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CLASSICAL PLANAR ALGEBRAIC CURVES REALIZABLE
BY QUADRATIC POLYNOMIAL DIFFERENTIAL
SYSTEMS

ISAAC A. GARCIA' AND JAUME LLIBRE?

ABSTRACT. In this paper we show examples of planar quadratic differ-
ential systems having some famous planar invariant algebraic curves.
We carry out a non exhaustive classification taking into account the de-
gree of the invariant algebraic curve. Also we pay particular attention
to the Darboux integrability of the systems.

1. INTRODUCTION

Throughout this work we will consider quadratic polynomial differential
systems

(1) x:P(xvy) ) y:Q(xay)a

defined on R? or quadratic systems for short. This name comes from the
restriction that P,Q € R[z,y| are polynomials with real coefficients such
that 2 = max{deg P,deg Q}. Here the dot denotes, as usual, differentiation
with respect to the time t. We also denote X = P(xz,y)0; + Q(z,y)0, the
vector field associated to system (1).

Quadratic systems appear very often in several branches of science, as
biology, physics, chemistry, mechanics, etc. See for instance [1, 2] for a
summary of several properties of these systems.

From the mathematical point of view quadratic systems are perhaps the
most simple nonlinear differential systems. Despite its simplicity there are
important open questions around them. May be the most important open
problem involving quadratic systems is the famous Hilbert 16th problem
restricted to them. The problem was posed by David Hilbert at the Paris
conference of the International Congress of Mathematicians in 1900, together
with the other 22 problems. Actually the problem consists of two parts: (i)
an investigation of the relative positions of the branches of real algebraic
curves of fixed degree; (ii) the determination of the upper bound for the
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number of limit cycles in polynomial differential systems of fixed degree an
investigation of their relative positions. We recall that a limit cycle is an
isolated periodic orbit inside the set of all periodic orbits of system (1). This
question appears to be one of the most persistent problems in the Hilbert
problem list (see [5]), with the only exception of the Riemann conjecture.
Even the simplest case, which is just the restriction of Hilbert 16th problem
to the quadratic systems, remains unsolved. Recently it appeared again on
Smale’s list of problems for the 21st century [15]. See for instance [7] for an
account of Hilbert’s problems and their sequels and also the excellent survey
[9].

In some sense the invariant algebraic curves of system (1) are a connection
between the two parts of Hilbert 16th problem. An algebraic curve f(z,y) =
0 with f € Rz, y] is called an invariant algebraic curve of system (1) if it
is an invariant set for the flow associated to system (1) in the phase plane.
Thus, invariant algebraic curves are formed by the union of some orbits
of (1). This implies that X and the gradient vector V f are orthogonal at
the points of the curve f = 0. In other words f(x,y) = 0 is an invariant
algebraic curve of system (1) if and only if there is a polynomial K € R[z, y]
called the cofactor such that f is a solution of the linear partial differential
equation X' (f) = K f. Moreover analyzing the degrees of the polynomials
in the previous equation it is clear that deg K < 1.

Let U be an open subset of R?. A C* function H : i/ C R? — R such
that it is constant on each trajectory of (1) and it is not locally constant
is called a C* first integral of system (1) on U. The equation H(z,y) = h
for a fixed h € R gives a set of trajectories of the system defined in an
implicit way. When k > 1, H is a first integral if and only if X(H) = 0
in U and H is not locally constant. The problem of finding such a first
integral is what is called the integrability problem for system (1). Moreover
writing the differential equation of the orbits of system (1) in the Pfaffian
form w := P(x, y) dy — Q(x, y) dx = 0, an integrating factor is defined as a
C! function u : U € R? — R such that the differential 1-form puw is closed,
ie. d(pw) =0, in U. Then in the case in which U/ is simply connected, the
1-form pw is exact, that is pw = dH, and therefore a C?(U) first integral
H(z,y) of system (1) is constructed. As a consequence the vector field X
is topologically equivalent in U to the Hamiltonian vector field uX. For a
survey about integrating factors and their properties you can see the paper
[4].

Invariant algebraic curves also play an important role in the integrability
theory of polynomial differential systems. In 1878 Darboux in [3] presented
a simple method to construct first integrals and integrating factors for pla-
nar polynomial differential systems having a sufficient number of invariant
algebraic curves. We refer to the survey [10] and references therein about
this theory. In its simplest form the Darboux integrability theory works as
follows. Assume that a planar polynomial vector field X, of degree m pos-
sesses ¢ irreducible invariant algebraic curves f;(z,y) = 0 with associated
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cofactors K;(x,y) for i = 1,...,q and consider the Darbouxian function

(2) [I/ @y
i=1

for suitable A; € R. Then the following holds:

o If ¢ >m(m+1)/2+ 1, then (2) is a first integral of A,.
e If g =m(m+1)/2 then (2) is a first integral or an integrating factor
of X,,.
o If ¢ < m(m+1)/2but either >7_ | NK; =0or Y i | MK; = —divd,,
then (2) is a first integral or an integrating factor of A,,, respectively.
We remark that if \; € Z for all i = 1,2,...,q, then (2) is a rational
function and system (1) is called rationally integrable in case that (2) is a
first integral. In [11] Poincaré stated the problem of determining when X,
has a rational first integral. In this sense Jouanoulou [6] showed that if
at least m(m + 1)/2 + 2 different irreducible invariant algebraic curves are
known, then there exists a rational first integral. On the other hand, the
works [12] and [14] give a characterization of when X, has a first integral
which is an elementary or Liouvillian function.
Darboux integrability theory has also been useful for studying different
relevant problems of planar polynomial differential systems such as problems
related to centers, limit cycles, and bifurcation problems, see [13].

These notes are devoted to show some examples of quadratic systems hav-
ing “classical” algebraic curves as invariant curves. We use the word classical
in the sense of famous. See for instance a famous curves index in the web
page http://www-history.mcs.st-andrews.ac.uk/Curves/Curves.html
or in the book [8].

We say that a given algebraic curve is realized by a quadratic system when
there is a system (1) possessing it as invariant algebraic curve. We have
opted to carry out a classification of classical algebraic curves realizable by
quadratic systems, which is not exhaustive, taking into account the degree
of the invariant algebraic curve.

The structure of the paper is the following. In Section 2 we present some
classical algebraic curves realizable by quadratic systems. In all the studied
cases we give the quadratic differential system (1), the realized invariant
algebraic curve f(x,y) = 0 and its associate cofactor K (z,y). Also we pay
attention to the integrability of the systems distinguishing two integrability
types: rationally integrable systems and Hamiltonian systems. In Section 3
we organize in tables the classification made according to the degree of the
curves. In these tables we denote by (RI), (DI) and (DIF) the rationally
integrable systems, and the systems having either a Darboux first integral or
a Darboux integrating factor, respectively. All the planar algebraic curves
in the forthcoming tables are given mainly in the implicit form f(x,y) =0
although some of them are given in parametric form = = F(1), y = G(7),
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or in polar coordinates form r = F'(f). In the final section we plot several
pictures of some realizable classical curves by quadratic systems studied in
section 2.

2. REALIZABLE CLASSICAL ALGEBRAIC CURVES FOR QUADRATIC SYSTEMS

To check whether an algebraic curve is realized by a quadratic system
is just a matter of linear algebra. This direct method consists in to use
arbitrary real coefficients a;j, b;; and k;; for both the quadratic vector field
X and the cofactor K. Thus we take P(x,y) = E?ﬂ-:o aijz'y’, Qz,y) =
Z?H:O bija'y’ and K (x,y) = Z%H:O kijz'y!, and we impose that X (f) =
K f to be satisfied. This procedure leads to a system of algebraic equations
for the unknowns a;;, b;; and k;;. In case that this algebraic system becomes
compatible we get the realizable invariant algebraic curve as well as the
quadratic system. Otherwise the curve is non realizable, see Tables 2 and 3.

Along this section we present some classical algebraic curves realizable for
quadratic systems. In all cases we give the quadratic differential system (1),
the realized invariant algebraic curve f(x,y) = 0 and its associate cofactor

K(z,y).

2.1. The trivial case. First of all we remark that any cubic algebraic curve
f(x,y) = 0 is always realized by the quadratic Hamiltonian system

_of . of
m_ﬁy’y_ ox

For example, this is the case of the cubic curves in Table 1.

| NAME \ CURVE f(z,y) =0

Sliise’s Concoid z — a)(z® + y?) + k?2?

[z, y) =a(
Cramer’s Curve f@y)=z@+y )+ (r+0)2>—(r—0y>. r>£>0
Oblique Estrofoide | f(z,y) = z(2? + y?) — a[(z? — y?) sint + 22y cos {]
Folium of Descartes | f(x,y) = 2% + y° — 3axy
Ofitrida f(z,y) =2(@* +y?) —y(cy —bx). b>0,¢c>0
Panestrofoide flz,y) = z(@® + y?) + g(2* — y*) + k(z + g)
Visiera f(z,y) =2y —a)(z® + y*) —ay®. a >0

Oblique Versiera f(z,y) = (2% + y*)(zcosa + ysina — 47 cos® a) + 2ry?

TABLE 1. Some third degree classical algebraic curves real-
izable by quadratic Hamiltonian systems.

Anyway we emphasize the possibility of having particular cases in Table
1 realized by a non Hamiltonian quadratic system in the following example.

OBLIQUE VERSIERA: f(z,y) = (2?+y?)(x cos a+ysin a—4r cos? a)+2ry? =
0 with 7 > 0 and 0 < a < /2 has a multiple point at the origin. In short
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the origin is a node if @ > 7/4, an isolated point if & < w/4 and a cusp
if « = w/4. Taking the particular case & = 7/4 and renaming the new
parameter r = /2R we obtain that f(z,y) = 0 is realized by the following
quadratic system

3) & = 3R(ky—3k1)z + (2k1 — ko)x? + (k1 — k — 2)wy — koy? |
Yy = R(k‘l — 3k99z + 2R(k2 — 3k31)y + k2$2 + 2k1xy + k‘ly2 ,

with associated cofactor K (z,y) = (k2 — 3k1)(5R — 2z — y).

2.2. Some fourth and higher degree classical algebraic curves non
realizable by non Hamiltonian quadratic systems. In this section we
do one explicit computation to show the meaning of Tables 2 and 3. For
example, we take the Ampersand Curve f(z,y) = (y? — 22)(z — 1)(2z —

3) — 4(x? + y? — 22)% = 0, the vector field X = (Z?+j:0 aijxiyj) 0z +
(Z?ﬂ‘:o bij:ciyj) 0y and the cofactor K(z,y) = Z}H:O kijz'y?, with arbi-
trary real coefﬁcients a;j, bijj and k;;, and after equating the coefficients in
the monomials z'y’ of the equation X' (f) = K f we get

From the monomial x: agg = 0;

From the monomial y: by = 0;

From the monomial z2: koo = 2a10;

From the monomial y2: by = aio;

From the monomial xy: b1g = 19a01/3;

From the monomial 23: k19 = (—21aip + 38a2)/19;

From the monomial 22y: ko1 = (—607ag1 + 114a1; — 18bag)/57;
From the monomial xy?: b1 = (361agz — 136a10 + 57a0)/57;
From the monomial y3: by = (—136ag1 + 19a11 — 19bg2)/3;
From the monomial z%: asy = —71a10/133;

From the monomial 3y: bos = (—3523a01 + 607a11)/544;
From the monomial 2%y?: a9 = 80731ag2/23224;

From the monomial xy3: aj; = 461ap1/33;

From the monomial 3*: ags = 0;

From the monomial z*y: ag; = 0.

With these parameter restrictions the vector field reduce to the constant
field X = 0, a particular case of Hamiltonian field.

2.3. Non Hamiltonian quadratic systems having a classical cubic
invariant curve. In this section we do the explicit computations in order
to get Table 4.

WiTcH OF AGNESI: The quadratic system
k
(4) i=a’ky+ ot kie? § = —akay - 2kizy + kay®

has the Witch of Agnesi or “versiera” f(x,y) = (a® + %)y —a® = 0 as
invariant algebraic curve with associated cofactor K (z,y) = koy. The curve
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has, see Figure 1, points of inflection at y = 3a/4 and the invariant straight
line y = 0 is an asymptote to the curve. A rational parametrization of
Agnesi’s curve is given by

a

z(t)=ar, y(r)= 152

Making the reparametrization 7 — t defined by

r(t) = —

- alt — J16k2 — k2
=i |:—k2 + Atan <4>} ,  where A :=,/16ki — k5 ,

we obtain the flow into Agnesis’s curve induced by (4).

CuBIiCc DUPLICATRIZ: The algebraic curve f(z,y) = 23 — £(z? +y?) = 0 is
realized by the quadratic system

ko — 2k3)¢
) T = —klﬁx—Mg/—i—klﬁ—i—kﬂy,
5
ko — 2k3)/ 3k 3k
y = 7(2 3 3) x—k1£y+k3x2+—21xy+722y27

with cofactor K (x,y) = —2k1£+ 3kix 4 3kay. The origin is an isolated point
and the z-axis is a symmetry axis for the curve. Moreover, (4¢/3,4+4¢/[3+/3])
are inflection points, see Figure 2.

PARABOLIC FoLIUM: The parabolic folium f(z,y) = 23 —bxy —a(x? —y?) =
0 is realized with cofactor K (x,y) = —2(4a? +b%)(3aky + bkz) + 12a?(3k1x +
2koy) by the quadratic system

i = dx+12a®(ksy + k12?) + 8akary
(6) v = 12a%ksz + (8 + 12abks)y — (3abky + 4a%ks + bk + 18aks)z?
+2a(9ak; — bko)xy + 12akoy? |

where 6 := —12a3k; — 3ab’k; — 4a®bky — b3 ko — 6abks. The parabolic folium
has a singular point of node type at the origin, see Figure 3. Moreover, this
curve admits the following polynomial parametrization

z(t)=0—=7)a+br, yr)=701-71%a+br?.

In the particular case b = 0, the curve is known as right parabolic folium.
In order to simplify computations, if we assume moreover k; = ko = 0 and
a =1= ks =1, system (6) reduce to the Hamiltonian system & = 12y,
¥ = 6(2 — 3x)x. In this case, using the reparametrization

1
m(t) = exp(6t) — 1~

we obtain the flow into the right parabolic folium induced by the Hamilton-
ian system.
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NEWTON’S SERPENTINE: The quadratic system
T = —a2(k:1 + ko) + k11‘2 ,

7 . 1
Q yo= - [—ac? (k1 + k) + ckoxy + dakiy® + 2akay?]

with ¢ # 0 has the Newton’s serpentine f(z,y) = y(2? + a?) — acx = 0 as
invariant curve with cofactor K (z,y) = 1 [(2k1 + k2)(cz + 2ay)]. Newton’s
serpentine has the origin as a symmetry center and the straight line y = 0
is an asymptote to the curve, see Figure 4. Moreover,

[—aQ(kl + k‘z) + k1$2]1+k2/(2k1)
aca + (@ + 22

w(z,y) =

is an integrating factor for system (7).

PSEUDOVERSIERA: The cubic curve f(z,y) = (a*+2%)y—2a> = 0 is realized
by system

(8) & = a’ky + akox + k2%, §= y(—2ake — 2k + koy) ,

with associate cofactor K (x,y) = koy. Pseudoversiera has the straight lines
y = 0 and z = 0 as asymptote and symmetry axis respectively and the
points (a/v/3,3a/2) are infection points, see Figure 5. Moreover, system
(8) has the following Darboux first integral

(kg — \/Z) -+ klit

[ V1A,

A+koVA
5 ]

H(a,y) = |5 (ks + VB) + bz
where A := k3 — 4k3.

2.4. Quadratic systems having a classical quartic invariant curve.
In this section we do the explicit computations summarized in Table 5.

OBLIQUE BrroLiuM: The quadratic system
(9) i = 33w + 6abr? — 8(3a® + 2b2)wy — 2aby? ,

g = —ab’x + 203y + 2(3a2 + 2b%)z? + Sabry — 6(3a2 + 2b%)y? |
has the invariant oblique folium f(z,y) = —z%(az + by) + (2® +y*)? = 0
with cofactor K (z,y) = 8[b® + 3abx — 3(3a® + 2b%)y].

RIGHT BiroLiuMm: The curve f(x,y) = —az® + (2% +y?)? = 0 is realized by
System
3 3 1
i = —akx+ ~ka? — My — ~ky?
(10) 4 4
vy o= —1—6aky + 02? + kxy — 30y?

with cofactor K(z,y) = %(—Bak + 4kx — 160y).
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Bow: The quadratic system

(11) i=x(2-9y), y=2z*+y—6y%),

possesses the invariant Bow f(z,y) = 2* — 2%y + y® = 0 with cofactor

K(x,y) = 6(1 — 6y). Moreover, system (11) has the rational first integral
(822 4 272* — 542%y — 9y? + 54y3)

fz,y) '
CARDIOID: The curve f(z,y) = (2% +y* —ax)? —a®(z? +y?) = 0, see Figure
6, is invariant for the quadratic system
(12) & = —2akz+aly+kr’+40xy—3ky? |, § = —30x> —3aky+4kzy+0y?
and K(z,y) = 2(—3ak + 2kz + 20y) is the associated cofactor.

H(‘Tvy) =

CAMPILA: The algebraic curve f(z,y) = (2 +y?) — a?z* = 0 is realized by
the system
(13) E=uwxy, §=a>+2¢*,

with associate cofactor K(z,y) = 4y. The Campila curve has an isolated
point at the origin and the straight lines y = 0 and x = 0 are symmetry
axis, see Figure 7. A rational first integral for system (13) is given by

2
H(z,y) = m .
On the other hand, Campila curve can be parameterized by means of
1 1 1 sint
#(r) = acosT y(r) = acost
KULp’s ConcolID: The quadratic system
(14) i=—xy, y=a®+y?,

admits the polynomial Kiilp’s Concoid first integral
H(z,y) = —a?(a® — 2?) 4+ 2%y* .
CoNCHAL: The quadratic system
(15) i=(a+x)y, §=2ar—22*—y*,
possesses the polynomial Conchal first integral
H(z,y) = (a +2)?*[(x — a)® + y*] — a®*k* .

Conchal curve H(z,y) = 0 possesses, depending on the value of their pa-
rameters, a very different topology. In short, if k¥ = a the origin is a node
and see Figures 9 and 10 for k # a.

CURVE ANTIVERSIERA: The algebraic curve f(z,y) = —2ra®+2* +4r2y? =
0 is realized by the system

(16)

T = 72k1m§+4k2ry+k1x2 —8koxy , ¥y = 73k‘1ry+3k:2332+2k1zy7 16k2y2 ,
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with associated cofactor K(x,y) = —6kir + 4kix — 32kay.

STEINER’S CURVE: The quadratic system

& = 9kir? +6r(kiz — koy) — 3k12? — dkozy + k13y? |
U = 9kor? — 6r(kex + k1y) + kea? — dkizy — 3kay? |

has the invariant Steiner’s Curve f(z,y) = —27r% 4+ 18r%(2? + y?) + (2 +
y?)? + 8rz(3y? — 2?) = 0. Moreover, u(z,y) = f~%/%(x,y) is a Darboux
integrating factor for system (17).

(17)

SiMPLE ForiuM: The quadratic system
(18)
=3k (3+71)r— 3k1a? — dkoxy 4+ ki1y? , U = kox® + 9k1y — dk1xy — 3koy? |

possesses the invariant Simple Folium f(z,y) = —4ra® + (22 + y?)? with
cofactor K(z,y) = 12(3k1 — k1x — kay).

MONTFERRIER'S LEMNISCATE: The curve f(z,y) = 22(z? — a?) + b%y% = 0

is realized by system
(19) i =bry, y=—a’z®+20%y° ,
with associated cofactor K (z,y) = 4b%y. The straight lines y = 0 and 2 = 0

are symmetry axis and the origin is a node with tangents ax + by = 0, see
Figure 14. A rational first integral for system (19) is given by H(z,y) =

at/f(z,y).

PEAR CURVE: The quadratic system

(20) t=@-r)ly—r), y=0-2yy,

possesses the Pear invariant curve f(z,y) = r* — 23y + (z — r)%y% = 0
with cofactor K(x,y) = —2y. The Pear curve has the straight line x = r as
symmetry axis and asymptote, see Figure 15. On the other hand, system

(20) admits the rational first integral H(x,y) = (r — 2y)/[(z — r)?y?]. A
parametrization of the Pear f(z,y) = 0 is given by

r
z(t)=r(l+cost), y(r) T ot
VIRTUAL PARABOLA: System
i = (d—b)(bc+ ad)+ [bc? — da® + 3ac(d — b)|x + 2ac(c — a)x?
(21) +(be — ad)y? ,
y = y[bc® —da® + ac(c — a)z] ,

has the invariant virtual parabola f(x,y) = y — [az + b]'/? — [cx + d]'/? = 0
with associate cofactor K(z,y) = 2(c — a)(bc + ad + 2acx). In addition,
system (21) possesses the rational first integral

y*[(a + ¢)(bc + ad) + 2ac(a + c)x — acy?]

H{z,y) = f(z,y)
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3. THE CLASSIFICATION TABLES

I NAME \ CURVE f(x,y) =0 |
Ampersand Curve ) = (Y2 —2%)(xz — 1)(2z — 3) — 4(2? +y? — 22)?
Bicorn Ly) = (2% + 2ay — a®)? — y*(a® — 2?)

Bicusp y) = (22 —a®)(z — a)? + (y? — a?)?
Bifoliate ,y) = 2% + y* — 2axy?

Bullet Nose
Durero’s Concoid 1
Durero’s Concoid 11
Leaf of Clover
Oblique Concoid

= (zy +0° —y°)° — (@ +y —a)’(b* — )
= 2%y? — a%(a® — 2?%)

a’(y? —b%)? — 4b?2?(y2+b%),a>0,b> 0
= [xycost — (y* + ay — (%) sint]?

—(zsint +ycost + acost)?(£? — y?)

RIBIRIB|IRIRIRIRIR
QIR IR IR v v ¥ ||

—~| |||~ ||~
~— | — | — | — | — |~ |~ [~ |~—
I
—_
~
8
[V
\

—_
~
<
™|
\

—_

D D B L L e e e e L L I L L L L L Ly L L

Double Heart (z,y) = (v° + 22)% — 6azy? — ax® + a%a?

Jerabek’s Curve (r,y) = r?(2® + y* — ax)? — a®(2®> + y?) (v — a)?
Mascheroni’s Curve (z,y) = (22 + y?)2? — (bx + ay)?

Perseo’s Curve or Espiric | f(z,y) = (2% + y* + p? + d* — r?)? — 4d*(2? + p?)
Bullet Tip Curve (z,y) = a®y® — b®x? — 2%y?

Bernoulli’s Lemniscata (z,y) = (2% +y?)? — 2a°(2? — y?)

Booth’s Lemniscata (r,y) = (22 +y?)? + 2m? + n)2? + 2m? —n)y?
Ortoconcoide (r,y) = (y° + ay — £7)? — 22(0? — 4?)

Cassini’s Oval (z,y) = (22 +y?)? — 23 (22 — y?) —a* + 2
Poliode of a Straight Line | f(z,y) = 4m?* + 4km?y + [-4m? + (k — y)?](z% + v?)
Clock of Sand (z,y) = a®(y? — b3)? — 40?23 (y°> + b%). a > 0,b >0

TABLE 2. Fourth degree classical algebraic curves non real-
izable by non Hamiltonian quadratic systems.

| NAME \ CURVE f(z,7) =0 [
Radial Astroid f(z,y)
Butterfly Curve f(z,y)
Generalized Campila | f(z,y) = b2y — (22 — a®)(2? — a® + b?)?
Scarab flz,y) = (552 + 2 (x2 + 7+ cx)Q — 2= (xQ — y2)2
f(z,y) = 4a?
f(z,y)
fz,y)

Mill of Wind = 4z%y* (2% + y?) — a®(2? — y?)?
Nephroid = (2?2 +y?)(2? +y? — a?)? — 4a* (2% +? — ax)?
Poliode of a = 4mr(1 — 2% — y?) + 2ma(2? + y?H)]/a + (22 + y?)

Circumference x[—x + (22 +y?)/(2a)]?. @ >0, m >0, m < 2a
Cornoid z(t) =rcos7(l —2sin’7) , y(r) =rsin7(1+ 2cos’T)
Cayley’s Sextic r(0) = £cos /4 with £ > 0

Miinger’s Oval flx,y) = (& — r?)a™ — 2dxt™27 (22 + y2)" + (22 + %) 1727

TABLE 3. Higher degree non realizable classical algebraic curves.
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[ NAME \

CURVE f(z,y) =0 |

Witch of Agnesi flx,y) = (> +2%)y—a’. a>0

Cubic Duplicatriz flz,y) =23 —0(2x® +4?). £>0

Parabolic Folium flx,y) =23 —bry —a(2®> —y?). a>0,b>0
(DIF) Newton’s Serpentine | f(z,y) = y(z* +a?) —acz. a >0, ¢ >0
(DI) Pseudoversiera f(x,y) = (a®> + 2%)y — 2a3. a >0

TABLE 4. Third degree classical algebraic curves realizable
for non Hamiltonian quadratic systems.

[ NAME CURVE |
Oblique Bifolium f(z,y) = —22(ax + by) + (2% + 3?)?
Right Bifolium flz,y) = —az3 + (2% + y?)?
(RI) Bow f(z,y) =2 — 2%y +4°
Cardioid flz,y) = (2% + y* — ax)? — a® (2% + ?)
(RI) Campila f(z,y) = (2% +y?) — a®2*
(RI) Kiilp’s Concoid f(z,y) = —a*(a® — 22) + 2%y?
(RI) Conchal flx,y) = —a?k? + (a + 2)*[(z — a)® + 7]
Curve Antiversiera f(z,y) = —2ra3 + 2% + 4r?y?
(DI) Steiner’s Curve f(z,y) = =27rT + 1872 (2? + ¢?) + (22 + y?)?
+8rz(3y? — 2?)
Simple Folium f(x,y) = —dra® + (22 + y?)?
(RI) Montferrier’s Lemniscate | f(z,y) = 2?(2% — a?) + b%y?
(RI) Pear Curve flz,y) =1t =213y + (z — r)%y?

(RI) Virtual Parabola

flz,y) =y — [ax + b]'/* — [cx + d]'/?

TABLE 5. Fourth Degree Realizable Classical Algebraic Curves.

4. SOME PICTURES

FiGURE 1. Witch of Agnesi or Versiera.
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FiGURE 2. Cubic Duplicatriz.

FI1GURE 3. Parabolic Folium.

FIGURE 4. Newton’s Serpentine.
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