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Abstract

A diffusive ratio-dependent Holling-Tanner system subject to Neumann bound-

ary conditions is considered. The existence of multiple bifurcations, including

Turing-Hopf bifurcation, Turing-Truing bifurcation, Hopf-double-Turing bifur-

cation and triple-Turing bifurcation, are given. Among them, the Turing-Hopf

bifurcation are carried out in details by the normal form method. We theo-

retically prove that the system exists various spatio-temporal patterns, such

as, non-constant steady state, the spatially inhomogeneous periodic or quasi-

periodic solution, etc. Numerical simulations are presented to illustrate our

theoretical results.

Keywords: Holling-Tanner system; Turing-Hopf bifurcation; normal form; spa-

tially inhomogeneous quasi-periodic solution

1 Introduction

For a long time, the predator-prey models have received extensive concerns from

both mathematicians and biologists. The Lotka-Volterra model is one of the most

classical models and was first put forward in the 1920s. With the deepening of re-

search, this simplest ecological model is questioned because of its irrational assump-

tions and inaccurate predictions. In the 1960s, May [16] first make two adjustments

to it: addition the self-regulation of prey and the incorporation of a Holling type

II functional response function [9]. This model is also known as the Holling-Tanner

prey-predator model [26] and has the form















du

dt
= r1u(1−

u

k
)− quv

u+m
,

dv

dt
= r2v(1−

v

γu
),

(1.1)
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Here u(t), v(t) represent the densities of prey and predator, respectively. In addition,

the parameters have the following meanings:

• r1, r2 are the intrinsic growth rates of the prey and predator, respectively.

• k is the carrying capacity of the prey, and γu play the role as the prey-

dependent carrying capacity of the predator. γ is the conversion rate of prey

to predator birth, and can be seen as a measure of the quality of the prey as

food.

• q is the maximum value of prey consumed by per predator per unit time.

• m is a saturation value. It is the value of prey required to reach half of the

maximum rate of q.

The system (1.1) is regarded as one of the prototypical predatorprey models has

been extensively studied. A lot of interesting questions, such as the equivalence

between local and global stability, collapse of two limit cycles, the uniqueness of the

limit cycle and bifurcations, have been solved [4; 10; 11; 22; 27].

Further consider the influence of diffusion to (1.1), the two species may exhibit

inhomogeneous distribution in a spatial domain Ω ∈ R
n. Therefore, we should

consider the following reaction-diffusion system,











































du

dt
−D1∆u = r1u(1−

u

k
)− quv

u+m
, x ∈ Ω, t > 0,

dv

dt
−D2∆v = r2v(1−

v

γu
), x ∈ Ω, t > 0,

∂ηu = ∂ηv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

where η is the outward unit normal vector on ∂Ω, and D1,D2 are the diffusion co-

efficients of prey and predator, respectively. The no-flux boundary condition means

that the system is self-contained and closed to the exterior environment. For this

diffusion model, Peng and Wang in [17] investigated the existence and non-existence

of the non-constant steady state solutions. Furthermore, the parameter conditions

for global stability of positive constant steady state are given in [5; 18; 20; 23], re-

spectively. Li et al. [13] considered the Turing and Hopf bifurcations. Related work

on the modified system (1.2) can also be found in [6; 12; 19].

With a non-dimensionalized change of variables:

u→ u

k
, v → v

γk
, t → r1t.

and let

d1 =
D1

r1
, d2 =

D2

r1
, a =

qγ

r1
, r =

r2
r1
, b =

m

k
< 1.
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We obtain the simplified dimensionless ratio-dependent Holling-Tanner system with

diffusion










































d

dt
u− d1∆u = u(1− u)− auv

u+ b
, x ∈ Ω, t > 0,

d

dt
v − d2∆v = rv(1− v

u
), x ∈ Ω, t > 0,

∂ηu = ∂ηv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.3)

For system (1.3), Ma and Li [15] studied the Hopf bifurcation and the steady state

bifurcation of simple and double eigenvalues. Banerjee, M. and Banerjee, S. [2] in-

vestigated the Turing and non-Turing patterns with Ω is a two-dimensional bounded

connected square domain. The formation of various spatio-temporal patterns have

been extensively studied in recent years [3; 21; 24; 25; 28–30]. And Turing-Hopf

bifurcation can be regarded as one of the important mechanisms to generate the

spatio-temporal patterns. Study the Turing-Hopf bifurcation of the predator-prey

system can helps to understand more ecological phenomenas. Therefore, we will

study this problem in this Holling-Tanner system.

For convenience, we consider the spatial domain Ω = (0, lπ) with l ∈ R
+,











































d

dt
u− d1∆u = u(1− u)− auv

u+ b
, x ∈ (0, lπ), t > 0,

d

dt
v − d2∆v = rv(1− v

u
), x ∈ (0, lπ), t > 0,

ux(0, t) = vx(0, t) = 0, ux(iπ, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, lπ).

(1.4)

Choosing the birth ratio r and the domain size l as the main bifurcation parameters

to consider the Turing-Hopf bifurcation, we show that the system (1.4) exhibits a

variety of spatio-temporal patterns. Among them, the existence of the spatially

inhomogeneous quasi-periodic orbits is proved first time in both theoretically and

numerically, to the best of our knowledge. We point out that our results are follow

the algorithm in [1], which is mainly based on the central manifold theorem [14] and

the normal form theory [7].

The paper is organized as follows. In Section 2, we devote to the bifurcation

analysis of the ratio-dependent Holling-Tanner system (1.4). The conditions of

the existence of Hopf bifurcation, steady state bifurcation, Turing-Hopf bifurcat-

ing, Bogdanov- Tankens bifurcation, Hopf-double-zero bifurcation and Triple-zero

bifurcation are obtained. In Section 3, we give the detailed dynamics of the (1.4)

with the parameter near the Turing-Hopf singularity. Finally a conclusion section

complete the paper.
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2 Bifurcation analysis of the ratio-dependent Holling-

Tanner system

The system (1.4) has two non-negative constant steady states: (1, 0) and (u0, v0),

where

u0 = v0 =
1

2
[(1 − a− b) +

»

(a+ b− 1)2 + 4b] < 1,

satisfies (u0 − 1)(u0 + b) + au0 = 0. Among them, (1, 0) is always an unstable

equilibrium point. In this section, we will mainly study the effect of the birth

ratio r and the domain size l to the dynamics of system (1.4) near the coexistence

equilibrium point (u0, v0).

Define the real-valued phase space

X := {(u, v) ∈ H2(0, π) ×H2(0, π) : (ux, vx)|x=0,π = 0},

and the corresponding complex phase space XC := {x1 + ix2 : x1, x2 ∈ X},
By the translation û = u − u0, v̂ = v − v0 and the space scale x → x/l, the

system (1.4) can be written as an abstract equation in phase space XC,

d

dt
U = D(r, l)∆U + L(r, l)U + F (r, l, U). (2.1)

Here U = (û, v̂)T ∈ XC, D(r, l) =
1

l2
diag(d1, d2), L(r, l) : XC → XC is the linearized

operator given by

L(r, l) =

(

A0 B0

r −r

)

, (2.2)

with

A0 = 1− 2u0 −
abu0

(b+ u0)2
=

u0
b+ u0

(1− b− 2u0),

B0 = − au0
b+ u0

= u0 − 1 < 0.

F (r, l, ·) : XC → XC is a Ck (k ≥ 3) function and given by

F (r, l, φ) =

(

f1(r, l, φ) −A0φ1 −B0φ2

f2(r, l, φ) − rφ1 + rφ2

)

(2.3)

with

f1(r, l, φ) = (φ1 +u0)(1− φ1 − u0)−
a(φ1 + u0)(φ2 +v0)

φ1 + b+u0
,

f2(r, l, φ) = r(φ2 + v0)(1 −
φ2 + v0
φ1 + u0

),

for φ = (φ1, φ2) ∈ XC and satisfies F (r, l, 0) = 0, DφF (r, l, 0) = 0.
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The linearized system of (1.4) at (u0, v0) is

d

dt
U = D(r, l)∆U + L(r, l)U. (2.4)

And the corresponding characteristic equation is

∆(λ)y = λy −D(r, l)∆y − L(r, l)y = 0, (2.5)

for some y ∈ dom(∆)\{0}, which is equivalent to the sequence of characteristic

equations

λ2 − Tn(r, l)λ +Dn(r, l) = 0, n = 0, 1, 2, · · · (2.6)

with

Tn(r, l) = A0 − (d1 + d2)
n2

l2
− r,

Dn(r, l) = d2
n2

l2
(d1

n2

l2
−A0) + r(d1

n2

l2
−A0 −B0).

It is obvious that

Tn(r, l) < 0 ⇐⇒ r > rHn (l) := A0 − (d1 + d2)
n2

l2
,

Dn(r, l) > 0 ⇐⇒ r > rTn (l) := −d2
n2

l2
(d1

n2

l2
−A0)/(d1

n2

l2
−A0 −B0),

(2.7)

and we can get the following conclusion directly.

Lemma 2.1. For system (1.4), assume that a, r, l, d1, d2 > 0, 1 > b > 0. If a ≤
(b+ 1)2

2(1− b)
, then the constant steady state (u0, v0) of (1.4) is local asymptotic stability

for arbitrary r, l > 0.

Proof. Since a ≤ (b+ 1)2

2(1 − b)
, we have A0 ≤ 0. Which means rHn (l), rTn (l) ≤ 0 for all

l > 0 and n ∈ N. Consequently, we obtain Tn(r, l) < 0 and Dn(r, l) > 0 for arbitrary

r, l > 0 and n ∈ N. Or more precisely, all the eigenvalues of character equation (2.5)

have negative real part. This completes the proof.

In the following, we will mainly study the dynamics of the system (1.4) when

a >
(b+ 1)2

2(1− b)
. For the further study, we define two auxiliary functions

g1(x) =
d2x(A0 − d1x)

d1x−A0 −B0
, x ≥ 0,

and

g2(x) = A0 − (d1 + d2)x, x ≥ 0.

These two functions have the following properties.
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Proposition 2.1. Assume that d1, d2 > 0, 1 > b > 0, a >
(b+ 1)2

2(1 − b)
. Then we have

1.























g′1(x) > 0, when x ∈ [0, x̂),

g′1(x) = 0, when x = x̂, with x̂ =
1

d1
[(A0 +B0) +

»

B0(A0 +B0)] <
A0

d1
,

g′1(x) < 0, when x ∈ (x̂,+∞),

2. g1(0) = g1(
A0

d1
) = 0,

3. g2(x) is a linear decreasing function, and g2(0) = A0 > 0, g2(
A0

d1 + d2
) =

0, g2(
A0

d1
) < 0.

4. There is only one intersection point x̄ of g1(x) and g2(x) in the interval (0, A0

d1
).

Here x̄ =
1

2d21
[2d1A0 + (d1 + d2)B0 +

»

(d1 + d2)2B2
0 + 4d1d2A0B0].

5. rTn (l) = g1(
n2

l2
) ≤ g1(x̂), rHn (l) = g2(

n2

l2
) ≤ A0.

Proof. The proof is trivial and will be omitted.

It is easy to say that the characteristic equation (2.5) has pure imaginary eigen-

values for some r, l > 0 only when there exists a n ∈ N, such that Tn(r, l) =

0, Dn(r, l) > 0. Which can occurs if

r = rHn (l) > rTn (l) > 0, n ∈ N. (2.8)

And (2.5) has zero eigenvalues for some r, l > 0 if and only if there is a n ∈ N, such

that Dn(r, l) = 0. Which can occurs when

r = rTn (l) > 0, n ∈ N. (2.9)

With the combination of above analysis, we have the following conclusions about

the eigenvalues of the characteristic equation (2.5) with zero real part.

Lemma 2.2. Assume that d1, d2, r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1 − b)
. rHn (l), rTn (l) are

defined by (2.7). Let

lHn := n

 

1

x̄
, lTn := n

 

d1
A0
, ∀n ∈ N. (2.10)

And N1(l), N2(l) ∈ N are two non-negative integers, such that lHN1
< l ≤ lHN1+1, lTN2

<

l ≤ lTN2+1. Then we have:

1. The characteristic equation (2.5) has one pair of simple pure imaginary eigen-

values ±i
»

Dn(rHn (l), l) := ±iwn, when r = rHn (l) (0 ≤ n ≤ N1).

6



2. If 0 < l ≤
√

d1
A0

(i.e., N2 = 0), then the characteristic equation (2.5) has no

zero eigenvalues.

3. If l >
√

d1
A0

(i.e., N2 ≥ 1), then the characteristic equation (2.5) has at least

one zero eigenvalue when r = rTn (l) (1 ≤ n ≤ N2).

Proof. 1. According to 4 in Proposition 2.1, we have rHn (l) > rTn (l) (n ∈ N) only

when 0 < n2

l2
< x̄ (i.e., l > lHn ). From (2.8) and lHN1

< l ≤ lHN1+1, the existence

of the pure imaginary eigenvalues when r = rHn (0 ≤ n ≤ N1) has been proved.

Meanwhile, Tn(r, l) about r and n is a strictly monotonic function, which means

that Tn(r
H
n , l) = 0 (0 ≤ n ≤ N1) and Tj(r

H
n , l) 6= 0 (j 6= n). This completes the

proof.

2. Since A0 + B0 < 0, we can get rTn (l) > 0 (n ≥ 1) is equivalent to l > lTn and

rT0 = 0. If 0 < l ≤
√

d1
A0

, that means Dn(r, l) > 0 for all r > 0, which completes the

proof.

3. If l >
√

d1
A0

, then rTn (l) > 0 if and only if 1 ≤ n ≤ N2. From (2.9), the

statement is proved.

Further consider the impact of the domain size l on the system (1.4). Define the

following sets

LTT := {l ∈ S1 : r
T
i (l) = rTj (l), 1 ≤ i < j ≤ N2},

LTH := {l ∈ S2 : r
H
i (l) = rTj (l), 0 ≤ i ≤ N1 < j ≤ N2},

LTTH := {l ∈ S2 : r
H
i (l) = rTj (l) = rTk (l), 0 ≤ i ≤ N1 < j < k ≤ N2},

(2.11)

with S1 := (lTN2
, lTN2+1], S2 := (lHN1

, lHN1+1]∩(lTN2
, lTN2+1] and N2 ≥ 1. Each set has only

a limited number of elements, since they composed of the roots of a finite number

of polynomials which satisfy the condition l ∈ Si(i = 1, 2).

Example 2.1. Let d1 = 0.417243, d2 = 4.697383, a = 1.472554, b = 0.045949.

When N1 = 0, N2 = 3, we can calculate that LTT = {3.022593, 3.617713}, LTH =

{3.022593} and LTTH = {3.022593}.

If choose l = 3.022593, then we have

rH0 (l) = 0.501219, rHn (l) ≤ g1(x̄) (n ≥ 1),

rT1 (l) = 0.501219, rT2 (l) = 1.084062,

rT3 (l) = 0.501219, rTn (l) ≤ 0 (n ≥ 4).

For more intuitive understanding, please
refer to Figure 1.
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Benefit from (2.11), we have a more accurate conclusion about the eigenvalues

with zero real part in the following.

Theorem 2.1. Assume that d1, d2, r > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
, l >

√

d1
A0

. rHn (l),

rTn (l), LTT , LTH , LTTH are defined by (2.7) and (2.11), respectively.

1. If l /∈ LTT ∪ LTH , then the characteristic equation (2.5) has just one pair of

pure imaginary eigenvalues ±iωi when r = rHi (l) (0 ≤ i ≤ N1), and one zero

eigenvalue when r = rTj (l) (1 ≤ j ≤ N2).

2. If l ∈ LTH \ LTT , then the characteristic equation (2.5) has one pair of pure

imaginary eigenvalues ±iωi and one zero eigenvalue when r = rHi (l) = rTj (l).

Here 0 ≤ i ≤ N1 < j ≤ N2 are two non-negative integers which satisfy rHi (l) =

rTj (l).

3. If l ∈ LTT \ (LTH ∪ {lHN1+1}) (or l = lHN1+1 /∈ LTT ), then the character-

istic equation (2.5) has two zero eigenvalues when r = rTi (l) = rTj (l) (or

r = rHN1+1(l) = rSN1+1(l)). Here 1 ≤ i < j ≤ N2 are two non-negative in-

tegers which satisfy rTi (l) = rTj (l).

4. If l = lHN1+1 ∈ LTT , then the characteristic equation (2.5) has three zero eigen-

values when r = rHN1+1(l) = rTN1+1(l).

5. If l ∈ LTTH , then the characteristic equation (2.5) has one pair of pure imag-

inary eigenvalues ±iωi and two zero eigenvalues when r = rHi (l) = rTj (l) =

rTk (l). Here 0 ≤ i ≤ N1 < j < k ≤ N2 are three non-negative integers which

satisfy rTi (l) = rTj (l) = rTk (l).

Proof. Here we only give the proof of the first result, and the remainder of the

arguments is analogous to it. Due to l /∈ LTT ∪ LTH , we have

rHi (l) 6= rTn (l), ∀ 0 ≤ i ≤ N1, n ∈ N,

and

rTj (l) 6= rTn (l), ∀ 1 ≤ j ≤ N2, j 6= n ∈ N.

That is

Ti(r
H
i (l), l) = 0, Di(r

H
i (l), l) > 0, Tn(r

H
i (l), l) 6= 0, Dn(r

H
i (l), l), 6= 0, ∀n 6= i,

and

Tj(r
T
j (l), l) 6= 0, Dj(r

T
j (l), l) = 0, Tn(r

T
j (l), l) 6= 0, Dn(r

T
j (l), l), 6= 0, ∀n 6= j.

Thus when r = rHi (l) (0 ≤ i ≤ N1) (or r = rTj (l) (1 ≤ j ≤ N2)), all eigenvalues

except ±iωi (or 0) have non-zero real part. Which completes the proof.
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According to the properties of g1(x), g2(x) in Proposition 2.1, we know that

max
n≥0

rHn (l) = A0 > 0, and

max
n≥0

rTn (l) =



















0, if 0 < l ≤
 

d1
A0
,

max
1≤n≤N2

rTn (l) := r∗, if l >

 

d1
A0
.

(2.12)

Combine with (2.7) and the linear stability theory, we have the following result.

Theorem 2.2. For system (1.4), assume that d1, d2, r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
. Then the constant steady state (u0, v0) of (1.4) is locally asymptotically

stable when r > max{A0, r∗} and unstable when r < max{A0, r∗}.

Proof. If r > max{A0, r∗}, we have r > rHn and r > rTn , ∀n ∈ N. Which means

Tn(r, 0) < 0 and Dn(r, 0) > 0, ∀n ∈ N, thus all eigenvalues of (2.5) have strictly neg-

ative real part and (u0, v0) is locally asymptotically stable. When r < max{A0, r∗},
we have either T0(r, 0) > 0 or Dn∗(r, 0) < 0 for some n∗ ∈ N. That means there

exists at least one dimensional unstable manifold near (u0, v0). Thus (u0, v0) is

unstable.

Form the bifurcation theory, it is easy to know that with the decrease of the birth

ratio r, the system (1.4) will exhibit different dynamic behaviors when r reaches the

value of A0 first or r∗. Thus, it is meaningful to study the size of A0 and r∗.

Through some simple calculations, we can calculate that

A0 − g1(x̂) =
1

d1
[(d1 + d2)A0 + 2d2B0 + 2d2

»

B0(A0 +B0)]

: = h1(d1, d2, A0, B0) · h2(u0, a, b, d1, d2) · h3(a, b, d1, d2),
(2.13)

with

h1(d1, d2, A0, B0) =
A0

d1[2d2
»

B0(A0 +B0)− (d1 + d2)A0 − 2d2B0]
,

h2(u0, a, b, d1, d2) =
u0

(b+ u0)[(d1 − d2)2a+ (d1 + d2)2
»

(a+ b− 1)2 + 4b]
,

h3(a, b, d1, d2) = [(d1+d2)
4−(d1−d2)4]a2+2(d1+d2)

4(b−1)a+(d1+d2)
4(b+1)2.

With regard to the size of A0 and g1(x̂), we give the following conclusion.

Lemma 2.3. Assume that d1, d2, r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
.

1. A0 > g1(x̂) if the parameters also meet one of the following conditions

(1) d1 ≥ d2,

(2) d1 < d2, 0 < b ≤ b∗, 0 < a < a− or a > a+,

9



(3) d1 < d2, b∗ < b < 1,

2. A0 = g1(x̂) if d1 < d2, 0 < b ≤ b∗, a = a− or a = a+,

3. A0 < g1(x̂) if d1 < d2, 0 < b ≤ b∗, a− < a < a+.

Here

b∗ :=
[(d1 + d2)

2 −
»

(d1 + d2)4 − (d1 − d2)4]
2

(d1 − d4)4
< 1,

a± :=
(1−b)(d1+d2)4±(d1+d2)

2
»

(b+1)2(d1−d2)4−4b(d1+d2)4

(d1+d2)4−(d1−d2)4
.

(2.14)

Proof. If d1 ≥ d2, then A0 − g1(x̂) ≥ 2d2
d1
[A0 + B0 +

»

B0(A0 +B0)] > 0. This

complete the proof of (1) in the first part.

If d1 < d2, then it is easy to show that h1(d1, d2, A0, B0) > 0 and h2(u0, a, b, d1, d2) >

0. Thus, the sign of A0−g1(x̂) is the same as h3(a, b, d1, d2). Thanks to h3(a, b, d1, d2)

is a parabolic equation respect to a, we can apply the discriminant ∆a = 4(d1 +

d2)
4[(d1 − d2)

4(b + 1)2 − 4(d1 + d2)
4b] to distinguish its sign. A short calculation

revealed that ∆a ≤ 0 when b∗ ≤ b < 1 and ∆a > 0 if 0 < b < b∗. Moreover, a = a±

are the roots of h3(a, b, d1, d2) = 0 when ∆a > 0. Then the remaining parts of the

lemma follow immediately from what we have proved.

When A0 < g1(x̂), solving x from the equation A0 = g1(x) in the interval

x ∈ (0, A0/d1), we get two points x− < x+ with the form

x± =
1

2d1d2
[(d2 − d1)A0 ±

»

(d1 + d2)2A
2
0 + 4d1d2A0B0]. (2.15)

Applying Lemma 2.3, we can obtain the size of the value between A0 and r∗.

Theorem 2.3. For system (1.4), assume that d1, d2, r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
. r∗, b∗, a±, x± are defined by (2.12), (2.14) and (2.15), respectively. Let

l−n := n

 

1

x−
, l+n := n

 

1

x+
, ∀n ∈ N. (2.16)

AndM1(l),M2(l) ∈ N are two non-negative integers, such that l−M1−1 ≤ l < l−M1
, l+M2

<

l ≤ l+M2+1. Then we have:

1. A0 > r∗ if and only if one of the following is satisfied

(A1) 0 < l ≤
√

d1
A0

,

(A2) d2 ≤ d1,

(A3) d2 > d1, b∗ < b < 1,

(A4) d2 > d1, 0 < b ≤ b∗, 0 < a < a− or a > a+,

10



(A5) d2 > d1, 0 < b ≤ b∗, a = a− or a = a+, but l
√
x̂ /∈ N,

(A6) d2 > d1, 0 < b < b∗, a− < a < a+, M1(l) > M2(l) and l
√
x−, l

√
x+ /∈ N.

2. A0 = r∗ if and only if one of the following is satisfied

(A5
′
) d2 > d1, 0 < b ≤ b∗, a = a− or a = a+, and l = n

»

1
x̂
, n ∈ N,

(A6
′
) d2 > d1, 0 < b < b∗, a− < a < a+, M1(l) > M2(l) and l = n

√

1
x−

or

l = n
√

1
x+

, n ∈ N.

3. A0 < r∗ if and only if

(A6
′′
) d2 > d1, 0 < b < b∗, a− < a < a+, M1(l) ≤M2(l). Moreover, A0 < rTn
only when M1 ≤ n ≤M2.

Proof. First of all, it is clear that r∗ = 0 if (A1) hold, so naturally we get A0 > r∗.

Next, when parameters meets one of (A2) − (A4), it follows from Lemma 2.3 that

A0 > g1(x̂) ≥ r∗. The condition (A5) implies A0 = g1(x̂) and rTn 6= g1(x̂) for

all n ∈ N, which means A0 = g1(x̂) > r∗. But if (A5
′
) hold, it is going to be

A0 = g1(x̂) = r∗, since it implies that there exists a n∗ ∈ N such that n2
∗

l2
= x̂ and

rTn∗
= g1(x̂) = r∗.

Finally, under the condition of d2 > d1, 0 < b < d, a− < a < a+ , benefit

from Lemma 2.3 we get rTn > A0 for some n ∈ N only when l+n < l < l−n . When

M1(l) > M2(l), we obtain that







l ≥ l−M1−1 ≥ l−n , ∀n ≤M2 ≤M1 − 1 < M1

l ≤ l+M2+1 ≤ l+n , ∀n > M2

thus rTn ≤ A0 for any n ∈ N. Moreover, if l
√
x− and l

√
x+ /∈ N (i.e., the condition

(A6) is satisfied), it means A0 6= rTn for all n ∈ N, thus A0 > r∗ is proved. But if

l
√
x− ∈ N or l

√
x+ ∈ N (i.e., (A6

′
) is satisfied), it is easy to get rTn∗

= A0, thus

A0 = r∗ is proved. When M1(l) ≤M2(l), (i.e., (A6
′′
) is satisfied), we have



















l ≥ l−M1−1 ≥ l−n , ∀n < M1,

l+n ≤ l+M2
< l < l−M1

≤ l−n , ∀M1 ≤ n ≤,M2

l ≤ l+M2+1 ≤ l+n , ∀n > M2.

Thus A0 < r∗ and A0 < rTn if and only ifM1 ≤ n ≤M2. The proof is completed.

So far, we have analyzed the distribution of eigenvalues with zero real part in

Theorem 2.1 and the size of A0, r∗ in Theorem 2.3. Based on these conclusions, we

obtain the following bifurcation theorems.

Theorem 2.4 (Hopf bifurcation). For system (1.4), assume that d1, d2, r, l > 0,

1 > b > 0, a >
(b+ 1)2

2(1 − b)
. If l /∈ LTT∪LTH, then the system (1.4) undergoes a Hopf bi-

furcation when r = rHn (l) (0 ≤ n ≤ N1). The bifurcating periodic solution is spatially
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homogeneous if it bifurcate from r = rH0 (l) = A0 and spatially inhomogeneous if it

bifurcate from r = rHn and 1 ≤ n ≤ N1. Furthermore, the bifurcation solutions can be

stable only when a, b, d1, d2, l also meet one of (A1)-(A6) and r = rH0 (l) = A0. (i.e.,

if a, b, d1, d2, l meet one of (A1)-(A6) and r = rHn (l) (1 ≤ n ≤ N1), or a, b, d1, d2, l

meet (A6
′′
) and r = rHn (l) (0 ≤ n ≤ N1) the bifurcation solutions are unstable. )

Proof. Since l /∈ LTT∪LTH , then the parameters can not meet the condition (A5
′
) or

(A6
′
). Due to the fact that

∂Tn(r, l)

∂r
= −1 < 0, the existence of the Hopf bifurcation

at r = rHn (l) (0 ≤ n ≤ N1) is a direct consequent of Theorem 2.1. Further assume

that the parameters meet one of (A1)-(A6), then we have T0(r
H
n (l), l) > 0 when

1 ≤ n ≤ N1, since r
H
0 (l) > rHn (l). That means there exist at least one eigenvalue

of (2.5) have positive real part when r = rHn and 1 ≤ n ≤ N1, thus the periodic

solutions which bifurcate from r = rHn (1 ≤ n ≤ N1) are unstable. If the parameters

meet (A6
′′
), the statement can be proved in the same way as above.

Theorem 2.5 (Turing bifurcation). For system (1.4), assume that d1, d2, r > 0,

1 > b > 0, a >
(b+ 1)2

2(1− b)
. If l >

√

d1
A0

and l /∈ LTT ∪ LTH , then the system (1.4)

undergoes a steady state bifurcation when r = rTn (l) (1 ≤ n ≤ N2). Moreover, the

bifurcation solutions can be stable only when a, b, d1, d2, l also meet (A6
′′
) and r = r∗.

Theorem 2.6 (Turing-Hopf bifurcation). For system (1.4), assume that d1, d2,

r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
. If l ∈ LTH , then system (1.4) undergoes a

Turing-Hopf bifurcation at r = rHi (l) = rTj (l) (0 ≤ i ≤ N1 < j ≤ N2). Moreover,

the bifurcation solutions can be stable only when a, b, d1, d2, l also meet one of (A5
′
)-

(A6
′
) and r = A0 = r∗.

Theorem 2.7 (Turing-Turing bifurcation). For system (1.4), assume that d1,

d2, r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
. If l ∈ LTT \ (LTH ∪ {lHN1+1}) (or l =

lHN1+1 /∈ LTT ), then system (1.4) undergoes a Turing-Turing bifurcation when r =

rTi (l) = rTj (l) with 1 ≤ i < j ≤ N2 (or r = rHN1+1(l) = rTN1+1(l)). Moreover,

the bifurcation solutions can be stable only when a, b, d1, d2, l also meet (A6
′′
), and

r = rTi (l) = rTj (l) = r∗ (1 ≤ i < j ≤ N2).

Theorem 2.8 (Hopf-double-Turing bifurcation). For system (1.4), assume that

d1, d2, r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1 − b)
. If l ∈ LTTH, then the system (1.4)

undergoes a Hopf-double-zero bifurcation at r = rHi (l) = rTj (l) = rTk (l) (0 ≤ i ≤
N1 < j < k ≤ N2). Moreover, the bifurcation solutions can be stable only when

a, b, d1, d2, l also meet one of (A5
′
)-(A6

′
), and r = rH0 (l) = rTj (l) = rTk (l) = A0

(N1 + 1 ≤ j < k ≤ N2).

Theorem 2.9 (Triple-Turing bifurcation). For system (1.4), assume that d1, d2,

r, l > 0, 1 > b > 0, a >
(b+ 1)2

2(1− b)
. If l = lHN1+1 ∈ LTT , then system (1.4) undergoes

12



a triple-Turing bifurcation at r = rHN1+1(l) = rTN1+1(l). Moreover, the bifurcation

solutions are always unstable.

Theorem 2.4 - Theorem 2.9 are intended solely as a brief summary and not as

a rigorous development. The strict proof of Theorem 2.5 - 2.9 follows in a similar

manner of the proof in Theorem 2.4. In the above bifurcation theorems, the stability

of some bifurcation solutions can not be determined by the current analysis. We list

them at here. To give back all the current analysis results to the system (1.4), we

have the following conclusion.

Remark 2.1. The two species of system (1.4) will gradually tend to be uniform in

the spatial domain with the increase of the birth ratio r. The size of the spatial do-

main is sufficiently large (l >
√

d1
A0

) and the diffusion coefficient satisfies d2 > d1 are

two necessary conditions for these two species to exhibit the spatially inhomogeneous

patterns.

3 Spatio-temporal patterns in Holling-Tanner system

with a Turing-Hopf singularity

In this section, we will give a more detailed study of the Holling-Tanner system

(1.4) with the parameters (r, l) near the Turing-Hopf bifurcation point. Assume

that the parameters a, b, d1, d2 are satisfy one of the conditions (A5
′
)-(A6

′
). Let

l∗ ∈ LTH such that r∗ = rTn∗
(l∗) = A0 for some n∗ ∈ N. It is obvious that (r∗, l∗) is a

Turing-Hopf bifurcation point, which satisfies the hypothesis (H1), (H3) and (H4)

in [1].

We adopt the frame and notations of [1]. Choosing

BC := {ψ : [−1, 0] → XC : ψ is continuous on [−1, 0), ∃ lim
θ→0−

ψ(θ) ∈ XC}

as the phase space. Taking the transformation (α1, α2) = (r−r∗, l−l∗) and rewriting

(2.1) into a abstract ordinary differential equation in BC,

d

dt
U t = AU t +X0[

1

2!
F

(2)
0 (α1, α2, U) +

1

3!
F

(3)
0 (α1, α2, U) + · · · ], (3.1)

with Aϕ = ϕ̇+X0[D(r∗, l∗)∆ϕ(0) + L(r∗, l∗)(ϕ) − ϕ̇(0)] and

F
(2)
0 (α1, α2, U) = 2{ ∂

∂r
[D(r∗, l∗)∆ + L(r∗, l∗)]α1U +

∂

∂l
[D(r∗, l∗)∆ + L(r∗, l∗)]α2U}

+
∂2

∂û2
F (0, 0)û2 + 2

∂2

∂ûv̂
F (0, 0)ûv̂ +

∂2

∂v̂2
F (0, 0)v̂2,

F
(3)
0 (0, 0, U) =

∂3

∂û3
F (0, 0)û3 + 3

∂3

∂û2v̂
F (0, 0)û2v̂ + 3

∂3

∂ûv̂2
ûv̂2 +

∂3

∂v̂3
v̂3.

According to the direct sum decomposition of BC about the characteristic subspaces
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of {±iω, 0}, we decompose U t ∈ BC into

U t(θ) = φ1(θ)z1βn1
+ φ̄1(θ)z̄1βn1

+ φ2(θ)z2βn2
+ y(θ).

There are a series of coordinate transformations (z, y) → (z + 1
j!U

1
2 (z), y +

1
j!U

2
2 (z))

as shown in [1], that make the system (3.1) homeomorphic to a new system with

y(θ) = 0 is a local central manifold of it. Moreover, the solutions of (3.1) are

homeomorphic to the solutions of the new system restrict on central manifold that

have the form as

W (t) = φ1(0)z1βn1
+ φ̄1(0)z̄1βn1

+ φ2(0)z2βn2
. (3.2)

Here

ż1 = iω0z1+
1

2
f11α1z1

α1z1+
1

2
f11α2z1

α2z1+
1

6
g11210z

2
1 z̄1+

1

6
g11102z1z

2
2 +O(4),

˙̄z1 =− iω0z̄1+
1

2
f11α1z1

α1z̄1+
1

2
f11α2z1

α2z̄1+
1

6
g11210z1z̄

2
1+

1

6
g11102z̄1z

2
2 +O(4),

ż2 =
1

2
f13α1z2

α1z2+
1

2
f13α2z2

α2z2+
1

6
g13111z1z̄1z2+

1

6
g13003z

3
2 +O(4),

(3.3)

with the coefficients can be obtained by the computer program, which is fully de-

pends on the formulas that proposed in [1, Section 3]. Moreover, equation (3.3) is

called a normal form for (3.1) (or (1.4)) relative to {±iω, 0}.
For an example, take a = 0.6018, b = 0.0077, d1 = 0.4000, d2 = 19.3700

in (1.4). The bifurcation diagram of the nontrivial equilibrium point (u0, v0) =

(0.4093, 0.4093) in r − l plane is shown in Figure 2. The dotted lines and the solid

line represent the steady state bifurcation curves (i.e., r = rTn (l)) and the Hopf bifur-

cation curve (i.e., r = rHn (l) > rTn (l)), respectively. TH1-TH3 are the Truing-Hopf

bifurcation points, which are the intersections of the solid line and the dotted lines.

TT1-TT3 are the Turing-Turing bifurcation points, which are the intersections of

the dotted lines.

In the following, we are going to work on the detailed dynamics of (1.4) with the

parameters (α, l) near the Turing-Hopf bifurcation point TH1. Here l∗ = 1.593334 ∈
LTH , and

A0 = rH0 (l∗) = 0.170468, rHn < 0 (n ≥ 1),

r∗ = rT1 (l∗) = 0.170468, rTn < 0 (n ≥ 2).

Furthermore, the characteristic equation (2.5) has one pair of pure imaginary roots

±0.267646i and a zero root, when (r, l) = (r∗, l∗). Based on the algorithm in [1,

Section 3], the normal forms (3.3) of (1.4) with the Turing-Hopf singularity (α∗, l∗)
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Figure 2: Bifurcation sets with parameters in r − l plane

can be obtained directly, and the coefficients in (3.3) are

f11α1z1
= −1.0000 + 1.5701i, f11α2z1

= 0,

f13α1z2
= −0.1484, f13α2z2

= 0.3645,

g11210 = −0.3026 − 4.8696i, g11102 = 1.3640 − 10.1736i,

g3111 = −1.3543, g13003 = 0.1241.

Taking the cylindrical coordinate transformation

z1 = R cos θ + iR sin θ, z̄1 = R cosΘ− iR sinΘ, z2 = V,

and the re-scaling

ρ =

 

|Re(g11210)|
6

R, v =

 

|g13003|
6

V.

We get the equivalent planar system of (3.3)

dρ

dt
= −ρ[ǫ1(α1, α2) + ρ2 + b0v

2],

dv

dt
= −v[ǫ2(α1, α2) + c0ρ

2 + d0v
2].

(3.4)

Here b0 = −10.9918, c0 = 4.4751, d0 = −1 and

ǫ1(α1, α2) = 0.5000α1 ,

ǫ2(α1, α2) = 0.0742α1 − 0.1822α2.
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There are four positive equilibrium points in the planar system (3.4)

E1 = (0, 0), for all ǫ1, ǫ2,

E2 = (
√
−ǫ1, 0), for ǫ1 < 0,

E3 = (0,
√
ǫ2), for ǫ2 > 0,

E4 = (

 

b0ǫ2 − d0ǫ1
d0 − b0c0

,

 

c0ǫ1 − ǫ2
d0 − b0c0

), for b0ǫ2 − d0ǫ1, c0ǫ1 − ǫ2 > 0.

The linearized equation at each equilibrium point is

d

dt

Ñ

ρ

v

é

= −
(

ǫ1 + 3ρi + b0vi 2b0ρivi

2c0ρivi ǫ2 + c0ρ
2
i + 3d0v

2
i

)

Ñ

ρ

v

é

with (ρi, vi) = Ei (i = 1, 2, 3, 4). By analyzing the corresponding characteristic

equations, the bifurcation set in (α1, α2) plane is obtained and shown in Figure 3.

There are seven bifurcation lines L1 − L7 that divide the (α1, α2) plane into seven

regions D1 −D7, the detailed dynamics of (3.4) in each region have been shown in

figure 3. The deeper details please refer to the Case VIIa in [8, Chap.7]. According

to [1, Section 4], we list the corresponding relationship between the solution of the

plane system (3.4) and the original system (1.4) in Table 1.

Table 1:
Planar system Holling-Tanner system (1.4)

E1 Constant steady state (u0, v0)
E2 Spatially homogeneous periodic solution
E3 Non-constant steady state
E4 Spatially non-homogeneous periodic solution

Periodic solution Spatially non-homogeneous quasi-periodic solution

For the original Holling-Tanner system (1.4), the detailed kinetic properties can

be described as follows. When the parameters (α1, α2) belongs to D1, there are

one stable constant steady state (u0, v0) and two unstable non-constant steady state

coexist in the system (1.4). In Figure 5, we give a simulation with parameters in

D1, and the solution eventually stabilize to (u0, v0).

As the parameters pass through the pitchfork line L1 of (u0, v0) from D1 to D2,

a stable spatially homogeneous periodic solution is generated and the equilibrium

loses its stability at the same time. In Figure 6, (α1, α2) are chosen in D2, and the

stable spatially homogeneous periodic solution are shown.

In D3, the two unstable non-constant steady states disappeared due to the ex-

istence of another pitchfork bifurcation curve L2 of (u0, v0). The spatially homoge-

neous periodic solution is still a stable attractor of (1.4). We simulate the dynamics

with (α1, α2) ∈ D3 in Figure 7.

With the parameters (α1, α2) move to D4 and pass through the curve L3, the sys-

tem (1.4) undergoes a pitchfork bifurcation at the spatially homogeneous periodic
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• L1 : α1 = 0, α2 < 0;

• L2 : α1 < 0, α2 = 0.4072α1;

• L3 : α1 < 0, α2 = −11.8738α1;
(i .e., c0ǫ1(α1, α2)− ǫ2(α1, α2) = 0)

• L4 : α1 = 0, α2 > 0;

• L5 : α1 > 0, α2 = 1.3614α1;

• L6 : α1 > 0, α2 = 0.4072α1;

• L7 : α1 > 0, α2 = 0.1575α1;
(i .e., b0ǫ2(α1, α2)− d0ǫ1(α1, α2) = 0)

Figure 3: Bifurcation set in (α1, α2) plane

v v v

v

v

vv

ρ

ρ

ρ

ρ

ρρ

ρ

D1 D2 D3 D4

D5 D6 D7

Figure 4: Phase portraits in D1-D7
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(a) u(t, x) (b) v(t, x)

Figure 5: A stable constant steady state (u0, v0) in D1, with (α1, α2) =
(0.0373,−0.0543) and the initial functions are u0(x) = v0(x) = u0 + 0.01 sin 6x.

(a) u(t, x) (b) v(t, x)

Figure 6: A stable spatially homogeneous periodic solution in D2, with (α1, α2) =
(−0.0344,−0.0578) and initial functions are u0(x) = v0(x) = u0 + 0.05 sin 6x.

(a) u(t, x) (b) v(t, x)

Figure 7: A stable spatially homogeneous periodic solution in D3, with (α1, α2) =
(−0.0325, 0.0356) and the initial functions are u0(x) = v0(x) = u0 + 0.05 sin 6x.
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(a) u(t, x) (b) v(t, x)

Figure 8: A stable spatially non-homogeneous periodic solution in D4, with
(α1, α2) = (−0.0030, 0.0888) and the initial value functions are u0(x) = v0(x) =
u0 + 0.05 sin 2x.

solution. The directly result is two symmetric stable spatially non-homogeneous

periodic solutions are emerged in D4, while the spatially homogeneous periodic so-

lution loses its stability. In Figure 8- Figure 9, parameters are chosen in D4, and

we find two spatially non-homogeneous periodic solutions coexist with the spatial

amplitude is not very large.

(a) u(t, x) (b) v(t, x)

Figure 9: A stable spatially non-homogeneous periodic solution in D4, with
(α1, α2) = (−0.0030, 0.0888) and the initial value functions are u0(x) = v0(x) =
u0 − 0.05 sin 2x.

In D5, the unstable spatially homogeneous periodic solution disappeared, once

again, because the existence of the pitchfork line L4 of (u0, v0). The symmetric

spatially non-homogeneous periodic solutions are still stable and we shown them in

Figure 10- Figure 11. Compared with Figure 8 Figure-9, the spatial amplitude of

the solutions is lager and the oscillation about time becomes smaller in Figure 10-

Figure11.

L5 is a Hopf curve of the spatially non-homogeneous quasi-periodic solutions. As

a result, two symmetric stable spatially non-homogeneous quasi-periodic solutions

are bifurcated from the spatially non-homogeneous periodic solutions in D6. Chosen
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(a) u(t, x) (b) v(t, x)

Figure 10: A stable spatially non-homogeneous periodic solution in D5, with
(α1, α2) = (0.0352, 0.0817) and the initial value functions are u0(x) = v0(x) =
u0 + 0.05 sin 2x.

(a) u(t, x) (b) v(t, x)

Figure 11: A stable spatially non-homogeneous periodic solution in D5, with
(α1, α2) = (0.0352, 0.0817) and the initial value functions are u0(x) = v0(x) =
u0 − 0.05 sin 2x.
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(α1, α2) ∈ D6, two spatially non-homogeneous quasi-periodic solutions are found in

Figure 12- Figure13.

(a) u(t, x) (b) v(t, x)
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(d) v(t, 0)

Figure 12: A stable spatially non-homogeneous quasi-periodic solution in D6,
with (α1, α2) = (0.0405, 0.0449) and the initial value functions are u0(x) = u0 +
0.05 sin x, v0(x) = u0 − 0.05 sin x.

In D7, the constant steady state (u0, v0) becomes stable. Meanwhile two non-

constant steady states appear and both of them are saddle points. The reason is also

the pitchfork bifurcation of (u0, v0) occurs at L6. It is worth noting that, we also

observed the existence of the spatially non-homogeneous quasi-periodic solutions in

the corresponding numerical experiments. Which means there are three possible

attractors coexist in the Holling-Tanner system (1.4) with parameters (α1, α2) ∈ D6

and close to origin. We show these dynamical behaviors in Figure 14-Figure 16.

4 Conclusion

A comprehensive investigation of the bifurcations of the modified Holling-Tanner

systems at the positive equilibrium (u0, v0) is given, and the spatio-temporal patterns

induced by Turing-Hopf bifurcation are identified. The parameter ranges of the

existence of multiple bifurcations are demonstrated.

All the parameters in (1.4) can be divided into three parts: the diffusion coeffi-

cients (d1, d2), the auxiliary parameter (a, b) and the main parameters (r, l). When

a ≤ (b+1)2

2(1−b) , the predator-prey system will eventually tend to balance in both time

and space. When a > (b+1)2

2(1−b) , the diffusion coefficients d2 > d1 is a necessary condi-

tion for the system to form the spatial inhomogeneous patterns. That means, if the
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Figure 13: A stable spatially non-homogeneous quasi-periodic solution in D6,
with (α1, α2) = (0.0405, 0.0449) and the initial value functions are u0(x) = u0 −
0.05 sin x, v0(x) = u0 + 0.05 sin x.
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Figure 14: A stable spatially non-homogeneous quasi-periodic solution in D7, with
(α1, α2) = (0.0220, 0.0082) and the initial value functions are u0(x) = v0(x) =
u0 + 0.05 sin x.
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Figure 15: A stable spatially non-homogeneous quasi-periodic solution in D7, with
(α1, α2) = (0.0220, 0.0082) and the initial value functions are u0(x) = v0(x) =
u0 − 0.05 sin x..

(a) u(t, x) (b) v(t, x)

Figure 16: A stable constant steady state (u0, v0) in D7, with (α1, α2) =
(0.0220, 0.0082) and the initial value functions are u0(x) = v0(x) = u0 + 0.05 sin 6x.
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predator moves faster than prey, then the non-uniformly distribution of these two

species in space are more likely to occur. Moreover, the large birth ratio r = r2/r1

of predator to prey is beneficial to the stability of the Holling-Tanner system, and

the small spatial domains l is not possible for the formation of the spatial patterns

has been shown in our results.

The study of the synergistic effects of the two parameters (r, l) on the Holling-

Tanner system indicated that, the large space regions provide the possibility for

the existence of more kinds of bifurcations and various spatio-temporal patterns.

Among these possible bifurcations types, Turing-Hopf bifurcation is be mainly stud-

ied in this work and a wealth of self-organized spatio-temporal patterns generated

of the Holling-Tanner system. It is worth mentioning that, the stable spatially non-

homogeneous periodic or quasi-periodic solution can not be bifurcated by a simple

Hopf bifurcation or steady state bifurcation in the reaction diffusion system subject

to homogeneous Neumann boundary condition.

Compare the illustrations in Figure 12 and Figure 14, we observed that the

time-period of the spatially non-homogeneous quasi-periodic solution becomes large

when the parameters is far away from L5. But the eventually state of such solutions

with the parameters continue to move away L5 and close to L7 is almost nothing

to know. We conjecture that these solutions will break up due to the occurrence of

some bifurcation. In order to verify it, higher order normal form and some global

analysis methods are required.
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