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We continue the study of the structural stability and the bifurcations of planar continuous
bimodal linear dynamical systems (that is, systems consisting of two linear dynamics acting on
each side of a straight line, assuming continuity along the separating line). Here, we complete the
study when one of the subsystems is a saddle, leading to a 3D bifurcation diagram where a large
catalogue of bifurcations appears: four surfaces of codimension-1 bifurcations; two sequences of
surfaces of additional codimension-1 bifurcations; two lines of codimension-2 bifurcations; and
one codimension-3 bifurcation.
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1. Introduction

Piecewise linear systems constitute a class of non-linear systems which have attracted the interest of
researchers because of their interesting properties and the wide range of applications from which they
arise. Even the planar continuous BLDS (planar continuous bimodal linear dynamical systems, that is,
two planar linear subsystems acting in complementary halfplanes, assuming continuity in the separating
straight line) have complex dynamic behaviors as well as applications (see, for example, [Artes et al., 2013],
[Camlibel et al., 2003], [Di Bernardo et al., 2008] and [Ferrer et al., 2014]).

Our aim is a full characterization of the structurally stable planar continuous BLDS and a systematic
study of the bifurcations between them, both in terms of the coeflicients of the matrices which define the
system. The structural stability of a system guarantees that its qualitative behavior is preserved under
small perturbations of their parameters, whereas qualitative changes occur at the bifurcation points. We
point out that both concepts (structural stability and bifurcation) depend on the equivalence relation which
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2 Josep Ferrer, Marta Peria, Antoni Susin

precises the idea that two dynamical systems have the ”same qualitative behavior”. For example, for the
equilibrium point of a single (non degenerate) planar linear system, those having positive trace and positive
determinant form a unique (structurally stable) C°-class (sources) whereas they are partitioned in four C'-
classes (spirals and nodes as structurally stable classes; improper nodes and starred nodes as bifurcations).
Here we follow Sotomayor and Garcia [2003], where two planar continuous BLDS are equivalent if there
is a homeomorphism of R?, preserving the separating line, which maps the orbits of a system into those
of the other one and it is differentiable when restricted to finite periodic orbits. Then, general criteria are
obtained by means of the Poincaré compactification which transforms the planar system into a system on
the 2-sphere so that orbits at infinity can be considered. We maintain also the nomenclature in Sotomayor
and Garcia [2003].

Till now, several partial studies exist concerning equilibrium points, periodic orbits or homoclinic orbits
(see [Freire et al., 1998], [Freire et al., 2000], [Llibre et al., 2013], [Xu et al., 2013]). For example, in Xu et al.
[2013] one specifies the conditions for the existence of saddle-loop orbits. In general, for planar continuous
BLDS, in Freire et al. [1998] it is proved that there exists at most one saddle-loop orbit or limit cycle,
which then must be attracting or repelling.

Our aim is a full integration of these and other behaviors in a complete bifurcation diagram, in
particular analyzing their persistence under small perturbations. For this global study, the starting point
is the reduced form of the matrices representing a continuous BLDS obtained in Ferrer et al. [2010].

Then, in Ferrer et al. [2014] we have specialized the general criteria for structural stability in Sotomayor
and Garcia [2003] and we have pointed out that additional specific studies (concerning periodic orbits,
saddle-loop (or homoclinic) orbits, saddle/tangency orbits and tangency/saddle orbits) are needed when
one of the subsystems is a spiral. These previous results are collected in Section 2.

As a first goal, we focus our attention on the saddle/spiral case because it is the only one where all
these elements can appear, so that more complex behaviors and applications are expected. In Ferrer et al.
[2014] it becomes clear that in general the periodic orbits are structurally stable and that two bifurcations
are possible for disappearing: an ordinary homoclinic bifurcation (when the trace 7 of the spiral attains a
certain value 7y7) and a special kind of Hopf bifurcation (when 7 becomes 0). Indeed, in an ordinary Hopf
bifurcation the periodic orbit collapses to the equilibrium point inside it, whereas in our case the spiral
inside the periodic orbit does not collapse but changes from divergent to convergent, through a continuum
of periodic orbits. In addition, in Ferrer et al. [2017] we prove that beyond both bifurcations there is not a
zone of structural stability, but a sequence of saddle/tangency or tangency /saddle bifurcations, converging
to the above homoclinic and Hopf bifurcations. Moreover, here we study the behavior of 77 when the trace
T of the saddle is near to 0. All these results concerning the saddle/spiral case are collected in Section 3.

Next, in Ferrer et al. [2016] we enlarge this study to the transformation of the considered spiral into
a node, through an improper node. More precisely, we consider the trace of the spiral 7 increasing till
70 = 2¢/A (where A is the determinant of the spiral, assumed constant): for | 7 |= 7y the spiral becomes
an improper node and for | 7 |> 79 a structurally stable node. Moreover, one proves that | 7i |[— 79 when
the trace T' of the saddle increases. These results are collected in Section 4.

Summarizing, the above results complete the study of the bifurcation diagram in the (7,7)-plane,
assuming constant both the determinants A and D of the right (spiral, node) and the left (saddle) sub-
systems, respectively. Here, in Section 5, we tackle the 3D bifurcation diagram when also A varies, dealing
the right homogencous subsystem to an improper node and a saddle, whereas D is assumed constant, so
that we have a saddle as left subsystem. In future works also variation in D will be considered.

Other extensions are possible, such as considering nonlinear perturbations in some bifurcation. For
example, it is well known that linear perturbations of a center give spirals, without limit cycles, whereas
several limit cycles can appear if nonlinear perturbations are considered. In our case, Fig. 6 shows that
lincar perturbations of a center (in a half-plane) give just one limit cycle (or a spiral). We expect that
several limit cycles, placed inside the above one, can be obtained by means of nonlinear perturbations.

More specifically, we describe the codimension-1 bifurcation (saddle/degenerate node) when A = 0
(and 7 # 0), the codimension-2 bifurcation (saddle/improper degenerate node) when A = 7 = 0 (and
T #0), and the codimension-3 bifurcation when A = 7 =T = 0. We remark that in any neighborhood of
the last one, all other bifurcations appear. They are listed in Section 6 and collected in the 3D bifurcation
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diagram (7,7, A) in Fig. 11.

Throughout the paper, R will denote the set of real numbers, M, .., (R) the set of matrices having n
rows and m columns and entries in R (in the case where n = m, we will simply write M, (R)) and GI,(R)
the group of non-singular matrices in M, (R). Finally, we will denote by e1, ..., e, the natural basis of the
Euclidean space R”.

2. Structural stability of planar bimodal linear systems

Let us consider a bimodal linear dynamical system (BLDS) given by two subsystems each one acting in a
halfspace:

B(t) = Aye(t) + By if Ca(t) <0,

$(t) = AQLL‘(t) + By if C;L‘(t) >0,

where A1, Ay € M, (R); B1,B2 € Mpx1(R); C € Miy,(R). We assume that the dynamics is continuous
along the separating hyperplane H = {x € R" : Cz = 0}; namely, that both subsystems coincide for
Cx(t) =0.

By means of a linear change in the state variable x(¢), we can consider C' = (10...0) € M;x,(R). Hence
H ={z € R": x; =0} and continuity along H is equivalent to:

By = By, Ase; = Are;, 2<i<n.
We will write from now on B = B; = Bs.

Definition 2.1. Under the above conditions, we say that the triple of matrices (A, A2, B) defines a con-
tinuous bimodal linear dynamical system (CBLDS).

Thus, we consider in the set of CBLDS the natural topology as a (n? + n? + n)-dimensional eu-
clidean space. Our goal is to characterize the planar CBLDS which are structurally stable in the sense
of [Sotomayor & Garcia, 2003] in terms of the coefficients Ay, A2 and B, and to analyze the bifurcations
appearing in the boundary values between them. So, from now on we specialize to n = 2.

The placement of the equilibrium points will play a significative role in the dynamics of a CBLDS. So,
we define:

Definition 2.2. Let us assume that a subsystem of a CBLDS has a unique equilibrium point, not lying in
the separating line. We say that this equilibrium point is real if it is located in the halfplane corresponding
to the considered subsystem. Otherwise, we say that the equilibrium point is virtual.

A natural tool in the study of CBLDS is simplifying the matrices A1, A2, B by means of changes in
the variables x(t) which preserve the qualitative behavior of the system (in particular, the condition of
structural stability). So, we consider linear changes in the state variables space preserving the hyperplanes
z1(t) = k, which will be called admissible basis changes. See [Ferrer et al., 2010] for the resulting reduced
forms. Also, translations parallel to the separating line H are allowed. Then, by specializing to CBLDS
the general necessary and sufficient conditions in Sotomayor and Garcia [2003], in Ferrer et al. [2014] one
proves the following results.

Theorem 1. [Ferrer et al., 2014] Let us consider planar CBLDS.

(1) If such a CBLDS is structurally stable, then the triples of matrices representing it can be reduced (by
means of an admissible basis change and a translation parallel to the separating line) to the form:

A= (_TD3>7A2= (_TA(l)>,B= (E,’),b#o

In particular, the only tangency point (i.e., where an orbit and the separating line are tangent) is (0,0).
(2) If one of the subsystems is a center, a degenerate node, an improper node or a starred node, then the
CBLDS is not structurally stable.
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(8) For the remainder CBLDS, if none subsystem is a real spiral then the CBLDS is structurally stable.
Ezplicitly (for b > 0; when b < 0, we obtain the symmetric ones) when:
the left subsystem is a real saddle, a virtual node or a virtual spiral
the right subsystem is a virtual saddle or a real node
(4) Additional conditions must be verified if one of the subsystems is a real spiral (in the right halfplane if
b>0):
(4.1) A CBLDS real saddle/real spiral is structurally stable if and only if:

(a) the finite periodic orbits are hyperbolic
(b) there are not saddle-loop orbits
(c) there are not finite orbits connecting a saddle and a tangency point

(4.2) A CBLDS virtual node/real spiral is structurally stable if and only if condition (a) holds
(4.3) A CBLDS wvirtual spiral/real spiral is structurally stable if and only if condition (a) holds and
also:

(a’) the infinite periodic orbit at infinity is hyperbolic

Remark 2.1. In (1) of the above Theorem one can take b = 1 (by means of a change of scale and a symmetry,
if necessary), but we will consider general b # 0 because of the homogeneity in the obtained formulas.

Remark 2.2. Because of (1) of the above Theorem, we will not consider starred nodes nor null subsystems.

3. The saddle/spiral case

Concerning the case (4.1) in Theorem 1, conditions (a) and (b) have been studied in [Ferrer et al., 2014]
and condition (c) in [Ferrer et al., 2017]. First, we summarize the results in [Ferrer et al., 2014] concerning
this case (4.1). Moreover, we precise the uniqueness of the finite periodic orbit in (3) (sce [Freire et al.,
1998)).

Theorem 2. [Ferrer et al., 2014] Let us assume the case (4.1) above, that is:
b>0,D<0,A>0,72 <4A
in (1) of Theorem 1, and let
Ao <0< Ay be the eigenvalues of A1, and

atif,5 >0, bethe eigenvalues of As.
Then, for T > 0:

(1) If T > 0, then there are not homoclinic orbits nor finite periodic orbits.
L . C e TA
(2) If T <0, a homoclinic (i.e., saddle-lqop) orbit appears only for a value Ty of T satisfying 0 < 7y < 5.
(3) If T < 0, a unique finite periodic orbit exists for 0 < T < Ty, being attractive hyperbolic (and transverse
to the separating axis). No saddle/tangency orbits exist.

Corollary 3.1. [Ferrer et al., 2014/ Under the conditions of Theorem 2, the systems with T < 0 and
0 <71 < T are structurally stable.

Example 3.1. For D = —1, A =57 = —1 and b = 1 one obtains 7y = 0.742 (see Fig. 10). Finite periodic
orbits appear in Fig. 6 and Fig. 7, for 7 = 0.172 and 7 = 0.1, respectively.

The following theorem specifies the value of 7.
Theorem 3. [Xu et al., 2013] Under the conditions of Theorem 2, Tg is the value of T satisfying
)\%)\%—T)\l—f—A « Ao — A A — )\
——————) — = (27 — arctan ——— — arctan —————) = 0. FEq.(1
)\%A%—T)\Q—FA) 5( 7T — arctan W arctan B ) q-(1)

Remark 3.1. For 7 < 0 one has symmetric results:

%ln(
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(1) If T <0, there are not homoclinic orbits nor finite periodic orbits.

(2’) If T > 0, the only homoclinic orbit appears for a unique value 7z of 7 satisfying % <7 <0.

(3") If T > 0, a unique finite periodic orbit exists for each 7 < 7 < 0, being hyperbolic (and transverse to
the separating axis). Hence, the system is structurally stable.

We can precise the behavior of 777 near 1" = 0.
Proposition 1. Under the above conditions, we fix D, A and b. Then:

(1) T — 0, when T'— 0. Hence, at T = 7 = 0 one has a codimension-2 bifurcation, which is a limit point
of the codimension-1 bifurcations T =0 and T = 7p.
(2) T(T) cuts transversally the axis T =0 at T = 0. Indeed, its derivative at the origin is:
aTH (0) . —A,u
oT "’ p— (D — A)(m — arctan p)

<0 Eq.(2)

where = %.

Proof. (1) is obvious from 0 < 757 < %.
For (2), bearing in mind Eq. (1) in Theorem 3, we consider the equations

T=2x
A =D
M+X=T

1 m(,\_g AN —TA1+A
2 N AT +A

) — §(2m — arctan ’\2/\0‘2?3A — arctan A;;\Blo‘) =0

or, equivalently, we consider f(\1, 8, 7,T) = (f1, f2, f3), being
fi=7/4+p>-A
f2 :)\1+D/)\1—T

2 A2 4A - Dr_ AN _Mr
fa= %ln(%m) — 55(2m — arctan—zwl — arctan —#-)
Then, the equation f(A1,8,7,T) = (0,0,0) defines (A1, 8, 7) as implicit functions of T'.
Since
8()\17677_) :—( af )—1%
oT (A1, p,7)" OT
one has that if (A, 8,7,T) = (vV—D, VA, 0,0) then
o _
oTr —201s
ofs 2

N V=D(D-A)

of —/-D 1 [ A
6_:: DID—A) \/Z(w—arctan 3)

and taking p = 1/% we get the formula Eq. (2) for %T—,_;I(O). [ |

Example 3.2. If we consider, as in the above example, D = —1 and A = 5, then x = /5, and in this case

ives 9TH () = —5v5 S
Eq. (2) gives F#(0) = Vo6t arctan VE) = 0.7882.
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Next, we summarize the results in [Ferrer et al., 2017] concerning condition (c).

First, we tackle the values 7 > 777. We will see that there is a decreasing sequence 71, 72, ... — 7 of
values of 7 where tangency/saddle singularities appear. For the remainder values, the CBLDS is structurally
stable.

Theorem 4. [Ferrer et al., 2017] Under the conditions of Theorem 2, let us consider T < 0 and 7 > (>
0):

1. There exists a mazximal value 7 of T (see Fig. 8), for which a tangency/saddle orbit appears. Moreover,
A
1 < )\—1

2. There exists a decreasing sequence (T1,72, ..., Tk, -..) — TH, k > 1, for which tangency/saddle orbits
appear.
For the value T = T3, the orbit through the tangency point (0,0) has its (2k — 1)th intersection with the
separating line just at (0,—b/A1), going later to the saddle equilibrium point. See Figure 8.

3. For the remainder values of T > 1y, the CBLDS is structurally stable. For 111 < T < 73, (respectively
T > T1), the tangent orbit goes to infinity after crossing the separating line 2k + 1 (respectively, 1)
times. See Figure 7.

In an analogous way, for 7 < 0 there is an increasing sequence 7_1,7_9,... — 0 of values of 7 where
saddle/tangency singularities appear.

Theorem 5. [Ferrer et al., 2017] Under the conditions of Theorem 2, let us consider T < 0 and 7 < 0:

1. There exists a minimal value T—1 of T (see Fig. 9), for which a saddle/tangency orbit appears. More-
over, T_1 > /\%.

2. There exists an increasing sequence (T—1,T—2,...,T—g,...) — 0, k > 1, for which saddle/tangency orbits

appear.
For the value T = 7_y, the orbit through (0,—b/\2) has its (2k — 1)th intersection with the separating

line just at the origin.
3. For the remainder values of 7 < 0, the CBLDS is structurally stable.

Clearly Ay = —oo when T' — —oo. Hence:
Corollary 3.2. Under the above conditions:
71— 0, when T" — —o0.
Remark 3.2. For T > 0 one has symmetric results:

(1) For 7 < Tq:
- There exists a minimal value of 7, 7_1, for which a tangency/saddle orbit appears, satisfying 71 > )\%.
- There exists an increasing sequence (7_1,7_2,...,T—k,...) — T, k > 1, for which tangency/saddle
orbits appear.
- For the remainder values of 7 < 7, the CBLDS is structurally stable.

(2’) For 7 > 0:
- There exists a maximal value of 7, 71, for which a saddle/tangency orbit appears, satisfying 7 < )%.
- There exists a decreasing sequence (11,72, ..., Tk, ...) — 0, k > 1, for which saddle/tangency orbits
appear.
- For the remainder values of 7 > 0, the CBLDS is structurally stable.
- 11 — 0, when T" — +o00.

4. The bifurcation at an improper node
The spiral in the above section becomes a node when | 7 |> 79 = 2v/A, with a bifurcation appearing for
| 7 |= 70, where the right subsystem is an improper node (see Remark 6.)
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Let us consider a BLDS (A;, As, B) as in (1) of Theorem 1, with
D <0,A>0,b>0,

that is, the left subsystem is a real saddle and the right one is a real node or spiral. From Theorem 4, we
have

Proposition 2. [Ferrer et al., 2016] Under the above conditions, let 7o = 2v/A. Then:

(1) For |7 |> 19 one has a structurally stable system saddle/node.

(2) For |t |= 19 one has a bifurcation saddle/improper node.

(8) For | tg |<| 7 |< 70 one has a system saddle/spiral, which is structurally stable if no tangency/saddle
nor saddle/tangency orbits appear.

Remark 4.1. For | g |<| 7 |< 19 in (3) above, see Theorems 4 and 5. Notice also the following result.

Example 4.1.

We include figures of the transition | 7 |<| 7 |< 70, | T |= 70, | 7 |> 70 for T=1,D = —1,A =5 and
b=1, so that 7o = 2v/5 = 4.4721, 7y = —0.742.

More precisely, Figure 1 (a) corresponds to 7 = —1.9721 (saddle/spiral). Notice that the tangent orbit
(as well as the ones over the saddle/spiral orbit) intersects the separating line in just an additional point.
The remainder orbits intersect twice in the main quadrant of the saddle and a third time over it.

Figure 1 (b) corresponds to 7 = —4.4721 (saddle/improper node). Now the tangent orbit does not
intersect the separating line because it cannot cross the new invariant line arising from the equilibrium
point of the improper node, placed at (0.2,0.8944).

In Figure 1 (c), corresponding to 7 = —7.9721 (saddle/node), this invariant line splits into two of them,
giving an ordinary node, placed at (0.2,1.5944).

tau= -1.9721 ,T=1 ,Delta=5 tau= -4.4721 ,T=1 ,Delta=5 tau= -7.9721 ,T=1 ,Delta=5

2 2 -1.5 -1 -0.5 0 0.5 1 15 2 -2 -1.5 -1 -0.5 0 0.5 1 15 2

Fig. 1. From left to right, figures corresponding to Example 4.1: 7 = —1.9721 > —1y (a), 7 = —19 = —4.4721 (b), 7 =
~7.9721 < —75 (c)

Therefore, the (7,7) bifurcation diagram in Ferrer et al. [2017](see Figure 2) can be enlarged to
—79 < 7 < 719, bearing in mind the following proposition.

Proposition 3. [Ferrer et al., 2016] In the above conditions:

(1) T — —T70, when T — +o0.
(2) T — 70, when T — —o0.

5. The bifurcation at a degenerate node
Till now one has considered constant the determinant A of the subsystem in the right halfspace (a spiral
or a node). Now we will vary A starting from a saddle/node BLDS, that is, 0 < A < 72/4.

If A increases, at A = %2 one finds again an improper node bifurcation as in Section 4, leading to a

structurally stable saddle/spiral.
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T

Fig. 2. Bifurcation diagram in the (r,T)-plane

Now, if A decreases, the right homogeneous subsystem becomes a degenerate node for A = 0 and the
equilibrium point goes to infinity (it can be seen as a "node at infinity”: see Figure 3 (b)). Next, for A < 0,
the right subsystem becomes a virtual saddle (its equilibrium point will lie in the left halfspace), being
structurally stable the resulting real saddle/virtual saddle CBLDS (see Figure 3 (c)).

Proposition 4. Let us assume

2
b>0,D<0,A<TZ,T;«é0.

Then, for any T':

(1) For A =0 one has a bifurcation saddle/degenerate node (or “node at infinity”).

(2) For A >0 (and A < %) one has a structurally stable saddle/node.
(3) For A <0 one has a structurally stable real saddle/virtual saddle.

Example 5.1.

We include figures of the transition A < 0,A=0,A>0forT=1,D=—1,7=—-4.4721,b=1.

More precisely, Figure 3 (a) corresponds to A = 3 < % = 5 (saddle/node), as in the above example.
It is equivalent to Figure 1 (c), but now the node is placed at (0.3333,1.4907).

Figure 3 (b) corresponds to nearly A = 0 (saddle/degenerate node) without changes in the remaining
parameters. Then the equilibrium point in the right subsystem goes to infinity, so that the orbits there
become nearly parallel.

Figure 3 (c¢) corresponds to A = —20 (real saddle/virtual saddle), again without changes in the
remaining parameters: the right subsystem is a saddle, having its equilibrium point at (—0.2,0.2236) in
the left halfplane.

Notice that, when A > 0 decreases, also 79 = 2v/A decreases, so that the (1, T) bifurcation diagram in
Figure 2 becomes more and more narrow, till the axis 7 = 0 for A = 0 (and empty for A < 0). Therefore,
the line A = 7 = 0 is a quite complex codimension-2 bifurcation: it is the limit of all bifurcation sets
(H,C,T'S, ST}y) in Figure 2; also it is the limit of the degenerate nodes A = 0, 7 # 0, in this section;
indeed the right homogenecous subsystem is a degenerate improper node (at infinity, as above) of the form

e 3}
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tau= -4.4721 ,T=1 ,Delta=-0.0001

tau= -4.4721 ,T=1 ,Delta=-20
7

\\ \
\

Fig. 3. From left to right, figures corresponding to Example 5.1: A = 3 (a), A = —0.0001 (b), A = —20 (c)

Proposition 5. Let us assume
b>0,D<0,T#0.

Then, for A =7 = 0 one has a codimension-2 bifurcation saddle/degenerate improper node. It is a limit
point of all the above codimension-1 bifurcations in Section 8 (1 =0,7 =715, 7 = 7%, 7T = Tk, k = 1,2,...),
in Section 4 (AA = 12) and in Proposition 4 (A =0).

Example 5.2. Figure 4 corresponds to D = —1,7 =1,b =1 and nearly A =0 and 7 = 0.

tau= -0.063246 ,T=1 ,Delta=-0.0001

5_-—-——,—’/

Fig. 4. Corresponding to the degenerate improper node bifurcation, A = 0.001, 7 = —0.0632 (D =-1,T=1,b=1)

If in addition T" = 0, then the saddle in the left halfspace becomes symmetric, so that also the
bifurcation set 7 =T = 0 in Proposition 1 converges to it.

Proposition 6. Let us assume
b>0,D<0.

Then, forT = A =7 =0 one has a codimension-3 bifurcation symmetric saddle/degenerate improper node,
which is a limit point of all the codimension-1 bifurcations above, as well as the codimension-2 bifurcations
A =71 =0 in Proposition 5 and the codimension-2 bifurcation T = 7 = 0 in Proposition 1.

Example 5.3. Figure 5 corresponds to T =A=7=0,D =—-1,b=1.
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tau=0,T=0 ,Delta=0

100 &
80

60

40

20 |

0

/A

-20 [/

-40

-60

-80
-100 ¢
L T I I

I I I I
-100 -80 -60 -40 -20 0 20 40 60 80 100

Fig. 5. Corresponding to the (OO)-bifurcation, A=7=7T=0 (D =-1,b=1)

6. The 3D bifurcation diagram when the left subsystem is a saddle

Putting together the above results, one obtains the 3D bifurcation diagram in Figure 11, where the hori-
zontal axes are the trace 7 and the determinant A of the right subsystem, whereas the vertical axis is the
trace T of the saddle in the left halfplane (its determinant D is assumed constant, D = —1).

So, the right subsystem is a degenerate node in the vertical plane A = 0 and a saddle in the back
halfplane A < 0. In the front halfspace A > 0, the parabolic cylinder 72 = 4A corresponds to improper
nodes, the points outside it (0 < A < (72/4)) correspond to nodes and the ones inside the parabolic
cylinder (A > (72/4)) correspond to spirals if 7 # 0 and centers if 7 = 0.

6.1. The saddle/spiral bifurcations

In the planes A =constant (A = 5 in the figure), inside the parabolic cylinder (that is, | 7 |< 70 = 2v/A)
one has the (7, 7)-diagram in [Ferrer et al., 2017]. Summarizing:

6.1.1. The hyperbolic periodic orbits

For 0 <| 7 |<| 77 |, such as P in the figure, a unique hyperbolic periodic orbit appears. For example, the
periodic orbit for 7 = 0.1 in Figure 7 and 7 = 0.172 in Figure 6, both for T = —-1,D = -1, A =5b=1
(being 7 = 0.742).

6.1.2. The (C)-bifurcations

For 7 = 0, one has a kind of degenerate Hopf bifurcation: the periodic orbit above becomes tangent to
the separating line, and the ones inside it form a continuum of (non-hyperbolic) periodic orbits. See the
transition in Figure 6.

6.1.3.  The (H)-bifurcations

For 7 = 7y, one has a bifurcation similar to the classical homoclinic ones: the periodic orbit for 7 < 7g
(see (5.1.1)) becomes a saddle-loop orbit. See the transition in Figure 7.

6.1.4. The tangency/saddle bifurcations (TSy)

There is a decreasing sequence 7, T2, 73, ... (converging to 7y if 7' < 0 or to 0 if T > 0) where the tangent
orbit (at the origin) goes to the saddle equilibrium point, after crossing the separating line 1,3,5,... times
respectively. See Figure 8 (where 77 = 0.742.)
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Fig. 6. From left to right, the (C)-transition corresponding to values: 7 = —0.2, 7=0,7=0.172 (D =-1, A =5,T = —1,
b=1)
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Fig. 7. From left to right, the (H)-transition corresponding to values: 7 = 0.1, 7 = 7y = 0.742, 7 = 0.85 (D = —1, A = 5,
T=-1,b=1)
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Fig. 8. From left to right, the tangency/saddle orbits corresponding to values: 73 = 0.745, 72 = 0.782, 77 = 1.145 (D = —1,
A=5T=-1,b=1)

For 1441 < 7 < 7} (respectively, 71 < T < 7p), the tangent orbit goes to infinity, after crossing the
separating line 2k 4+ 1 times (respectively, 1 time.) See in Figure 7, 7o < 7 = 0.85 < 7.

6.1.5. The saddle/tangency bifurcations (STy)

Analogously, there is an increasing sequence 7_1,7_2,... (converging to 7 if 7> 0 or to 0 if 7" < 0)
where the tangent orbit comes from the saddle equilibrium point, crossing the separating line 1,3,... times
respectively. See in Figure 9, 7_1 = —0.409.
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tau= -0.409 ,T=-1 Delta=5
T T

L L
-1 05 0 0.5

Fig. 9. Corresponding to a saddle/tangency orbit, 7—; = —0.409 (D = -1, A=5T=-1,b=1)

6.1.6. The (O)-bifurcation

For 7 =T = 0, a codimension-2 bifurcation appears: a saddle-loop, being (non hyperbolic) periodic all the
orbits inside it. See Figure 10.

tau= 0 ,T=0 ,Delta=5
T T T

L L L L L L L L
-1 0.8 -0.6 04 0.2 0 0.2 0.4 0.6 0.8

Fig. 10. Corresponding to the (O)-bifurcation, =T =0 (D =-1, A=5,b=1)

6.2. The saddle/node bifurcations

As we have seen, new bifurcations appear when the points on the parabolic cylinder or outside it are
considered.

6.2.1. The improper node bifurcation (IN)

In Section 4 we have enlarged the study in Section 6.1 to | 7 |> 79 = 2v/A, that is to say, to the whole
(T, 7)-plane A =constant: the spiral in the right halfplane for | 7 |< 79 becomes a node for | 7 |> 79, a

bifurcation appearing at | 7 |= 79, where the right subsystem is an improper node (Remark 5). See Figure
1 (b) (where D=—-1,A=5T=-1,b=1).

6.2.2. The degenerate node bifurcation (DN)

Till now, we have considered A > 0, constant. Now we consider decreasing values of A. Bearing in mind
6.2.1, we may assume the starting point outside the parabolic cylinder 72 = 4A, if 7 # 0. Clearly, the node
in the right halfplane will become a saddle for A < 0, towards a degenerate node (a "node at infinity”) for
A = 0. See Figure 3 (b) (where 7 = —4.4721, T =1,b=1).
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6.2.3.  The degenerate improper node bifurcation (DIN)

A codimension-2 bifurcation appears when A = 7 = 0 (T # 0) where the parabolic cylinder 72 = 4A and
the plane A = 0 are tangent: the right homogeneous subsystem is a degenerate improper node (Remark
5). See Figure 4 (where T'=1, b= 1).

6.3. The codimension-3 (OO0 )-bifurcation

Finally, see Figure 5 for A = 7 =T = 0: the particular case of (6.2.3) when the saddle in the left halfplane
is symmetric. Notice that in any neighborhood of it, all the other cases occur, both the structurally stable,
as well as all the bifurcations above.

7. Conclusion

We complete the study of the structural stability and the bifurcations of planar bimodal linear dynamical
systems when the left subsystem is a saddle. It gives a 3D bifurcation diagram containing a large catalogue
of codimension 1, 2 and 3 bifurcations. The axes are the traces of both subsystems and the determinant of
the right one, assuming constant the determinant of the saddle in the left halfplane.

The study starts from the definition of structural stability and the basic conditions for it in Sotomayor
and Garcia [2003]. By means of the reduced forms in Ferrer et al. [2010], one studies the saddle/spiral case in
Ferrer et al. [2014] (periodic orbits) and Ferrer et al. [2017] (saddle/tangency and tangency /saddle orbits.)
This study is enlarged in Ferrer et al. [2016] when the right subsystem is a node. Here we complete it (a
saddle in the right halfplane, new codimension-2 bifurcations, transversality of some bifurcation surfaces,...)
and we put together all the results in the referred 3D bifurcation diagram.
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