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We investigate the dynamics of large, globally-coupled systems of Kuramoto oscillators with
heterogeneous interaction delays. For the case of exponentially distributed time delays we derive
the full stability diagram that describes the bifurcations in the system. Of particular interest is
the onset of hysteresis where both the incoherent and partially synchronized states are stable for
a range of coupling strengths – this occurs at a codimension-two point at the intersection between
a Hopf bifucration and saddle-node bifurcation of cycles. By studying this codimension-two point
we find the full set of characteristic time delays and natural frequencies where bistability exists
and identify the critical time delay and critical natural frequency below which bistability does
not exist. Finally, we examine the dynamics of the more general system where time delays are
drawn from a Gamma distribution, finding that more homogeneous time delay distributions
tend to both promote the onset of synchronization and inhibit the presence of hysteresis.

Keywords : Coupled Oscillators, Synchronization, Time Delay, Hysteresis.

1. Introduction

The dynamics of large systems of coupled oscilla-
tors, in particular their synchronization properties,
represents an important area of study in nonlin-
ear dynamics due to their utility in modeling a
wide variety of natural and engineered phenom-
ena [Winfree, 2000; Pikovsky et al., 2001]. Exam-
ples of synchronization of large ensembles of os-
cillatory units include rhythmic flashing of fire-
flies [Buck, 1988], circadian rhythms [Strogatz,
1987], cardiac pacemakers [Glass & Mackey, 1988],
and power grids [Rohden et al., 2012]. The Ku-
ramoto model, which was designed as an ana-
lytically tractable alternative to Winfree’s semi-
nal model [Winfree, 1967], is a particularly im-
portant example where oscillators’ states are each
characterized by a single phase angle, each oscil-
lator has its own natural frequency, and oscilla-

tors are globally coupled through a sinusoidal cou-
pling function [Kuramoto, 1984]. Winfree’s origi-
nal model was designed to model a generic va-
riety of biological rhythms, but the Kuramoto
model has found even more applications, includ-
ing additional biological systems, e.g., brain dynam-
ics [Hoppensteadt & Izhikevich, 1999; Kirst et al.,
2016], as well as engineered systems, e.g., Joseph-
son junctions [Wiesenfeld et al., 1998] and power
grids [Dörfler et al, 2013; Skardal & Arenas, 2015].
Since its introduction, researchers in the nonlinear
dynamics community have thoroughly studied the
dynamics of further extensions of the Kuramoto
model, for example external noise [Sakaguchi, 1988;
Strogatz & Mirollo, 1991] and bimodal frequency
distributions [Kuramoto, 1984; Crawford, 1994], in
order to better understand the mechanisms under-
lying emergence of collective phenomena.
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One important extension of the Kuramoto
model involves time delays in the interactions be-
tween oscillators. The equations of motion for the
time delayed Kuramoto model are given by

θ̇n = ωn +
K

N

N
∑

m=1

sin[θm(t− τnm)− θn(t)], (1)

where θn represents the phase angle of oscillator
n with n = 1, . . . , N , ωn is the natural frequency
of oscillator n, which we assume is drawn from a
distribution g(ω), K ≥ 0 is the global coupling
strength, and τnm ≥ 0 represents the interaction de-
lay between oscillators n and m, which we assume
are independent and identically drawn (iid) from a
distribution h(τ). The degree of synchronization is
measured by the magnitude of the complex order
parameter defined as

z = reiψ =
1

N

N
∑

m=1

eiθm , (2)

where the amplitudes r ≈ 0 and r ≈ 1 correspond
to incoherent and partially synchronized states, re-
spectively. Early investigations into the dynamics of
Eq. (1) focused on the case of a uniform time delay,
i.e., τnm = τ for all n,m, and observed the emer-
gence of hysteresis, i.e., regions of multistability be-
tween incoherence and partial synchronization in
parameter space, a dynamical property that is ab-
sent in the classical Kuramoto model without inter-
action delays [Kim et al., 1997; Yeung & Strogatz,
1999; Choi et al., 2000; Montbrio et al., 2006]. Fur-
ther analytical progress characterizing the macro-
scopic dynamics such as bifurcation structure and
stability diagram remained elusive, leaving several
questions unanswered. In particular, what bifurca-
tions mark the transitions between incoherence and
partial synchronization? How do these bifurcations
depend on the characteristic time delay and charac-
teristic natural frequency? Given a positive charac-
teristic time delay, is it always possible to observe
hysteresis, or is there a critical characteristic time
delay below which hysteresis not exist?

Recently, Ott and Antonsen [Ott & Antonsen,
2008, 2009] discovered a remarkable technique for
reducing the dimensionality of large oscillator sys-
tems, thereby facilitating breakthroughs in the an-
alytical descriptions in a wide variety of Kuramoto
model extensions. Examples where this technique
has yielded analytical progress includes systems
with external forcing [Childs & Strogatz, 2008],
bimodal frequency distributions [Martens et al.,

2009; Pazó & Montrbió, 2009], community struc-
ture [Abrams et al., 2008; Barreto et al., 2008;
Skardal & Restrepo, 2012], assortative and dis-
assortative network structures [Restrepo & Ott,
2014; Skardal et al., 2015], pulse-coupled oscilla-
tions [Pazó & Montrbió, 2014; Luke et al., 2014;
Laing, 2014], positive and negative coupling
strengths [Hong & Strogatz, 2011], and high-order
coupling [Skardal et al., 2011]. In Ref. [Lee et al.,
2009] Lee et al. demonstrated that this technique
could be applied to the time delay case by allow-
ing for delays to be heterogeneously distributed
according to certain classes of a delay distribu-
tion h(τ). These results put on firmer ground
the emergence of hysteresis and were subsequently
used to explore the dynamics of further exten-
sions of the model, including the spatially extended
case [Laing, 2011; Lee et al., 2011] and adaptive
coupling [Skardal et al., 2014]. However, a unified
analysis of the original system with heterogeneous
time delays remains lacking, specifically an analyt-
ical description of its stability diagram and bifur-
cation structure for general parameters, in partic-
ular different characteristic time delays. Moreover,
while it is well known that interaction delays pro-
mote hysteresis, it remains unknown at precisely
what point, e.g., at what value of the characteristic
time delay and other system parameters, hysteresis
first occurs. In this work we address these issues.
First, we employ the ansatz of Ott and Antonsen
to obtain the low dimensional system describing the
macroscopic system dynamics. This reduced system
allows for an analytically tractable stability analy-
sis, which we use to study the bifurcations that oc-
cur in the system when time delays are drawn from
an exponential distribution and derive the stability
diagram. (We note that self-consistency approaches
do not allow for such a stability analysis.) Next, we
study in detail the properties of a codimension-two
point that corresponds to the onset of hysteresis.
The behavior of this codimension-two point reveals
the critical time delay and critical natural frequency
below which no hysteresis exists. Finally, we inves-
tigate the dynamics of the system when time delays
are drawn from a more general family of distribu-
tions and compare these results to the exponential
case.

The remainder of this article is organized as fol-
lows. In Sec. 2 we briefly discuss some mathemat-
ical preliminaries. In Sec. 3 we present our main
results. First, we presenting a bifurcation analysis
of the system and deriving the stability diagram
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for various parameter values. Next we investigate
the behavior of a codimension-two point that illu-
minates the onset of hysteresis in the system, al-
lowing us to determine the critical time delay and
critical natural frequency. In Sec. 4 we investigate
the dynamics for more general cases of delay distri-
butions. In Sec. 5 we close with a discussion of our
results.

2. Preliminaries

Here we briefly introduce a few important pre-
liminaries. The analysis of the classical Kuramoto
model is facilitated by the fact that the equations of
motion can be simplified using the order parameter.
To this end, we use the collection of time delayed
order parameters [Lee et al., 2009] defined as

wn = ρne
iφn =

1

N

N
∑

m=1

eiθm(t−τnm), (3)

which represents a similar mean-field order param-
eter as the order parameter in Eq. (2), but delayed
according to the time delays τnm “felt” by oscillator
n. We will therefore refer to z as the instantaneous
order parameter and w as the time delayed order
parameter. Using this collection of time delayed or-
der parameters, Eq. (1) can be rewritten as

θ̇n = ωn +
K

2i

(

wne
−iθn − w∗

ne
iθn

)

= ωn +Kρn sin(φn − θn), (4)

where ∗ represents the complex conjugate. Thus,
from Eq. (4) we see that the the role of the time-
delays and time-delayed order parameters are cru-
cial: each oscillator evolves according to its respec-
tive time delayed order parameter instead of the
instantaneous order parameter given in Eq. (2), as
in the classical Kuramoto model.

Next we describe our choices of distributions for
the time delays and natural frequencies. As noted
above, we consider the case of heterogeneous time
delays. Specifically, for the analysis presented in
Sec. 2 and 3 we assume that the distribution h is
exponential, i.e.,

h(τ) =

{

e−τ/T /T if τ ≥ 0,
0 if τ < 0,

(5)

where the parameter T ≥ 0 represents the char-
acteristic time scale and mean for the interaction
delays. In Ref. [Lee et al., 2009] the authors consid-
ered the family of general Gamma distributions, of

which the exponential is a special case. (We will in-
vestigate in more detail the case of general Gamma
distributions in Sec. 4.) We will also restrict our
attention to the case of a Lorentzian frequency dis-
tribution of the form

g(ω) =
∆

π [∆2 + (ω − ω0)2]
, (6)

where ∆ > 0 represents the characteristic width of
the distribution and ω0 represents the characteris-
tic and mean natural frequency of the system. We
note that in the classical Kuramoto model and sev-
eral other extensions the analysis is facilitated by
entering a rotating reference frame that effectively
sets the characteristic natural frequency ω0 to zero.
However, this cannot be done in this case due to the
presence of the interaction delays in Eq. (1) [and im-
plicitly in Eq. (4)]. Therefore, as we will see below,
both the characteristic time delay T and the charac-
teristic natural frequency ω0 will be key parameters
in determining the system dynamics.

Finally, with these choices of delay and fre-
quency distributions, the macroscopic system dy-
namics can be expressed using the dimension-
ality reduction discovered by Ott and Anton-
sen [Ott & Antonsen, 2008]. This reduction requires
us to consider the continuum limit N → ∞. Note
first that in this limit, since time delays τnm are in-
dependent and identically drawn random variables,
we have that wn = w; that is, all N time delayed
order parameters collapse to the same value. Ap-
plying the dimensionality reduction then results in
a closed-form system for z and w:

ż = −∆z + iω0z +
K

2

(

w − w∗z2
)

, (7)

T ẇ = z − w. (8)

The derivation of Eqs. (7) and (8) follows that
presented in Refs. [Lee et al., 2009; Laing, 2011;
Lee et al., 2011; Skardal et al., 2014] and the de-
tails are presented in Appendix 1. Equation (7) can
be interpreted as the instantaneous order parameter
evolving nonlinearly in reaction to the time delayed
order parameter. Equation (8) can be interpreted as
incorporating the time delay, with the time delayed
order parameter “chasing” the instantaneous order
parameter at a time scale equal to the characteris-
tic time delay T . Note that in the limit T → 0+ we
obtain w = z, which recovers the low dimensional
description of the classical Kuramoto model when
inserted back into Eq. (7)
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3. Bifurcation Analysis

3.1. Scaling

We begin our analysis of the reduced dynamics in
Eqs. (7) and (8) with a rescaling to reduce the num-
ber of system parameters. In particular, we elimi-
nate the parameter ∆ by first defining

t̃ = ∆t, (9)

K̃ = K/∆, (10)

ω̃0 = ω0/∆, (11)

T̃ = ∆T, (12)

and then dividing Eqs. (7) and (8) by ∆, obtaining

ż = −z + iω0z +
K

2

(

w − w∗z2
)

, (13)

T ẇ = z − w, (14)

where the overdot now corresponds to differenti-
ation with respect to rescaled time and we have
dropped the ∼-notation for simplicity. This rescal-
ing eliminates the parameter ∆ by effectively fix-
ing the width of the frequency distribution g(ω) to
one with the remaining parameters appropriately
rescaled. This rescaling essentially speeds up time,
reduces the coupling strength and mean of the fre-
quency distribution, and stretches the time delay
distribution, all by a factor of ∆.

3.2. Steady-state dynamics and the

T = 1 case

We now study the dynamics of the rescaled
Eqs. (13) and (14). Since both z and w are com-
plex, an analytically tractable bifurcation requires
us to convert to polar coordinates, i.e.,

ṙ = −∆r +
K

2
ρ(1− r2) cos(φ− ψ), (15)

ψ̇ = ω0 +
K

2
ρ
1 + r2

r
sin(φ− ψ), (16)

T ρ̇ = r cos(φ− ψ)− ρ, (17)

T φ̇ = − r
ρ
sin(φ− ψ). (18)

We note that Eqs. (15)–(18) display a rotational in-
variance of the form ψ 7→ ψ + δ and φ 7→ φ + δ,
suggesting the existence of rotationally symmet-
ric limit cycle solutions. These solutions can be
found by searching for steady-state behavior with
fixed amplitudes and angular velocities, i.e., setting
ṙ = ρ̇ = 0 and ψ̇ = φ̇ = Ω, where Ω represents the

angular velocity. Inserting this into Eqs (17) and
(18) and using that cos2 x+ sin2 x = 1 yields

ρ =
r√

1 + T 2Ω2
. (19)

This can in turn be inserted into Eqs. (15) and (16)
to yield a system of nonlinear equations that im-
plicitly determines the steady-state values of r and
Ω for a limit cycle:

r =
K

2

r(1− r2)

1 + T 2Ω2
, (20)

Ω = ω0 −
K

2
(1 + r2)

TΩ

1 + T 2Ω2
. (21)

Inspecting Eqs. (20) and (21), the incoherent state
r = 0 is always a trivial solution (in which case the
angular velocity Ω has no physical meaning). Be-
low we will present a stability analysis of the inco-
herent solution. We then search for nontrivial limit
cycle solutions r > 0 that correspond to partial
synchronization. Moving forward we will consider
cases where the mean natural frequency is positive,
ω0 > 0, in which case it is also reasonable to search
for solutions with a positive angular velocity, Ω > 0.
(The analysis for ω0 < 0 runs similarly, in which
case Ω < 0.)

To shed light on the nature of nontrivial so-
lutions, in particular the emergence of hysteresis,
it is useful to briefly consider the case T = 1, in
which case analytical expressions for r and Ω can be
written down explicitly, as was done previously in
Refs. [Laing, 2011; Lee et al., 2011; Skardal et al.,
2014]. Setting T = 1 and ignoring the incoherent
state, we solve for r in Eq. (20), which we insert
into Eq. (21) and rearrange to find

Ω =
K ∓

√

K2 − 4ω2
0

2ω0
. (22)

Inserting this back into Eq. (20) and neglecting the
incoherent state r = 0 yields

r =

√

ω2
0 −K ±

√

K2 − 4ω2
0

ω0
, (23)

where we have also neglected the two negative solu-
tions of r. We emphasize that the steady-state val-
ues of r given in Eq. (23) do not correspond to fixed
points, but rather limit cycles with fixed amplitude
r and angular velocity Ω. Inspecting Eq. (23) more
closely, the inner-most square root implies that a
nontrivial solution for r exists only if K ≥ 2ω0. Be-
yond this coupling strength, the solution in Eq. (23)
corresponding to the positive sign always exists,
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Fig. 1. Transitions to partial synchronization for T = 1: supercritical and subcritical cases. Steady-state solutions of r vs K
with T = 1 for (a) ω0 = 1 and (b) 5, as examples of, respectively, a typical transition to partial synchronization through a
supercritical Hopf bifurcation and via a hysteresis loop with a saddle node bifurcation of cycles and subcritical Hopf bifurca-
tion. Stable and unstable branches are illustrated in solid blue and dashed red, respectively. Insets: steady-state solutions for
the angular velocity Ω corresponding to partially synchronized solutions.

while the outer-most square root implies that the
solution corresponding to the negative sign exists
only if K ≤ (ω2

0 + 4)/2.
In Figs. 1(a) and (b) we plot the solutions in

Eq. (23) for ω0 = 1 and 5, respectively. Branches
that are stable and unstable are plotted in solid
blue and dashed red, respectively. For sufficiently
small ω0, e.g., ω0 = 1, we see that the transi-
tion from incoherence to partial synchronization is
typical in the sense that it is qualitatively similar
to the transition in the classical Kuramoto model:
a second-order phase transition from incoherence
to partial synchronization owing to a supercritical
Hopf bifurcation that occurs at a critical value we
denote K = KH . (We emphasize that this is in fact
a Hopf bifurcation because the synchronized state
is a limit cycle, not a fixed point.) However, for
larger ω0, e.g., ω0 = 5, this transition folds over it-
self into a hysteresis loop as a saddle node bifurca-
tion of cycles emerges at K = KSN < KH and the
Hopf bifurcation becomes subcritical. In this con-
text, the term hysteresis refers to the multistabil-
ity present for KSN ≤ K ≤ KH , where the initial
conditions determine whether the system relaxes to
the incoherent or synchronized state. Thus, a loop
emerges, traversing the incoherent state and syn-
chronized state, by repeatedly increasing the cou-
pling strength beyond KH and decreasing it below
KSN . For the case of T = 1 these critical bifurca-
tion values can be characterized by the values for
which the solutions in Eq. (23) appear and anni-
hilate. Specifically, the Hopf bifurcation occurs at
KH = (ω2

0+4)/2 and the saddle-node bifurcation of
cycles occurs at KSN = 2ω0. Moreover, the saddle-
node bifurcation of cycles emerges only if ω0 is large

enough, i.e., larger than the intersection between
KH and KSN which occurs at ω0 = 2. For the time
being we forgo discussing the stability properties of
these solutions, but will revisit this question below
with a closer analysis of the Hopf bifurcation.

3.3. Hopf and saddle node

bifurcations

We now seek to characterize the Hopf bifurcation
and saddle node bifurcation of cycles illustrated
for the T = 1 case, but for general values of T .
Specifically, we search for the critical coupling val-
ues KH and KSN at which these bifurcations occur.
We begin with the Hopf bifurcation, which occurs
when the partially synchronized solution r > 0 col-
lides with the incoherent solution r = 0. To find
this point we eliminate the incoherent solution from
Eq. (20), evaluate the limit r → 0+, insert this into
Eq. (21), take the limit r → 0+ again, and solve for
Ω to obtain

Ω =
ω0

1 + T
. (24)

Inserting Eq. (24) back into Eq. (20) (still in the
r → 0+ limit) and rearranging, we have that the
Hopf bifurcation occurs at

KH = 2 +
2T 2ω2

0

(1 + T )2
. (25)

From Eq. (25) we see that the onset of synchro-
nization, which occurs at K = KH , is earliest when
T = 0 and is delayed, i.e., occurs at larger coupling
strengths, as the characteristic time delay T and
characteristic natural frequency |ω0| are increased.

Moving now to the saddle node bifurcation of
cycles, we note that KSN coincides with a folding of
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Fig. 2. Stability diagrams. Stability diagrams in (ω0/∆, K/∆) parameter space for (a) ∆T = 1/3, (b) ∆T = 2/3, (c) ∆T = 1,
and (c) ∆T = 2. Blue curves denote Hopf bifurcations, labeled Hsup and Hsub for the supercritical and subcritical cases, re-
spectively, and red curves denote saddle node bifurcations of cycles, labeled SN . These bifurcation curves partition the space
into incoherent, partially synchronized, and bistable regions. The saddle node bifurcation collides with the Hopf bifurcations
at a codimension two point labeled ωc

0.

both r(K) and Ω(K) where 0 = dK/dr = dK/dΩ.
Choosing to work with dK/dΩ, we eliminate the in-
coherent solution and solve for r in Eq. (20), which
we insert into Eq. (21) and rearrange to obtain

K =
(ω0 − Ω+ TΩ)(1 + T 2Ω2)

TΩ
. (26)

We then impose the constraint dK/dΩ = 0, which
yields the expression (after multiplying by TΩ2 for
convenience)

2T 2(T − 1)Ω3 + ω0T
2Ω2 − ω0 = 0. (27)

The bifurcation pointKSN is then obtained by solv-
ing Eq. (27) for Ω and inserting this back into
Eq. (26), however a few remarks are in order re-
garding this procedure. First, the left hand side
of Eq. (26) is cubic and thus it may have one or
more roots that are difficult to express analytically;
in practice we find it best to solve numerically.

[Here we use Newton’s method to find the roots
of Eq. (27).] Second, the nature of these solutions
depends on the characteristic time delay T . Recall
that ω0 > 0 and we search for a positive solution,
Ω > 0. Note then that at Ω = 0 the left hand side of
Eq. (27) is negative, so that if T ≥ 1 only one such
positive solution exists since the the derivative of
the left hand side is positive for all Ω > 0. However,
the T < 1 case may admit an additional solution,
or yield no solutions, depending on the values of
T and ω0. In particular, a positive local maximum
will occur at Ω = ω0/3(1 − T ), and after inserting
this back into Eq. (27) we can see that a positive
solution to Eq. (27) will exist when 0 < T < 1 only
if Tω0 ≥ 3

√
3(1− T ). Of these two roots we choose

the smaller, which corresponds to the single positive
root that exists for T ≥ 1. Finally, this solution is
only valid if the corresponding solution for r is real
(and non-negative). To check this, we eliminate the
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incoherent solutions from Eq. (20) and solve for r,
yielding

r =

√

1− 2(1 + T 2Ω2)

K
. (28)

Thus, the saddle node bifurcation of cycles exists
only if the solution to Eqs. (26) and (27) satisfies

K

2
≥ 1 + T 2Ω2. (29)

In Fig. 2 we illustrate the stability diagram in
the parameter space (ω0/∆,K/∆) for the system
for a collection of representative characteristic time
delays T = 1/3, 2/3, 1, and 2 in panels (a), (b), (c),
and (d), respectively. (This and subsequent plots
use the non-scaled parameters of the original sys-
tem.) Hopf bifurcation curves are plotted blue and
labeled Hsup and Hsub for the supercritical and sub-
critical cases, respectively, and the saddle node bi-
furcation of cycles curve is plotted in red and la-
beled SN . These bifurcation curves indicate the
transitions between regions of parameter space cor-
responding to incoherence, partial synchronization,
and bistability, where the bistable region is given
by the wedge in between the subcritical Hopf and
saddle node curves. Note first that for the case of
T = 1/3 no saddle node bifurcation of cycles ex-
ists in the visible window. In fact, no such bifur-
cation occurs for any value of ω0 when T ≤ 1/3
(which we shall see in the following section), so the
transition to partial synchronization is supercriti-
cal as in Fig. 1 (a) for all ω0. For T > 1/3 the
saddle-node bifurcation of cycles persists for suf-
ficiently large ω0, giving rise to a bistable region
via a hysteretic transition to partial synchroniza-
tion as in Fig. 1 (b). This bistability begins at the
intersection of these curves, i.e., at a codimension-
two point denoted with a filled black circle and la-
beled ωc0. (We will discuss and study the behavior of
this codimension-two point in detail in the follow-
ing section.) We also observe that as T increases
the codimension-two point moves in with a smaller
value of ω0, resulting in a larger bistable region.
Physically, we can interpreted this behavior as an
increase in either or both of the characteristic time
delay T and characteristic natural frequency ω0 pro-
moting bistability in the system as it delays the on-
set of synchronization in the system by requiring a
larger coupling strength K.

3.4. Codimension two point and the

emergence of hysteresis

The results presented above highlight the impor-
tance of studying the properties of the codimension-
two point corresponding to the onset of hystere-
sis. From the stabilty diagrams in Fig. 2, the
codimension-two point can be interpreted as the col-
lision between the Hopf bifurcation and the saddle-
node bifurcation of cycles. However, a more physi-
cal interpretation of this point can be better under-
stood from Fig. 1. In particular, for large enough
ω0, the synchronization profile includes a hystere-
sis loop where both the incoherent and synchro-
nized states are stable for KSN ≤ K ≤ KH . As
ω0 is decreased, this range shrinks (which can be
seen in Fig. 2) until this interval vanishes, which oc-
curs when the hysteresis loop in the synchronization
profile “unfolds”. The codimension-two point corre-
sponds precisely to this “unfolding”. We now seek to
determine (i) for which values of T the codimension-
two point at ωc0 exists, and (ii) if it does exist, then
what value does it take? Recall that ωc0 occurs at the
intersection of the Hopf bifurcation and the saddle
node bifurcation of cycles. Thus, ωc0 is precisely the
point at which multistability emerges: a hysteresis
loop exists for all ω0 > ωc0, but not for ω0 < ωc0.
Moreover, the existence of ωc0 indicates the poten-
tial for hysteresis for a given time delay T . However,
if ωc0 does not exist for a given value of T , then mul-
tistability cannot be observed for any combination
of the other system parameters.

To quantify the codimension two point ωc0 we
then search for the point where the saddle node
bifurcation of cycles KSN , which is a solution of
Eqs. (26) and (27), intersects with the Hopf bifur-
cation KH given in Eq. (25). Despite the fact that
KSN is given implicitly above, the point ωc0 on this
curve can be explicitly solved for. We begin by not-
ing that the collision of the saddle node bifurcation
with the Hopf bifurcation must occur in the limit
r → 0+. We thus eliminate the incoherent solution
from Eq. (20), solve for K, and insert this into the
left hand side of Eq. (26), yielding

2 =
ω0 + TΩ− Ω

TΩ
. (30)

Equation (30) is solved by Ω = ω0
T+1 , which can then

be inserted into Eq. (27) and rearranged to find that
the codimension-two point given by

ωc0 =
(T + 1)3/2

T
√
3T − 1

, (31)
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Fig. 3. Codimension two point and the emergence of hysteresis. Behavior of the codimension two point ωc
0/∆ denoting the

onset of hysteresis as the characteristic time delay ∆T varies. For ω0 < ωc
0 and ω0 > ωc

0 the transition to partial synchroniza-
tion exhibits monostability and hysteresis, respectively, as illustrated by the insets. Below the critical time delay of ∆Tc = 1/3
no hysteresis is attainable for any values of ω0.

when it does exist.
The value of ωc0 given in Eq. (31) corresponds to

the onset of hysteresis: when ωc0 exists, then the sys-
tem displays no bistability when ω0 ≤ ωc0, but when
ω0 > ωc0 the transition from incoherence to partial
stability goes develops a hysteresis loop. This is il-
lustrated in Fig. 3, where we plot ωc0/∆ as a func-
tion of ∆T again using the non-scaled parameters
of the original system. Below and above this curve
we illustrate the transition to synchronization as
supercritical and subcritical. Moreover, inspecting
Eq. (31) more closely, we see that the for T ≤ 1/3 no
real, finite codimension-two point exists due to the
square root in the denominator. Therefore, bistabil-
ity is not possible if the characteristic time delay is
smaller than this critical value of Tc = 1/3. This
critical characteristic time delay is indicated with
the dashed black curve In fact, in the limit T → T+

c

the codimension-two point ωc0 approaches infinity,
indicating that for characteristic time delays larger
than, but close to Tc, extremely large characteristic
natural frequencies are required to observe hystere-
sis. Moreover, in the limit of large T we have that
ωc0 → 1/

√
3, indicating that the mean natural fre-

quency ω0 must be larger than this value to observe
multistability, even for an arbitrarily large charac-
teristic time delay T . Thus, we may conclude that
if either T < Tc = 1/3 or ω0 < 1/

√
3, then hystere-

sis can be ruled out – only collectively large enough
combinations of T and ω0 result in bistability.

3.5. Hopf bifurcation revisited:

stability of the incoherent state

In the last portion of our analysis, we revisit the
Hopf bifurcation discussed above by studying the
stability of the incoherent state z = w = 0. Since
the polar decompositions z = reiψ and w = ρeiφ

are singular at the incoherent state where r, ρ = 0
(the phase angles ψ and φ lose physical meaning
at this point) it is more convenient to study the
quantities x, y, u, and v where z = x + iy and
w = u+iv. In this four dimensional state space, the
linear stability of the incoherent state is governed
by the eigenvalues of the Jacobian DF evaluated at
x = y = u = v = 0, which is given by

DF =









−1 −ω0
K
2 0

ω0 −1 0 K
2

1
T 0 − 1

T 0
0 1

T 0 − 1
T









. (32)

The incoherent state is stable if all eigenvalues have
negative real part, so we search for the critical value
of K where the eigenvalues of DF with largest real
part are purely imaginary. Moreover, our analysis
above suggests that the change in stability occurs in
the form of a Hopf bifurcation, where a pair of com-
plex conjugate eigenvalues simultaneously crosses
the imaginary axis. In general, the eigenvalues of
DF in Eq. (32) are difficult to write down explic-
itly, so we study them in cases below.
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We first consider, as we did above, the simpli-
fying case of T = 1, in which case the eigenvalues
can in fact be written down explicitly:

λ = −1±
√

K − ω2
0 ±

√

ω4
0 − 2Kω2

0

/√
2, (33)

where the four different combinations of ± corre-
spond to the four different eigenvalues of DF . For
real, non-negative values of K and ω0, the real part
of all four eigenvalues in Eq. (33) is λreal = −1 pro-
vided that K ≤ ω2

0/2. Beyond this value, the eigen-
values with largest real part are given by choos-
ing the plus sign outside of both square roots in
Eq. (33). We then identify a Hopf bifurcation by
searching for eigenvalues of the form λ = ±iλimag,
yielding the constraint

±iλimag = −1 +

√

K − ω2
0 ±

√

ω4
0 − 2Kω2

0

/√
2.

(34)

Moreover, at the Hopf Bifurcation we must have
that λimag = Ω, so that it is straight forward to
check that the values Ω and K given in Eqs. (24)
and (25), specifically

λimag = ΩH = ω0/(1 + T )

= ω0/2, (35)

KH = 2 + 2T 2ω2
0/(1 + T )2

= (4 + ω2
0)/2, (36)

satisfy Eq. (34).
For more general values of T the analysis be-

comes more cumbersome. For starters, eigenvalues
are more difficult to write down explicitly, so it is
more convenient to work with the charcteristic poly-
nomial of DF , which is given by

[k − 2(1 + λ)(1 + λT )]2 + 4ω2
0(1 + λT )2

4T 2
= 0.

(37)

To check that a Hopf bifurcation occurs at the
value K = KH as given in Eq. (25), we search
a pair of purely imaginary, conjugate eigenvalues
λ = ±iλimag that solve Eq. (37). Again, using
that at the bifurcation λimag = Ω, it can easily be
checked that choosing λ = ±iΩ from Eq. (24) and
K = KH from Eq. (25) solves Eq. (37). We have
also checked numerically that the other two eigen-
values have negative real part, confirming the exis-
tence of a Hopf bifurcation at the value K = KH

from Eq. (34).

4. General delay distributions

We now consider the possibility of time delays
drawn from a more general class of delay distri-
butions h(τ). Following Ref. [Lee et al., 2009] we
consider the family of Gamma distributions given
by

h(τ) =

{

(n+1)(n+1)τn

Γ(n+1)Tn+1 e
−(n+1)τ/T if τ ≥ 0

0 if τ < 0,
(38)

which has mean T and the parameter n ≥ 0 controls
the standard deviation, which is given by T/

√
n+ 1.

(Note that for n = 0 we recover the exponential
distribution given in Eq. (5) for which the analy-
sis above is valid.) Thus, larger and smaller values
of n can be interpreted as having, respectively, a
more homogeneous or heterogeneous distribution of
time delays. The choice of Gamma distribution for
h(τ) is particularly convenient because it allows us
to describe the dynamics of the time delayed order
parameter w using a differential equation similar to
Eq. (8). Restricting n to be a non-negative integer,
the result is an (n+1)th-order ordinary differential
equation of the form

[(

T

n+ 1

)

d

dt
+ 1

]n+1

w(t) = z(t). (39)

For instance, the choice n = 1 yields (T 2/4)ẅ +
T ẇ + w = z, the choice n = 2 yields (T 3/27)

...
w +

(T 2/3)ẅ+T ẇ+w = z, and so forth. The derivation
of Eq. (39) hinges on the fact that h(τ) in Eq. (38)
is a convenient form for the Laplace transform,
and further details are described in Appendix B.
Moreover, the rescaling of parameters detailed in
Eqs. (9)-(12) remains valid for Eq. (7) together with
Eq. (39).

Equation (39) completes the low-dimensional
description of the system dynamics with time delays
drawn from a general Gamma distribution when
paired with Eq. (7). However, a direct analytical
description of the dynamics for general n remains
problematic for two reasons. First, Eq. (39) is an
(n + 1)th-order differential equation. Converting to
a system of first-order differential equations and in-
cluding Eq. (7) results in a system of n+2 complex
variables, or 2n+4 real-valued variables. Moreover,
As illustrated in Ref. [Lee et al., 2009], the dynam-
ics for larger values of n admit more complicated
behaviors – in addition to the possibility of the co-
existence of stable incoherent and partially synchro-
nized states, there exists multiple and distinct par-
tially synchronized states.
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To gain some insight into the structure of bifur-
cations for n > 0 we begin by converting Eq. (39)
to a system of first-order differential equations. For
a given value of n, we introduce the new complex
variables w1, . . . , wn+1 that are defied by w1 = w
and wi = ẇi−1 for i = 2, . . . , (n + 1). Next, using
Eq. (39) and the binomial theorem we obtain the
system of equations

ẇ1 = w2, (40a)

ẇ2 = w3, (40b)

...

ẇn = wn+1, (40c)

T n+1ẇn+1

(n + 1)n+1
= z −

n
∑

j=0

T j

(n+ 1)j

(

n+ 1

j

)

dj

dtj
wj ,

(40d)

Combined with Eq. (7), Eqs. (40) then allows us
to simulate the macroscopic system dynamics for
any n ≥ 0 with the n + 2 complex variables
z, w1, w2, . . . , wn+1.

We now proceed numerically, first investigat-
ing the effect that varying n has of the location
of the Hopf bifurcation and saddle-node bifurca-
tion of cycles. (Numerical simulation of Eqs. (40)
are obtained using Heun’s method with a step size
of ∆t = 0.02.) To identify the Hopf bifurcation
we examine the stability of the incoherent state as
follows. Starting at K = 0, we perturb the inco-
herent state, z = δz, wi = δwi (here we choose
|δz|, |δwi | = 10−3), and after a transient identify if
the perturbation has grown or decayed. If the per-
turbation has decayed, we increase K slightly and
repeat until we verify that the incoherent state is
unstable, allowing us to approximate KH . To iden-
tify the saddle-node bifurcation of cycles, we start at
someK > KH and starting with an initial condition
|z| = 1 and |wi| = 1, simulate through a transient
to reach steady-state (thereby reaching the partially
synchronized state with largest z). We then slowly
decrease K until the steady-state dynamics reach
the incoherent state, identified by |z| less than a
small threshold value (here we used a threshold of
10−2). Then, if the value of K we end up with is less
than KH as computed previously, we identify KSN

as this value, otherwise we deduce that no hysteresis
exists, and therefore no KSN exists. For both KH

and KSN we hone-in on a more precise value using
a bisection algorithm.

In Fig. 4 we plot a collection of 12 stability di-

agrams obtained by varying T and n. The top row
contains panels (a)–(d), corresponding to T = 1/3
with n = 0, 2, 4, and 8, respectively, the middle
row contains panels (e)–(h), corresponding to T = 1
with n = 0, 2, 4, and 8, respectively, and the bottom
row contains panels (i)–(l), corresponding to T = 2
with n = 0, 2, 4, and 8, respectively. Overall, the
primary effect that increasing n has on the dynam-
ics is promoting synchronization. Specifically, as n
increases and the delay distribution h(τ) becomes
more homogeneous, the Hopf bifurcation and sad-
dle node bifurcation of cycles occur earlier, i.e., at
small coupling strengths. For T = 1/3 we found no
trace of hysteresis, even for larger values of ω0 than
those displayed in Fig. 4. For T = 1 and 2 hystere-
sis persists although the codimension-two point ωc0
increases, suggesting that larger n delays the on-
set of hysteresis. However, this effect appears to be
less pronounced than the change in the bifurcation
curves themselves. We finally note that, because all
results in Fig. 4 are obtained numerically, the left-
most column, i.e., the n = 0 case, serves as a numer-
ical confirmation of the analytical results presented
in Fig. 2.

Next we investigate the codimension-two point
characterizing the onset of hysteresis numerically
using the following algorithm. For a given charac-
teristic time delay T , we aim to identify the critical
characteristic natural frequency ωc0 for which the
Hopf bifurcation first becomes subcritical. We be-
gin with the incoherent state z = 0 at ω0 = 0 and
K = 0. As we did above to identify the Hopf bi-
furcation, we increase K until the incoherent state
loses stability at KH . Next we examine the dynam-
ics of a state starting at |z| = 1, |wi| = 1 at a slightly
smaller coupling strength, KH −∆K (in our simu-
lation we have used ∆K = 10−2). If the dynamics
converge to the incoherent state (evaluated using
the threshold of r smaller than 10−2) then we de-
termine that the bifurcation is supercritical and no
hysteresis exists. In this case we increase ω0, reset
K = 0 and repeat the process above. If, on the other
hand, the dynamics converge to a partially synchro-
nized state, then we determine that the bifurcation
is subercritical, indicating hysteresis, and let ωc0 at
the current value of T be the current value of ω0.
We repeat this process over a range of T values to
find a numerical description for the relationship be-
tween ωc0 and T for various values of the distribution
parameter n.

In Fig. 5 we plot the results obtained numeri-
cally using our algorithm above describing the re-
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Fig. 4. Stability diagrams for general time delay distributions. Stability diagrams in (ω0/∆, K/∆) parameter space for
∆T = 1/3 (top row), ∆T = 1 (middle row), and ∆T = 2 (bottom row). For each value of ∆T we show the results for
n = 0, 2, 4, and 8, organized from left to right. Blue curves denote Hopf bifurcations and red curves denote saddle node
bifurcations of cycles, with the codimension two point ωc

0 denoted with a black circle.

lationship between ωc0/∆ and ∆T for n = 0, 2,
4, and 8 (blue circles, red crosses, green trian-
gles, and black squares, respectively). Overall, we
see that that for most characteristic time delays
(roughly T > 1) the critical natural frequency ω0

tends to increase as the distribution parameter n
increases. Recall that as n increases, the distribu-
tion h(τ) becomes thinner while the mean remains
at T . These results suggest then that, all else be-
ing equal, for sufficiently large T the heterogeneity
(that is, smaller n) in the delay distribution pro-
motes hysteresis, while homogeneity (that is, larger
n) in the delay distribution inhibits hysteresis. On
the other hand, for smaller values of T more homo-
geneous delay distributions appear to promote hys-
teresis over the more heterogeneous case of n = 0.
Moreover, this suggests that the critical character-

istic time delay Tc may be different for n 6= 0, how-
ever using these numerical techniques it is difficult
to gain insight into the behavior of ωc0 for small or
large T . Finally, because these results are computed
numerically, the n = 0 case serves as a numerical
confirmation of the analytical results presented in
Fig. 3.

5. Discussion

In this paper we have studied the macroscopic sys-
tem dynamics of the Kuramoto model of coupled
oscillators with heterogeneous interaction delays.
The effects of time delays on the Kuramoto model
have been previously investigated [Kim et al.,
1997; Yeung & Strogatz, 1999; Choi et al., 2000;
Montbrio et al., 2006], most notably giving rise to
the possibility of multistability between incoher-
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Fig. 5. Emergence of hysteresis for general time delay distributions. Behavior of the codimension two point ωc
0/∆ denoting

the onset of hysteresis as the characteristic time delay ∆T varies for delay distribution parameters n = 0, 2, 4, and 8. Hysteresis
can be observed in the system only if ω0 > ωc

0.

ence and partial synchronization. Recently Lee et
al. [Lee et al., 2009] showed that the ansatz of Ott
and Antonsen [Ott & Antonsen, 2008] could be ap-
plied to the time delayed case, but until this work
no unified bifurcation analysis has been presented.
Here we have presented such an analysis, allowing
for the full description of the stability diagram for
general parameter values which quantifies the tran-
sitions between incoherent, partially synchronized,
and bistable states via a series of supercritical and
subcritical Hopf bifurcations and a saddle node bi-
furcation of cycles. In particular, the transition from
incoherence to partial synchronization occurs in one
of two ways: (i) via a supercritical Hopf bifurcation
in which case no bistability is observed, or (ii) via
a subcritical Hopf bifurcation with a saddle node
bifurcation of cycles in which case both the incoher-
ent and partially synchronized states are stable for a
range of coupling strengths. We note that the nature
of bistability studied here is reminiscent of explosive
synchronization observed in networks of coupled os-
cillators whose natural frequencies are correlated
with the network structure [Gómez-Gardeñes et al.,
2011; Peron & Rodrigues, 2012; Skardal & Arenas,
2014].

In addition to the series of bifurcations that oc-
cur in the system, we also investigate the emergence
of bistability. Specifically, this occurs at a codimen-
sion two point where the Hopf bifurcations collide
with the saddle node bifurcation of cycles, which
we express analytically. This codimension two point

also reveals a critical characteristic time delay that
delineates the possibility for bistability. In particu-
lar, if the characteristic time delay is less than this
critical value, then bistability cannot be observed
in the system, regardless of the choices of the other
system parameters. If the characteristic time delay
is larger than this critical value, then bistability can
be observed, provided that the other system param-
eters are appropriately tuned. This suggests that
the time delayed dynamics are only qualitatively
different from the non-time delayed dynamics if the
characteristic time delay in the system is sufficiently
large. We have also used numerical techniques to in-
vestigate the dynamics that occur for more general
delay distributions. First, we have observed that as
the delay distribution (taken to be a Gamma distri-
bution) becomes more homogeneous, synchroniza-
tion is first promoted, as we can observed as both
Hopf bifurcation and saddle node bifurcations of cy-
cles occur at smaller coupling strengths. Second, for
characteristic time delays that are not too small the
emergence of hysteresis is delayed as the distribu-
tion becomes more homogeneous, as larger charac-
teristic natural frequencies are required to observe
hysteresis in the system.

The results presented in this work shed light on
the general behaviors of collective behavior as they
depend on time delay. In many real-world scenarios
it is realistic to incorporate time delays between in-
teracting dynamical units, provided that either (i)
a signal takes some finite time to travel from one
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unit to another or (ii) a given dynamical unit takes
some finite time to interpret signals from others.
Our analysis illustrates that the presence of time de-
lays induces multistability, provided that the time
delay is large enough. In a broader context these re-
sults raise the question of whether multistability or
possibly other nonlinear effects can be induced on
the collective behaviors of ensembles of dynamical
units of other types, for instance in the contexts of
consensus or spreading processes. Moreover, if time
delays do induce new nonlinear effects in their col-
lective behaviors, an important question is whether
or not these nonlinear effects, like those found here,
arise only for sufficiently large time delays larger
than some critical value.

Appendix A Dimensionality Reduction

Here we detail the derivation of the low dimen-
sional dynamics, i.e., Eqs. (7) and (8) from the orig-
inal system equations [Eqs. (1) and (4)] using the
definitions of the instantaneous and time delayed
order parameters [Eqs. (2) and (3)] and the chosen
forms of the delay and natural frequency distribu-
tions [Eqs. (5) and (6)]. Following the technique pre-
sented in Refs. [Ott & Antonsen, 2008; Lee et al.,
2009], we consider continuum limit, i.e., the limit
of N → ∞ oscillators. In this scenario, we may
describe the macroscopic state of the system us-
ing the distribution function f(θ, ω, t), such that
f(θ, ω, t)dθdω describes the fraction of oscillators
with phases between θ and θ + dθ and frequencies
between ω and ω + dω at time t. In this contin-
uum limit we may rewrite the instantaneous order
parameter as

z(t) =

∫

∞

−∞

∫ 2π

0
f(θ, ω, t)eiθ(t)dθdω. (A.1)

Since the time delays τij are all drawn from the
same distribution, we have that in this limit the
time delayed order parameters are all equivalent,
i.e., wi(t) = w(t) for all i, and can be written

w(t) =

∫

∞

0
z(t− τ)h(τ)dτ. (A.2)

Moreover, the conservation of oscillators implies
that the distribution function f satisfies the follow-
ing continuity equation:

0 =
∂

∂t
f +

∂

∂θ

(

f θ̇
)

, (A.3)

where θ̇ = ω+K
(

we−iθ − w∗eiθ
)

/(2i). Finally, be-
cause f lives on the circle in the θ dimension it is

natural to expand it into its Fourier series, which
must be of the form

f(θ, ω, t) =
g(ω)

2π

{

1 +

∞
∑

n=1

[

fn(ω, t)e
inθ + c.c.

]

}

.

(A.4)

The dimensionality reduction discovered by Ott
and Antonsen [Ott & Antonsen, 2008] consists of an
ansatz for the sequence of the Fourier coefficients in
Eq. (10), specifically that they decay geometrically,
i.e., fn(ω, t) = an(ω, t). Remarkably, inserting this
ansatz into Eq. (A.4) then Eq. (A.3) reduces the
partial differential equations in Eq. (A.3) to a sin-
gle ordinary differential equation for a of the form

0 =
∂a

∂t
+ iωa+

K

2

(

wa2 − w∗
)

. (A.5)

Moreover the dynamics defined for the function
a(ω, t) in Eq. (A.5) can be connected back to those
of the instantaneous order parameter by inserting
the Fourier series into Eq. (A.1), which yields

z(t) =

∫

∞

−∞

g(ω)a∗(ω, t)dω. (A.6)

Recall now that we assumed a Lorentzian frequency
distribution g, which can be rewritten

g(ω) =
1

2πi

(

1

ω − ω0 − i∆
− 1

ω − ω0 + i∆

)

.

(A.7)

Using Eq. (A.7), the integral in Eq. (A.6) can be
evaluated by closing the contour in the bottom-
half ω complex plane containing the pole ω =
ω0 − i∆, yielding z(t) = a∗(ω0 − i∆, t). (See
Ref. [Ott & Antonsen, 2008].) Finally, taking a
complex conjugate of Eq. (A.5), evaluating at ω =
ω0 − i∆, and rearranging yields

ż = −∆z + iω0z +
K

2

(

w − w∗z2
)

. (A.8)

In principle, Eq. (A.8) closes the dynamics of
the system along with Eq. (A.2). However, for a
bifurcation analysis it is convenient to convert the
integral in Eq. (A.2) into a differential equation.
In Ref. [Lee et al., 2009] Lee et al. show that this
is possible using a Laplace transform. In particular,
Eq. (A.2) is a convolution, and therefore its Laplace
transform is given by

ŵ(s) = ẑ(s)ĥ(s), (A.9)

where ^ represents the Laplace transform. Since h
is exponential, i.e., h(τ) = eτ/T /T for τ ≥ 0, we
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have that

ĥ(s) =
1

1 + Ts
→ (1 + Ts)ŵ(s) = ẑ(s).

(A.10)

We then convert back to the time domain and re-
arrange to obtain

T ẇ = z − w, (A.11)

thus closing the dynamics of the system with
Eqs. (A.8) and (A.11), which are precisely Eqs. (7)
and (8) in the main text.

Appendix B Derivation of the Time De-
lay Equation for General Delay Distribu-
tions

Here we detail the derivation of Eq. (39) in the
main text, which describes the dynamics of the time
delayed order parameter for the case of the gen-
eral Gamma distribution h(τ) given in Eq. (38).
First, we note that in the limit of large system size,
N → ∞, Eq. (A.2) holds, now with Eq. (38). Tak-
ing the Laplace Transform, we recover Eq. (A.9),
but now with

ĥ(s) =

[(

T

n+ 1

)

s+ 1

]

−(n+1)

(B.1)

Inserting Eq. (B.1) into Eq. (A.9) and rearranging
yields

[(

T

n+ 1

)

s+ 1

]n+1

ŵ(s) = ẑ(s), (B.2)

from which point we can convert back to the time
domain, resulting in

[(

T

n+ 1

)

d

dt
+ 1

]n+1

w(t) = z(t), (B.3)

which is the desired result in the main text at
Eq. (39).
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