE with respect to e, for a = —0.905791937075619, b = 0.126986816293506, u = 0.814723686393179,e4 =
0.913375856139019,e, =  0.63235924622541, x4, = —0.40245959500059,y4, = —0.221501781132952,z4, =
0.0468815192049838,w4, = 0.457506835434298,xp, = 0.00595705166514238, yp, = —0.244904884540731,z2, =
0.00595705166514238, and wp, = 0.199076722656686.

Table 1. Distribution of the errors in the estimation of Al-
ice’s unknown secret parameters. Take into account that the
error for wy, is below 1078 for the 17% of the considered con-
figurations, smaller than 10™% with a ratio of the 68%, and
below of 10711 for the 15% of the evaluated setups.

Estimation error | ~ 1072 | ~107° | ~10° % [ ~ 107 °
za, 1% 52% 43% 4%
YA, 34% 29% 25% 12%
cx 53% 37% 10% 0%

around the exact value of ¢, (see Fig. 7). We have verified that in average the values of x4, and y4, can be
obtained with an error below to 1073, whereas €, is estimated with a mean error below 1072 (see Table 1).

Although the previous study highlights the reduction of the key space, a deeper examination makes
possible to identify weaker selection of the keys. As a matter of fact, the selection of the control parameters
according to [Vidal, 2011, p. 46] paves the way for an attacker to estimate the secret keys. This concern
has been verified through 1000 experiments and considering that the initial conditions and the parameters
are codified with 11 digits (i.e., in the vein of [Vidal et al., 2012]). Different random values were generated
for the initial conditions and the coupling parameters. In each different configuration the gradient descend
algorithm in [Orue et al., 2010] was used to get an estimation of z4,, ya,, wa,, and eg,. As it is drawn
from Fig. 8, a MITMA enables the complete recovery of the secret key in more than 25% of the considered
setups. This is a major security problem that cannot be avoided due to the inner characteristics of the
synchronization procedure used to encrypt information in [Vidal et al., 2012].
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Fig. 8. Rate of estimation errors for 1000 setups with a = —1, b = 0.9, u = 1.25, and random values for the initial conditions

and the coupling parameters. The plots show the normalized histogram for the estimation error of (a) x4, (b) y4,, (¢) wa,,
and (d) eg.

5. Conclusion

In this paper we have highlighted some important weaknesses of the algorithm proposed in [Vidal et al.,
2012]. This cryptosystem shows serious efficiency problems, and it is possible to reduce drastically its
key space just applying global optimization techniques. In fact, we have shown that in some cases it is
possible to apply a MITMA to recover the secret key. All in all, our analysis shows that the cryptosystem
defined in [Vidal et al., 2012] does not provide a sufficient protection against brute force attacks given the
computational power of today’s computers.

In addition, the set of tools and the methodology applied in this paper can be very useful first to
evaluate and perfect recent contributions in chaotic cryptography [Celikovskjf & Lynnyk, 2016; Shakiba
et al., 2016; Li, 2016; Xie et al., 2017], and second to guide the design of new proposals. Regarding this last
concern, it is necessary to recall that the computer implementation of chaos is affected by finite precision
matters, which erases the link between chaos and cryptography as it was implicitly established by Shannon
[Alvarez et al., 2011]. If the encryption system is constructed by means of continuous-time chaotic systems,
then we have to deal with the complexity associated to numerical integration methods and floating-point
computation [Li, 2003; Abad et al., 2012; Lozi & Pchelintsev, 2015]. Therefore, if chaos is the main bottom
line of an encryption proposal, then one has to use electronic or optical devices to generate chaotic orbits
and to lead chaotic communications and/or encryption [Lozi, 2014].



12 REFERENCES

Acknowledgments

This work was supported by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM
(CIBERDINE).

References

Abad, A., Barrio, R., Blesa, F. & Rodriguez, M. [2012] “Tides, a taylor series integrator for differential
equations,” ACM Transactions on Mathematical Software (TOMS) 39, 5.

Alvarez, G., Amigé, J. M., Arroyo, D. & Li, S. [2011] “Lessons learnt from the cryptanalysis of chaos-based
ciphers,” Chaos-Based Cryptography, eds. Kocarev, L. & Lian, S. (Springer Berlin Heidelberg), ISBN
978-3-642-20541-5, pp. 257-295, do0i:10.1007/978-3-642-20542-2_8, URL

Arroyo, D., Alvarez, G., Amigé, J. M. & Li, S. [2011] “Cryptanalysis of a family of self-synchronizing
chaotic stream ciphers,” Communications in Nonlinear Science and Numerical Simulation 16, 805—
813, doi:http://dx.doi.org/10.1016/j.cnsns.2010.04.031.

Arroyo, D., Alvarez, G., Li, S., Li, C. & Fernandez, V. [2009a] “Cryptanalysis of a new chaotic cryptosystem
based on ergodicity,” International Journal of Modern Physics B 23, 651-659, doi:http://dx.doi.org/
10.1142/S0217979209049966.

Arroyo, D., Li, C., Li, S., Alvarez, G. & Halang, W. A. [2009b] “Cryptanalysis of an image encryption
scheme based on a new total shuffling algorithm,” Chaos, Solitons and Fractals 41, 2613-2616, doi:
http://dx.doi.org/10.1016/j.chaos.2008.09.051.

Baptista, M. S. [1998] “Cryptography with chaos,” Physics Letters A 240, 50-54.

Celikovsky, S. & Lynnyk, V. [2016] “Message embedded chaotic masking synchronization scheme based
on the generalized lorenz system and its security analysis,” International Journal of Bifurcation and
Chaos 26, 1650140.

Chandre, C., Wiggins, S. & Uzer, T. [2003] “Time—frequency analysis of chaotic systems,” Physica D:
Nonlinear Phenomena 181, 171-196.

Chen, G., Hsu, S.-B., Huang, Y. & Roque-Sol, M. A. [2011] “The spectrum of chaotic time series (ii):
wavelet analysis,” International Journal of Bifurcation and Chaos 21, 1457-1467.

Garcia-Martinez, M., Denisenko, N., Soto, D., Arroyo, D., Orue, A. & Fernandez, V. [2013] “High-speed
free-space quantum key distribution system for urban daylight applications,” Applied Optics 52,
3311-3317, URL .

Hu, H., Deng, Y. & Liu, L. [2014] “Counteracting the dynamical degradation of digital chaos via hybrid
control,” Communications in Nonlinear Science and Numerical Simulation 19, 1970 — 1984, doi:
http://dx.doi.org/10.1016/j.cnsns.2013.10.031, URL

Li, C. [2016] “Cracking a hierarchical chaotic image encryption algorithm based on permutation,” Signal
Processing 118, 203-210, doi:http://dx.doi.org/10.1016/j.sigpro.2015.07.008.

Li, C., Liu, Y., Xie, T. & Chen, M. Z. Q. [2013] “Breaking a novel image encryption scheme based on im-
proved hyperchaotic sequences,” Nonlinear Dynamics 73, 2083—2089, doi:http://dx.doi.org/10.1007/
$11071-013-0924-6.

Li, S. [2003] “Analyses and new designs of digital chaotic ciphers,” PhD thesis, School of Electronic and
Information Engineering, Xi’an Jiaotong University, Xi’an, China, available online at

Li, S., Alvarez, G., Li, Z. & Halang, W. [2007] “Analog chaos-based secure communications and crypt-
analysis: a brief survey,” 3rd Int. IEEE Scientific Conference on Physics and Control (PhysCon
2007), eds. Kurths, J., Fradkov, A. & Chen, G. (Potsdam, Germany), p. 92, full edition available
at .

Liu, Y., Fan, H., Xie, E. Y., Cheng, G. & Li, C. [2015] “Deciphering an image cipher based on mixed
transformed logistic maps,” International Journal of Bifurcation and Chaos 25, art. no. 1550188.

Lozi, R. [2014] “Designing chaotic mathematical circuits for solving practical problems,” International
Journal of Automation and Computing 11, 588-597, doi:10.1007/s11633-014-0839-9, URL



REFERENCES 13

Lozi, R. & Pchelintsev, A. N. [2015] “A new reliable numerical method for computing chaotic solutions
of dynamical systems: the chen attractor case,” International Journal of Bifurcation and Chaos 25,
Article number 1550187.

Menezes, A., van Oorschot, P. & Vanstone, S. [1997] Handbook of Applied Cryptography (CRC Press).

Orue, A., Alvarez, G., Pastor, G., Romera, M., Montoya, F. & Li, S. [2010] “A new parameter determi-
nation method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis,”
Communications in Nonlinear Science and Numerical Simulation 15, 3471 — 3483, doi:10.1016/j.
cnsns.2009.12.017, URL .

Orue, A., Fernandez, V., Alvarez, G., Pastor, G., Romera, M., Montoya, F. & Li, S. [2009] “Breaking a SC-
CNN-based Chaotic Masking Secure Communication System,” International Journal of Bifurcation
and Chaos 19, 1329-1338, doi:10.1142/S0218127409023652, URL

Shakiba, A., Hooshmandasl, M. R. & Meybodi, M. A. [2016] “Cryptanalysis of multiplicative coupled
cryptosystems based on the chebyshev polynomials,” International Journal of Bifurcation and Chaos
26, Article number 1650112, doi:10.1142/S0218127416501121.

Shannon, C. [1949] “Communication theory of secrecy systems,” Bell Sys. Tech. J. 28, 656-715.

Sinai, Y. [1968] “Construction of Markov partitions.” Funct. Anal. Appl. 2, 245-253.

Torczon, V. [1997] “On the convergence of pattern search algorithms,” SIAM Journal on optimization 7,
1-25.

Vidal, G. [2011] “Sincronizacién y control de sistemas dindmicos en régimen de caos espacio-temporal,”
PhD thesis, Universidad de Navarra, Spain, URL

Vidal, G., Baptista, M. S. & Mancini, H. [2012} “Fundamentals of a classical chaos-based cryptosystem with
some quantum cryptography features International Journal of Bifurcation and Chaos 22, Article
number 1250243.

Vidal, G. & Mancini, H. [2009] “Hyperchaotic synchronization under square symmetry,” International
Journal of Bifurcation and Chaos 19, 719-726.

Wang, Q., Yu, S., Li, C., Lii, J., Fang, X., Guyeux, C. & Bahi, J. M. [2016] “Theoretical design and
FPGA-based implementation of higher-dimensional digital chaotic systems,” IEEE Transactions on
Circuits and Systems I-Regular Papers 63, 401-412.

Xie, E. Y., Li, C., Yu, S. & Lii, J. [2017] “On the cryptanalysis of fridrich’s chaotic image encryption
scheme,” Signal Processing 132, 150-154.



