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The performance of recently proposed flag-based energy harvesters is strongly limited by the
chaotic response of flags to strong winds. From an experimental point of view, the detection
of flag chaotic dynamics were scarce, based on the flapping amplitude and the maximal Lya-
punov exponent. In practice, tracking the flapping amplitude is difficult and flawed in the large
oscillation limit. Also, computing the maximal Lyapunov exponent from time series of limited
size requires strong assumptions on the attractor geometry, without getting insurance of their
reliability. For bypassing these issues, (1) we use a time series which takes into account the whole
dynamic of the flag, by using the flapping moment which integrates its displacements, and (2)
we apply an algorithm of detection of chaos based on recurring values in time series.
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1. Introduction

The irregular flapping of flags is a common experience, as illustrated by physicists playing with their
immediate environment in the 70’s: "How far away is the nearest strange attractor? [...] That flag snapping
erratically in a steady breeze?” [Gleick, 1987]. As earlier observed in wind tunnels, the flag oscillations
become "violent and irregular” [Taneda, 1968] at high wind velocity. Numerically, the intuitive scenario
"straight state - periodic flapping - chaotic flapping” has been stated by several numerical simulations
[Yadikin et al., 2001; Connell & Yue, 2007; Alben & Shelley, 2008; Michelin et al., 2008; Huang & Sung,
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2010}, but scarce experimental works have undertaken to confirm it. Recent prototypes of energy harvesters
based on the periodic oscillations of flags (see e.g. [Xia et al., 2015; Virot et al., 2016]) are now motivating
quantitative estimations of the range of wind velocities allowing periodic motions as a function of the
characteristics of flags. As we will see, this requires to tackle two major issues. Firstly, (1) the attempts
at our knowledge to detect flag chaotic dynamics [Ait Abderrahmane et al., 2011; Zhao et al., 2012; Ait
Abderrahmane et al., 2012] were based on the tracking of a single point of the flag with a laser beam
perpendicular to the flag, reasonable in the limit of small oscillations but biased in practice since typical
flapping amplitudes can be of the order of the flag length [Shelley & Zhang, 2011]. A global observable is
preferable to take into account the whole dynamics: in this paper we use the moment around the flagpole
induced by fluid forces (hereafter called flapping moment). Secondly, (2) an equivalent attractor is classically
reconstructed with the time-delay method [Packard et al., 1980; Takens & Maiié, 1981] to characterize the
rate of separation of close trajectories. Then, the maximal Lyapunov exponent is usually computed but
requires assumptions on the attractor geometry. We suggest that a method stating its convergence is more
appropriate: we use an algorithm based on recurring values in a time series (as proposed in [Faranda et al.,
2012]), combining the work of Poincaré [Poincaré, 1890] and the extreme value theory [Leadbetter et al.,
1982]. Unlike classical tools, the method is based on theoretical results for chaotic systems which predict
the type of the underlying distribution of recurrences. This information allows to check whether the results
obtained experimentally agree with the theoretically expected distribution. It allows to include statistical
tests in the algorithm and increase the robustness of the results. This is a crucial issue when dealing with
relatively short time series.

2. Experimental set-up
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Fig. 1. Schematic representation of the experiment: the flag is placed in a wind tunnel and fixed at a flagpole which is
connected to four force sensors. The flapping moment is reconstructed from the signals of the force sensors.

The flag studied is rectangular, made of bi-oriented polypropylene, with a mass density 890 kg.m ™2 and
a bending rigidity 1.3x 10~ N.m (Fig. 1). Since it does not sag at rest, gravity effects are neglected. The flag
is placed in an Eiffel-type wind tunnel of rectangular cross-section width x height = 260 mm x 240 mm
and it is clamped in a flagpole of thickness 4 mm. The distance to the wind tunnel walls below and
above the flag is respectively 40 mm and 100 mm. The wind velocity can be varied up to 15 m/s by
increments of 0.4 m/s, for a Reynolds number based on the flag length lower than 3 x 10° and a turbulence
level - the relative importance of velocity temporal fluctuations - about 0.4%. The instantaneous flapping
moment is reconstructed by a linear combination of the force sensor signal, as shown in Fig. 2, with
1024 acquisitions per second. The data are filtered above 60 Hz and the noise is reduced by treating
independently six blocks of 4 s (with an overlap of 50%); the resulting frequency resolution is then 0.25 Hz
(see also [Virot et al., 2013] for further conception details). Since the acquisition lasts 14 s, the time series
contain approximately 1.4 x 10* observations, spanning more than hundred flapping periods in general. The
length of the time series is irremediably limited, due to the experimental procedure. Indeed, a typical test
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consists of successive acquisitions, each separated by some minutes to reach steady states. Since the wind
velocity range U = 0 — 15 m/s is scanned with increments of 0.4 m/s, the flag undergoes about 10° cycles,
which in practice leads the flag to fracture by fatigue [Virot, 2015].

3. Detection of chaos

Some ideas pertaining to the extreme value theory are recalled to design the algorithm of detection of
chaos (see ref. also [Leadbetter et al., 1982]). Let independent and identically distributed observations
2(t) be sampled into n blocks, each containing m observations. We know that in the limit n,m — oo the
cumulative distribution function of block maxima (M;);=1,. » becomes [Gnedenko et al., 1943]:

Flz) :exp{— {1+5 (t—“)]_l/g}, (1)

where p € R is the ”location parameter”, o € R™* is the "scale parameter” and ¢ € R is the ”tail index”.
The tail index indicates the thickness of the tail of the distribution: Fréchet distribution (¢ > 0), Gumbel
distribution (¢ = 0) or Weibull distribution (£ < 0). Originally, this theory has been devised for the
study of independent and identically distributed variables x(¢). More recently, important contributions
have been given by [Coulet, 2001; Freitas & Freitas, 2008; Freitas et al., 2009; Gupta et al., 2011; Faranda
et al., 2011] to deal with variables with a dependency structure. This is possible by adapting the Poincaré
recurrence theory for dynamical systems [Poincaré, 1890] to the study of time series: if one considers a
point ¢ and takes as observable the function y(t) = g(dist(¢,z(t))) i.e. the time series of the distances
between ¢ and the other points conveniently weighted by a function g(-), it has been proven [Freitas et al.,
2009] that the (block) maxima of the (sampled) observable y(t) converge to the generalized extreme value
distribution [eq. (1)] providing that the underlying system is chaotic (meaning intuitively that a partial
loss of dependency structure is achieved). In particular, if g(-) = —log(-) is selected, one gets convergence
towards the Gumbel distribution i.e. £ = 0 [Lucarini et al., 2012]. A key point is that the converse is also
assumed: by taking a time series of an unknown dynamical system one can detect whether it is chaotic
or not by fitting the distribution of maxima of the time series y(¢) = — log(dist({, z(t)) to the Gumbel
distribution. As a result, a successful fit expressed that the time series is chaotic and an unsuccessful fit
means that it is not chaotic [Faranda et al., 2012]. In such a framework, there is no assumptions on the
attractor geometry (e.g. its embedding dimension). These ideas have recently been applied to the detection
of chaos in the standard map [Faranda et al., 2012].

4. Algorithm
Accordingly, the following algorithm is proposed:

(1) Consider a time series x(t) and select an arbitrary point ¢, as shown in Fig. 2(a).

(2) Compute the series y(t) = —log(dist(¢, z(t))), where "dist” refers to the distance operator [Fig. 2(a)].

(3) Once divided the series y(t) into n blocks, extract the maxima (Af;);—1, . ». The maxima of y(t) are
related to the minima of dist(¢, z(t)).

(4) Fit the maxima to the generalized extreme value distribution [eq. (1)] with an L-moments method
[Faranda et al., 2012] and register the best fit parameter ¢ [Fig. 2(c,d)].

(5) Average the best fit tail index & for several points ¢ in order to reduce the uncertainty (we use hundred
random values ¢ in the following computations).

(6) Perform a Lilliefors test [Lilliefors, 1967] (an adaptation of the Kolmogorov-Smirnov test) to check the
reliability of the fit. If the null hypothesis is rejected, the parameters are taken with caution and not
registered.

5. Analysis of the flag dynamics

In the following, we focus on three indicators of chaos: (1) the power spectral densities, (2) the maximal
Lyapunov exponents, and (3) the algorithm results (i.e. the statistical test of Lillierfors and the tail index).
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Fig. 2. (a) Time series of flapping moment at U = 0.9 m/s. The flapping is periodic with a noisy background. (b) The same
at U = 13.8 m/s, without any clear periodicity. (c) Distribution of the maxima of y(t) at U = 0.9 m/s [Fig. 2(a)] with a
random value ¢ = 0.1981. The red curve is the best fit to eq. (1) with parameters indicated beside. In this situation the
parameter ¢ is moved to the boundary of the parameter space £ € [—1,1] and the fit is unsuccessful. (d) The same distribution
at U = 13.8 m/s [Fig. 2(b)] with a random value ¢ = 0.4562.

The indicators are computed with the time series of flapping moment, by applying thirty-nine values of
wind velocity to the flag.

As a rough indicator of chaos, the power spectral densities are reported in Fig. 3(a), where we observe
a sharp frequency peak for U ~ 0.5 — 4 m/s, suggesting a strongly periodic flapping. The linear increase
of the dominant frequency is consistent with previous experimental and numerical works (see e.g. [Virot
et al., 2013] and references therein). Above U ~ 4 m/s, a continuous spectral enrichment is observed
and a growing low-frequency domain appears at U ~ 9 m/s. Intuitively, these features are indicative of a
transition towards chaotic behavior [Manneville, 2004].

Prior to the algorithm results, we discuss the maximum Lyapunov exponent, by following the steps
detailed in [Wolf et al., 1985]. The computation implies the arbitrary choice of a time-delay for analyzing
an equivalent attractor [Packard et al., 1980; Takens & Mané, 1981], and more particularly the knowledge
of its embedding dimension. In order to do so we attempted two different methods [Cao, 1997; Gautama
et al., 2003], but in both cases the embedding dimension remained out of reach: both methods rely on
the minimization of a function for which we did not find reliable minima. Our observations lead us to
hypothesize that it is linked to the short character of the time series. Actually, even if an embedding
dimension were extracted, there is no way of stating whether the method has converged to a reliable value
or if the time series is too short. As a result, the computation of the maximal Lyapunov exponents can be
misleading, and does not clarify whether the flapping is chaotic or not in our case.

We therefore apply the algorithm based on recurring values to discriminate between chaotic and non-
chaotic dynamics. The time series of flapping moment are sampled in n = 56 blocks containing m ~ 260 ms
(i.e. 250 observations). As a first step, the results of the statistical test of Lillierfors are presented in
Fig. 3(b). A test parameter lower than the critical value 0.4 means that in average there is no differences
between the observed distributions and the generalized extreme value distribution [eq. (1)] at the 10 %
significance level. If the test is not rejected, we consider that the data are reliable for the algorithm. We
notice that when the flapping frequency is lower than 4 Hz (i.e. below U = 2 m/s), less than one period is
included in a block and the Lillierfors test is rejected. As previously pointed out, the detection of chaos is
based on the value of the tail index &: if € ~ 0, the fit to the Gumbel distribution succeeds and the dynamic
is chaotic. Otherwise the dynamics is periodic, based on the analysis of recurrence distribution obtained.
The underlying recurrence distribution for the periodic case is a Dirac’s delta [Lucarini et al., 2016]. In the
quasi-periodic case, the distribution is not bell-shaped but rather narrow as the one observed in Fig. 2(c).
There is no other possibility for the non-convergence to the extreme value laws, but note that as studied in



Chaotic dynamics of flags from recurring values of flapping moment 5

frequency (Hz)

G

null hypothesis
is rejected

test parameter

0
(¢} 1 :
(unreliable Cha_otlc
X data) regime
[0}
- 0
£
3

-1

0 2 4 6 8 10 12
wind velocity U (m/s)

Fig. 3. (a) Evolution of the power spectral densities of the flapping moment when the wind velocity is increased. The flag
starts to flutter at U ~ 0.5 m/s. (b) Algorithm results. The gray area indicates where the data are considered to be not
reliable (data in this regime are not shown). (¢) Tail index £. The red area indicates where the convergence towards a Gumbel
distribution is achieved (£ ~ 0) i.e. where the dynamic is chaotic. Error-bars correspond to the standard deviations of £ for
hundred random values ¢ in the algorithm.

[Faranda et al., 2013; Faranda & Vaienti, 2013], strong noise can also bring the statistical convergence of
the recurrences to the extreme value distributions. The evolution of the tail index & is presented in Fig. 3(c).
We observe a rather continuous transition from periodic flapping to chaotic flapping at U ~ 8 m/s. This
threshold is consistent with the appearance of low frequencies in the power spectral densities [Fig. 3(a)].
Nevertheless, there is a systematic drift of ¢ towards negative values, and a short non-chaotic regime is
detected at U ~ 11 m/s, mirroring the intrinsic sensibility of the algorithm to statistical fluctuations. The
critical value of the test parameter fixed for the acceptance of the Lilliefors test is higher than the one
prescribed for independent and identically distributed variables (i.e. approximately 0.2 for n ~ 50 maxima)
which is achieved only for wind velocity higher than 12 m/s. This value takes into account the dependence
structure between the maxima. We found that maxima are dependent in clusters of average length 2. This
can be quantified by the extremal index [Freitas et al., 2012].

We can hypothesize three different behaviors: a first one for U < 4.5 m/s, where the maxima are
dependent and the test parameter is higher than 0.4; a second one in the range U = 4.5 — 12 m/s, where
the maxima are dependent but where the shape of their histogram approach the generalized extreme value
distribution; and a third one for U > 12 m/s, where the maxima are almost independent and identically
distributed and consistent with the generalized extreme value distribution according to the statistical test.

6. Discussion and perspectives

We have shown that the algorithm can provide information on the location of chaotic regimes. We stressed
the fact that it is adapted to time series of limited size (as usually encountered) because it states its
own convergence unlike classical tools. Let us now examine the limits of this algorithm by reporting its
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Fig. 4. Sensibility of the algorithm to the sampling. The minimal wind velocity required to detect chaotic flapping (determined
when the tail index is zero) seem to converge towards 8 m/s, but with many discrepancies above 600 ms. The red curve is a
guide to the eyes. The arrow indicates the block size chosen to do the previous analysis.

dependence to the sampling of the time series. When fixing the number of blocks n or the number of
observations m in each block (nm being the size of the time series), the time scale at which we observe
the temporal recurrences in the algorithm get fixed. It therefore imposes the lowest frequency at which we
can analyze the dynamic of the time series. In the case of Fig. 3(c), we have chosen m ~ 260 ms, thus we
"hide” the frequency range 0 — 4 Hz. For judging the validity of the algorithm results, we report in Fig. 4
the values of the wind velocity required for chaos (determined when the tail index is zero) when the time
scale of blocks is arbitrarily varied. We observe a decreasing trend below 100 ms, i.e. when the hidden
frequency range is of the order of the flapping frequency (~ 10 Hz). On the other hand, when the time of
observation is larger than 600 ms, we see many discrepancies which can be associated to the fact that less
than n = 25 values are used for reconstructing the distributions of maxima, probably not enough.

We can conclude that this framework needs to be applied with care: if the time series is sampled in too
many blocks the typical frequency of the system can be hidden, giving misleading results. Conversely, if too
few blocks are chosen (typically less than 25 for this problem), the distributions can not be reconstructed
properly, and many discrepancies are reported.

We have discussed a framework which bypasses a series of difficulties classically linked to the estimation
of the embedding dimension. Such analyses could be a gateway for matching prediction of dynamical system
theory together with natural systems.
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