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Abstract. Lorenz-like maps arise in models of neuron activity, among other places.
Motivated by questions about the pattern of neuron firing in such a model, we study
periodic orbits and their itineraries for Lorenz-like maps with nondegenerate rota-
tion intervals. We characterize such orbits for the simplest such case and gain
substantial information about the general case.

1. Introduction

The motivation for this paper comes from the paper [3], where the authors consider
a mathematical model of a neuron, and after some simplifications they get an interval
map. Under certain assumptions, this map is Lorenz-like.

A Lorenz-like map is a map f of an interval I = [0, 1] to itself, for which there
exists a point c ∈ (0, 1) such that f is continuous and increasing (not necessarily
strictly) on [0, c) and on (c, 1], and limx→c− f(x) = 1, limx→c+ f(x) = 0. There is a
minor problem regarding what we should do with f(c). A possible solution is to set
f(c) = 0 or f(c) = 1, but the most common way of looking at it is to say that at
c the map f takes two values, both 0 and 1. Then we can say that f is continuous
and increasing on both IL = [0, c] and IR = [c, 1]. Throughout most of the paper we
will consider only orbits of f that avoid c, while at a certain moment we will explain
what happens if they do not.

If f(0) > f(1), that is, f(IL) ∩ f(IR) = ∅, the map is non-overlapping. If f(0) ≤
f(1), that is, f(IL) ∩ f(IR) 6= ∅, the map is overlapping (see Figure 1).

For a point x ∈ [0, 1] and a positive integer n we will denote by nR(x) the number
of integers i ∈ {0, . . . , n− 1} such that f i(x) ∈ IR. If the limit

ρ(x) = lim
n→∞

nR(x)

n

exists, we will call it the rotation number of x. Observe that if x is a periodic point
of f of period p then ρ(x) exists and is equal to nR(x)/p. Moreover, it is known that
if f(0) ≥ f(1) (in particular, if the map is non-overlapping), then all points have the
same rotation number (see [2]). We will denote it ρ(f).

In [3], orbits of Lorenz-like maps are interpreted in a special way. A point in IL
corresponds to a spike of the activity of the neuron, while a point in IR corresponds
to a spike preceded by a small oscillation. Thus, in order to predict the order of
spikes and small oscillations (the MMO signature) along an orbit, we need to know
the itinerary of our orbit: a sequence of symbols L and R. The nth symbol is L or
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Figure 1. Non-overlapping (left) and overlapping (right) Lorenz-like maps.

R, depending on whether the nth point of the orbit is in IL or IR. Periodic orbits are
of special interest.

As noted in [3], the non-overlapping case is simple. Let us consider the case when
the rotation number of the map is a/p, where a and p are coprime. If the numbering
of the terms of the periodic itinerary starts with 0, then the kth term is L if and only
if (1 + ka mod p) ≤ p− a.

Our aim is to obtain similar results for overlapping maps. By “similar results”
we mean results of similar simplicity. Precise description of possible itineraries for
general overlapping Lorenz-like maps is possible, but it will be quite complicated and
not so easy to apply in practice.

In the overlapping case, when the rotation interval is nondegenerate it will contain,
or in the simplest case have as endpoints, Farey neighbors (fractions a/p < b/q, such
that bp− aq = 1).

2. Definitions

Let f be a Lorenz-like map. If t ∈ f(IL) ∩ f(IR), then we define the water map at
level t (see Figure 2) by

(1) ft(x) =

{
max(t, f(x)) if x ∈ IL,
min(t, f(x)) if x ∈ IR.

This map is also Lorenz-like and ft(0) = ft(1), so all points have the same rotation
number ρ(ft) for it. It is known that ρ(ft) is an increasing continuous function of t,
and if f(0) ≤ f(1), then the set Rot(f) of the rotation numbers for f of all points
having rotation number is equal to the interval [ρ(ff(0)), ρ(ff(1))] (see, e.g., [1]).

If t ∈ I \ (f(IL) ∩ f(IR)), then the map ft, defined by (1), will be called the
semiwater map at level t.

We will be considering not only periodic orbits, but also their finite unions (in fact,
only unions of two orbits, but we can make definitions slightly more general). We will
call them fupos (for finite unions of periodic orbits). For each fupo we will consider
its permutation, that is, if a fupo P consists of points x1 < · · · < xn, and f(xi) = xσ(i)
for i = 1, . . . , n, then σ is the permutation of P . Since we are using indices from 1
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Figure 2. A Lorenz-like map and one of its water maps.

to n, rather than from 0 to n− 1, we will understand that m mod n is the number
i ∈ {1, . . . , n} such that n divides m− i.

Permutations of fupos of Lorenz-like maps have a specific form. Namely, if a fupo
has n > 1 elements, then there exists k ∈ {1, . . . , n− 1} such that σ is increasing on
{1, . . . , k} and on {k+1, . . . , n}. We will call such permutations (and the permutation
of {1}) L-permutations. If our fupo is a periodic orbit, then its rotation number is
(n − k)/n. It is clear that for every L-permutation σ there exists a Lorenz-like map
f with the fupo P such that P has permutation σ. A canonical model can be built
as the “connect the dots” map with the dots(

0,
σ(1)

n+ 1

)
,

(
1

n+ 1
,
σ(1)

n+ 1

)
, . . . ,

(
k

n+ 1
,
σ(k)

n+ 1

)
,

(
k + 1

2

n+ 1
, 1

)
,(

k + 1
2

n+ 1
, 0

)
,

(
k + 1

n+ 1
,
σ(k + 1)

n+ 1

)
, . . . ,

(
n

n+ 1
,
σ(n)

n+ 1

)
,

(
1,
σ(n)

n+ 1

)
,

see Figure 3.
Among L-permutations there are some special ones, which look like cyclic permu-

tations for circle rotations. They are those cyclic L-permutations σ of {1, . . . , n}, for
which σ(1) > σ(n). We will call them twist permutations, and a periodic orbit with
such permutation will be called a twist orbit. It is easy to see that a periodic orbit of a
Lorenz-like map f is twist if and only if it is also an orbit of some water or semiwater
map ft. It is also easy to describe explicitly a twist permutation of {1, . . . , n} with
rotation number j/n. Namely, σ(i) = i+ j mod n.

We can treat each cycle of an L-permutation as a permutation. Clearly, it will also
be an L-permutation. Now we can define the type of permutations that will be the
main object in this paper.

Definition 2.1. An L-permutation σ of {1, . . . , p+ q} will be called a Farey-Lorenz
permutation (or FL-permutation) if σ consists of two cycles, both of them twist, of
period p and q, with rotation numbers a/p and b/q respectively, and a/p < b/q are
Farey neighbors, that is, bp = aq + 1.
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Figure 3. The canonical model for a union of twist periodic orbits of
rotation numbers 2/5 and 3/7.

Note that the rotation numbers of the periodic orbits from Figure 3 are Farey
neighbors; the corresponding FL-permutation is

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 7 8 9 10 11 12 1 2 3 4 6

)
Observe that we can assume that p < q. If p = q then a/p = 0/1 and b/q = 1/1;

this is a trivial case which we will not consider in the next two sections. If p > q
then we can replace f by g, conjugate to f via the map x 7→ 1 − x. Then the
rotation numbers of our orbits will become (p − a)/p and (q − b)/q, and we have
(q − b)/q < (p − a)/p and q < p. The results obtained for this case can be easily
translated to the original case.

3. Structure of FL-permutations

In this section we assume that σ is an FL-permutation with cycles of rotation
numbers a/p and b/q, where a/p < b/q are Farey neighbors and p < q. We will
call those cycles slow and fast, respectively. Let f be the canonical model for this
permutation, with the corresponding fupo P ∪ Q, where periodic orbits P and Q
correspond to the slow and fast cycles, respectively. We will refer to P as the slow
orbit and Q as the fast orbit.

Lemma 3.1. The slow cycle contains 1, and the fast cycle contains p+ q.

Proof. We will show that the slow cycle contains 1; the proof that the fast cycle
contains p+ q is similar.

Let t be the leftmost element of P and s the leftmost element of Q. Then P is
an orbit of the water map ff(t) and Q is an orbit of the water map ff(s). Therefore
ρ(ff(t)) = a/p < b/q = ρ(ff(s)), and since ρ(fu) is an increasing function of u, we get
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f(t) < f(s). Both t and s are to the left of the discontinuity point c, so f(t) < f(s)
implies t < s. This shows that the leftmost element of the slow cycle is to the left of
the leftmost element of the fast cycle, so 1 belongs to the slow cycle. �

Lemma 3.2. The fast cycle contains 2.

Proof. Suppose that 2 belongs to the slow cycle. Let z be the second from the left
element of the slow orbit P . Look at the map ff(z). If w is the leftmost element of
P , then ff(z)(w) = ff(z)(z) = f(z), and thus, f if(z)(w) = f i(z) for i = 1, . . . , k, where

k < p is such a number that fk(z) = w. Therefore, w is a periodic point of ff(z)
of period k < p. This means that ρ(ff(z)) is a rational number with denominator
smaller than p = min(p, q).

If f(z) ≤ f(1), then ff(z) is a water map, so its rotation number is contained in
[a/p, b/q]. However, since a/p and b/q are Farey neighbors, there is no such number
in [a/p, b/q], a contradiction.

If f(z) > f(1), then Q ⊂ [z, 1], so Q is a periodic orbit of ff(z). Therefore,
ρ(ff(z)) = b/q, also a contradiction. �

Now we want to know where the points of P are compared to the points of Q. Let
the points of P be x1 < x2 < · · · < xp and the points of Q y1 < y2 < · · · < yq. Denote
J1 = [x1, y1] and Jj = [yj−1, yj] for j = 2, . . . , q. By Lemma 3.1, the definition of J1 is
correct, and by Lemma 3.2, the only element of P in J1 is x1. Also, by Lemma 3.1,
there are no elements of P to the right of yq.

Lemma 3.3. For i = 1, . . . , p, the point f i(x1) belongs to Jib mod q.

Proof. Each interval Jj, with two exceptions, is mapped in a monotone way onto J`,
where ` = j + b mod q. One exception is the interval Jq−b+1, which contains c in its
interior. Its left part is mapped to [yq, 1], while its right part is mapped to [0, y1].
However, there are no points of P in [yq, 1], and the only point of P in [0, y1] is x1.
Thus, for the purpose of finding the positions of the points of P , we may say that
Jq−b+1 is mapped onto J1 (notice that 1 = (q−b+1)+b mod q). The other exception
is J1, and at the moment we do not know where it is mapped.

Let k be the integer such that f(x1) ∈ Jk. Then, by what we said above, f i(x1) ∈ J`,
where ` = k + (i − 1)b mod q, for i = 1, 2, . . . , p. In particular, since fp(x1) = x1,
we get 1 = k + (p− 1)b mod q. Since pb = aq + 1, we get 1 = k + 1− b mod q, so
k = b. This completes the proof. �

The above lemma gives us full information about the permutation of the fupo P∪Q.
We can summarize it in the following proposition.

Proposition 3.4. With the notation we adopted, f(xi) = xi+a mod p and f(yj) =
yj+b mod q. The relative order of the points of the orbits P and Q is given by the
following rule: x1 < y1; then for i = 1, . . . , p − 1, if j = 1 + ia mod p and ` = ib
mod q, then y`−1 < xj < y`.

4. Markov graphs of FL-permutations

Now we want to describe the Markov graph for the fupo considered in the preceding
section. The vertices of this graph are basic intervals, that is, the closures of the
intervals into which P ∪ Q divides I. There is an arrow from a vertex K1 to K2 if
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and only if K2 ⊂ f(K1). Then the trajectories of f correspond to the infinite paths
in this (directed) graph.

We are interested only in periodic trajectories, so we can remove from the graph
all vertices that do not contribute to any periodic trajectories (except perhaps P or
Q). We will call the resulting subgraph the essential Markov graph.

The first vertices that we can remove are intervals [0, x1] and [yq, 1], because f is
constant on each of them. We are left with basic intervals of three types.

Fast-fast intervals: Both endpoints belong to Q. They are intervals Jj that
do not contain any point of P .

Fast-slow intervals: The left endpoint belongs to Q, and the right one to P .
Such an interval is contained in some Jj, and we will denote it by J−j .

Slow-fast intervals: The left endpoint belongs to P , and the right one to Q.
Such an interval is contained in some Jj, and we will denote it by J+

j .

With two exceptions, each of the intervals listed above is mapped by f onto one
basic interval listed above, of the same type and with index larger by b (modulo q).

The first exception is the slow-fast interval J1. It is mapped onto [x1+a, y1+b], which
is the union of the slow-fast interval J+

b and the interval Jb+1.

Lemma 4.1. Interval Jb+1 is a basic fast-fast interval.

Proof. We have to show that there are no elements of P in Jb+1. Suppose there is
one. Then b + 1 = ib mod q for some i ∈ {1, . . . , p}. Therefore 1 = kb mod q for
some k ∈ {0, . . . , p − 1}. However, bp = aq + 1, so also 1 = pb mod q. Therefore, q
divides (p − k)b, so, since q and b are coprime, q divides p − k. This is impossible,
since 1 ≤ p− k ≤ p < q, and we get a contradiction. �

The second exception is that the fast-slow interval Jq+1−b (which contains the dis-
continuity point c) maps only to the two intervals we removed.

Now we see that every fast-slow basic interval maps onto another fast-slow one,
etc., until it maps onto Jq+1−b, which maps to intervals we removed. Therefore no
fast-slow interval in the essential Markov graph, and we remove them all.

The remaining basic intervals are all the fast-fast ones and all the slow-fast ones.
Each of them is contained in one of the intervals Jj; then call it Kj. On the other
hand, each interval Jj is either a fast-fast basic interval (so Kj = Jj), or it contains
a unique slow-fast interval, Kj = J+

j . Hence, we get the following theorem.

Theorem 4.2. The vertices of the essential Markov graph are the intervals Kj, j =
1, . . . , q. The arrows are from Kj to Kj+b mod q, and there is an additional arrow
from K1 to Kb.

In order to find all periodic orbits of f , we have to understand the structure of the
loops of the essential Markov graph. The above theorem shows that there are two
loops, one long, not using the additional arrow, and the other one shorter, using the
additional arrow. In fact, we are interested not only in the periods of the periodic
points, but also in their itineraries. The itinerary of a point x is the sequence of
symbols L and R, whose nth term is L is fn(x) < c and R if fn(x) > c (at the
moment we assume that the orbit of x does not pass through c). If a periodic orbit
S of period n has itinerary A∞, where A is a block of length n, then we will call A
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a periodic itinerary of S. Of course, all periodic itineraries of S can be obtained by
“rotating” A. In particular, A cannot be the repetition of a shorter block.

Remark 4.3. Since all intervals given by vertices of this graph have as their right
endpoint an element of Q, and for the only interval Jj that contains c, the corre-
sponding Kj lies entirely to the right of c, we conclude that as we traverse the long
loop, the corresponding part of the itinerary is a periodic itinerary of Q.

We want now to show a similar property for the short loop.

Lemma 4.4. As we traverse the short loop, the corresponding part of the itinerary is
a periodic itinerary of P . In particular, the length of this loop is p.

Proof. The interval Kb is slow-fast. Therefore all its images are slow-fast intervals,
until we get to the exceptional interval K1. Along the short loop, K1 goes immediately
back to Kb. Thus, in the short loop all left endpoints of the intervals are elements of
P , so the itineraries are the same as for P . �

In view of Theorem 4.2, Remark 4.3, and Lemma 4.4, we get the following theorem.

Theorem 4.5. Any periodic orbit of f has a periodic itinerary, which is a concatena-
tion of finitely many periodic itineraries (starting at x1 or y1) of P and Q, and is not
a repetition of a shorter periodic itinerary. Conversely, for each such concatenation
there is a periodic orbit of f , having it as a periodic itinerary.

To apply this theorem in practice, we need a simple rule to write down the periodic
itineraries of P and Q, starting at x1 and y1, respectively. The rule is simple. If the
numbering of the terms of the periodic itinerary starts with 0, then the kth term is
L if and only if (1 + ka mod p) ≤ p − a. Similarly, for Q, the kth term is L if and
only if (1 + kb mod q) ≤ q − b.

If a/p < b/q, but p > q, then we replace a/p by (p − a)/p and b/q by (q − b)/q.
Then, in the itineraries we replace symbols L by R and vice versa.

Example 4.6. Let f be the canonical model for a union of twist periodic orbits of
rotation numbers 2/5 and 3/7 (Figure 3).

Then the essential Markov graph described in Theorem 4.2 has seven vertices,
given by the intervals K1 = [1/13, 2/13], K2 = [3/13, 4/13], K3 = [5/13, 6/13],
K4 = [6/13, 7/13], K5 = [8/13, 9/13], K6 = [10/13, 11/13], and K7 = [11/13, 12/13].
The first four of these will contribute an L to an itinerary, while the last three will
contribute an R. The essential Markov graph consists of the loop K1 → K4 → K7 →
K3 → K6 → K2 → K5 → K1, together with an extra edge K1 → K3 which reduces
the length of the loop from seven to five. The periodic orbit Q of length seven (the
open points in Figure 3) has periodic itinerary LLRLRLR, while the periodic orbit P
of length five (the solid points in Figure 3) has periodic itinerary LLRLR. The peri-
odic itineraries of all other periodic orbits of f are obtained from finite concatenations
of these two words.

5. Rotation intervals

Up to now we were thinking about a map f which is a canonical model for an FL-
permutation. Let us now only assume that the rotation interval of a Lorenz-like map
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A B C D E

A

B

C

D

E

Figure 4. The map from Example 5.1.

g contains the interval [a/p, b/q], where a/p < b/q are Farey neighbors, and p < q.
As we noted at the end of Section 2, this last condition is not restrictive.

It is known (see, e.g., [1]) that if a number r/s is in the rotation interval of g, and
r, s are coprime, then g has a twist periodic orbit of period s and rotation number
r/s. Thus, provided the two periodic orbits we get this way are disjoint, g has a
fupo with the FL-permutation considered in the preceding section. Its Markov graph
is as we described there, so we get periodic orbits with all itineraries described in
Theorem 4.5.

However, it can happen that two distinct periodic orbits are not disjoint, since
g takes two values at the discontinuity point. We will consider this situation more
closely in the next section.

Observe that we cannot claim that there are no other itineraries of periodic orbits
than those from Theorem 4.5, even if the rotation interval is equal to [a/p, b/q]. This
follows from [1], and we can illustrate it on the following simple example.

Example 5.1. Let f : [0, 1]→ [0, 1] be a Lorenz-like map, given by

f(x) =


2
5

if 0 ≤ x ≤ 1
5
,

2x if 1
5
≤ x ≤ 1

2
,

2x− 1 if 1
2
≤ x ≤ 1,

see Figure 4.
Then {1/5, 2/5, 4/5, 3/5} is a periodic orbit of period 4 and rotation number 1/2,

while {1} is a fixed point of rotation number 1. Thus, the rotation interval of f
contains [1/2, 1]. To see that it is equal to [1/2, 1], first notice that there cannot be
an orbit of rotation number larger than 1. Then observe that the water map at level
f(0) = 2/5 has a periodic orbit of period 2 and rotation n umber 1/2 (see Figure 5.

Now the existence of a periodic orbit of period 4 = 2 · 2 implies (by [1]) that
there are periodic orbits of rotation number 1/2 and all even periods. We can also
find them by looking at the Markov graph of f for the partition by the points
0, 1/5, 2/5, 1/2, 3/5, 4/5, 1. Let us denote A = [1/5, 2/5], B = [2/5, 1/2], C =
[1/2, 3/5], D = [3/5, 4/5] and E = [4/5, 1]. Then we get our periodic orbits by going
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Figure 5. The water map at the level f(0) for the map from Example 5.1.

around the concatenations of the loops D → A → D and D → A → B → E → D.
Those periodic orbits are not the ones predicted by Theorem 4.5, because all orbits
predicted by Theorem 4.5 have rotation numbers larger than 1/2.

If the rotation interval J of a Lorenz-like map f is nondegenerate, and we want
to apply our results to f , there is a question what is the simplest way of finding
“reasonable” Farey neighbors in J . The answer to this question is simple, since if
p < q and there are no fractions with denominator smaller than or equal to q between
a/p and b/q, then a/p and b/q are Farey neighbors. Thus, we have to find the two
smallest denominators p < q of the fractions from J , look at the fractions with those
denominators in J , and choose two that are neighbors in the usual ordering, with
distinct denominators.

6. Intersecting orbits

As we already noted, at the point c of discontinuity, we may agree that a Lorenz-
like map f takes two values: 1 from the left and 0 from the right. Another way of
looking at this is to agree that the point c consists of two halves: a left c− and a right
c+. Then f(c−) = 1 and f(c+) = 0. Thus, it may happen that two periodic orbits
can both pass through c, each through a different half of it. However, it may happen
also that before they come to c, they both pass together through several preimages
of c. It helps to think that those preimages also consist of two half-points each.

Let us see how this may happen for our periodic orbits P and Q, considered in
Section 4. The fast-slow interval Jq+1−b gets replaced by the “interval” [c−, c+], that
is the singleton {c}. Then we proceed by induction. Each fast-slow interval, except
one, is the image of another fast-slow interval. If the target interval is replaced by a
singleton, then the other one also may be replaced by a singleton. Another possibility
is that the map f is constant on it (we are thinking at this moment about a more
general Lorenz-like map; not necessarily a canonical model). Thus, non-disjointness
of the two orbits results in replacing one or more fast-slow intervals by singletons.
However, we did not include the fast-slow intervals in the Markov graph of f in the
first place, so this will not change anything in Theorem 4.5 or its applications.
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