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The properties of complex networks derived from applying a compression algorithm to time series
subject to symbolic ordinal-based encoding is explored. The information content of compression
codewords can be used to detect forbidden symbolic patterns indicative of nonlinear determinism.
The connectivity structure of ordinal-based compression networks summarized by their minimal
cycle basis structure can also be used in tests for nonlinear determinism, in particular, detection
of time irreversibility in a signal.
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1. Introduction

We present in this paper an investigation of properties of a compression network [Walker et al., 2018]
constructed using an ordinal-based symbolic encoding [Amigo, 2010]. A compression network is a complex
network constructed with the codewords of a data compression algorithm [Welch, 1984] applied to scalar
time series data. A complex network is a mathematical graph G = (V,E) consisting of a set of vertices
V and a set of edges E describing the connectivity of the vertices. In a compression network the vertices
are data compression codewords and the edges indicate which codewords succeed others in a compressed
time series. Previously, we showed that the properties of the structure of compression networks capture the
information content of time series [Walker et al., 2018]. Here we are interested in what useful information
towards detecting determinism in times series can be extracted from these complex network representations
of compression algorithms.
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In earlier work [Walker et al., 2018], we discovered that the number of unused codewords in the
compression dictionary — those not emitted in the compressed time series and therefore corresponding
to degree zero vertices in the compression network — in a data compression dictionary of percentile-
based encoded symbolic time series is useful as a discriminating statistic in the standard surrogate data
tests [Theiler et al., 1992]. Here, we show that the structure of the largest connected component of a
compression network, i.e., the used codewords — those emitted in the compression time series — can be
used to test for time irreversibility, provided the symbolic encoding of the time series is ordinal-based.

Chaotic dynamics are necessarily nonlinear and so it is useful to develop further methods for detecting
nonlinearity from time series measurements. Theiler et al. [1992] proposed a suite of hypothesis tests using
surrogate data to reject the possibility of the observed dynamics being consistent with linear processes.
Despite these tests being able to distinguish a wide range of linear processes — that the observed data is
consistent with a static monotonic nonlinear transformation of Gaussian noise — it is not difficult to find
a situation incompatible with the hypothesis, e.g., consider a non-monotonic nonlinear transformation. A
test which can potentially deal with the aforementioned generality is to test a time series for reversibility,
also referred to as testing for time irreversibility, time symmetry or time asymmetry.

In Kennel’s words “Time symmetry, often called statistical time reversibility, in a dynamical process
means that any segment of time series output has the same probability of occurrence in the process as its
time reversal.” [Kennel, 2004]. It is known that independently identically distributed (iid) linear Gaussian
noise is time reversible [Diks et al., 1995] and thus the ability to detect irreversibility in a time series is an
indication of nonlinear determinism. Donges et al. [2013] point out, however, that testing the above time
symmetry condition explicitly is practically infeasible due to the difficulty of estimating high dimensional
probability distributions from limited data. Instead they advise comparing empirical distributions of certain
statistical characteristics obtained from a time series and its time reversal. In [Donges et al., 2013] they
construct visibility graphs and compare properties of these graphs to identify time irreversibility. Kennel
[2004] considered the difference in compression achieved from data compression dictionaries from forward
and reverse scans of the time series, e.g., can the data compression dictionary obtained from a forward
pass of a segment of the data compress a reverse pass of the time series as well as a data compression
dictionary constructed from a reverse sweep and vice-versa? In the context of cardiovascular data analysis,
Humeau-Heurtier et al. [2012] have also employed data compression ideas to test for time irreversibility.
Here we investigate the connectivity structure of the largest connected component of a compression network
to detect time irreversibility of time series.

In particular, we study the distribution of cycle lengths in a minimal cycle basis [Mehlhorn & Michail,
2006] of a binary reduction of the largest connected component of forward and reverse compression networks
and test if there is statistically significant difference for chaotic sources. Important, however, is the process
of symbolic encoding of the time series before applying the compression algorithm. We discovered that a
straightforward percentile-based encoding did not provide enough resolution to detect differences between
forward and reverse compression networks. Instead we find that an ordinal-based symbolic encoding endows
the resulting compression networks with a cyclic structure that can detect time irreversibility.

We also note that the symbolic form of the codewords in a data compression dictionary provides a
further indicator of nonlinear determinism in a fashion similar to the way forbidden patterns of symbols in
ordinal partitions indicate determinism [Amigo, 2010]. In a sequential data compression scheme a symbolic
codeword can only appear in the compression dictionary, i.e., be a compression network vertex, if all of
its prefixes have first appeared. If the dynamics of the system forbids a particular pattern, or symbolic
codeword, then longer codewords with the pattern as a prefix are also forbidden. Thus, we argue that
the absence of particular codewords of a given length in the compression dictionary indicates forbidden
patterns. Since iid noise should eventually generate all possible symbolic patterns, the symbolic form of
(absent) codewords provides an indication of determinism.

Although there are other simpler methods to detect determinism, a benefit of the compression algorithm
is its scalability to larger time series. Thus, the fact that the information retained by the compression
algorithm and the corresponding compression network is capable of performing such tests provides evidence
towards its more general applicability.

The remainder of this paper is outlined as follows: in Section 2.1 we describe in detail the ordinal-
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based symbolic encoding employed before applying the compression algorithm (Section 2.2) to the encoded
time series. In Section 2.3 we describe how the data compression dictionary is converted to an (ordinal)
compression network. In Section 3 we demonstrate the usefulness of the compression network approach
by showing how the methods can detect changes from periodic to chaotic behaviour through forbidden
codewords; how forbidden codewords can be used to indicate time irreversibility; and how the connectivity
structure of compression networks can be used as a test for irreversibility of time series. We close the paper
with a summary of the main results.

2. Methods

2.1. Encoding

Our encoding strategy is based on the ordinal partition method [Amigo, 2010] used for the complex network
representation of time series, which is a simple and computationally efficient technique that embeds the
temporal information present in time series into a network structure [McCullough et al., 2015]. It works
by finding the ordinal patterns—a simple rank-ordering of data values in a segment which maps to a
permutation of an alphabet A of symbols—in an embedding phase space and mapping them to vertices in
a network, while edges connect ordinal patterns that occur consecutively in the symbolized time series.

Here we do not generate complex network representations directly from the ordinal partitions as has
been traditionally done [McCullough et al., 2015]. Instead, our motivation is to use the temporal ordering
of the ordinal patterns to have a symbolized version of the time series, and then to use the resulting
symbolic time series within our compression network approach [Walker et al., 2018]. As in the traditional
ordinal partition technique, we select a window length w = |A|, the size of the alphabet, and time lag τ .
Then we construct the set of ordinal patterns by segmenting the time series and mapping the segments to
permutations {1, 2, ..., w}. Each segment is then mapped to an ordinal pattern by finding the rank of each
element in the sequence.

To illustrate our encoding strategy, consider twenty time steps of a time series1 as presented in Figure 1.
For w = 4 and τ = 1, the first three ordinal patterns in the forward case are {3, 0, 2, 1}, {0, 2, 1, 3} and
{2, 1, 3, 0}, obtaining by ranking the elements in each segment with w elements. The forward ordinal
encoding starts with the first ordinal pattern and concatenates the index corresponding to the last element
of subsequent ordinal patterns. The reverse ordinal encoding, on the other hand, starts with the reversed
version of the last ordinal pattern and concatenates the first element of consecutive ordinal patterns. The
forward and reverse ordinal encoding will be further used to test time irreversibility of time series. We
note that the forward ordinal encoding and the reverse ordinal encoding produce different symbolic time
series, that is, the reverse encoding is not simply a reversed version of the forward encoding as in the case
of percentile-based encoding.

2.2. Compression algorithm

To transform the time series to a complex network we use a compression algorithm which is a Lempel-
Ziv-Welch-like method [Welch, 1984]. We work with the symbolic time series resulting from the ordinal
encoding as previously described and generate a dictionary of codewords (CD) together with an emitted
time series which will be used to construct the compression network. An example is presented in Figure 2
for the forward sequence s = 30213030302130213030 depicted in Figure 1. The codeword dictionary is
initiated with the symbolic alphabet, i.e., CD = {0 : 0, 1 : 1, 2 : 2, 3 : 3}, where 0 is the label for symbol 0,
1 is the label for symbol 1 and so on. Now let p be the first symbol in the time series s, that is p = 3 and
let q be the next symbol in the time series, i.e., q = 0. Next, p and q are concatenated to form pq = 30.
The next step is to check if pq is already included in the codeword dictionary.

As pq is not in the dictionary it is considered a novel codeword, and the dictionary is extended to
include pq. Thus, the codeword dictionary becomes CD = {0 : 0, 1 : 1, 2 : 2, 3 : 3, 4 : 30} where the
codeword 30 receives the label 4. The emitted time series (denoted by, say, TS) is started by emitting p,

1Obtained from iterating a logistic map, xt+1 = λxt(1− xt), with λ = 4 and x0 = 0.01.
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Fig. 1. Example of ordinal encoding from a time series. After initialization, which assigns all components of the first ordinal
pattern to the sequence, the forward encoding sequence is generated by concatenating the last component of the temporal
ordinal patterns, while the reverse encoding is constructed by concatenating to the sequence the first component of the ordinal
patterns.

that is, TS = {3}, since p = 3 is a codeword with label 3. Now we step along the symbolic time series by
setting p = q and setting q as the next symbol in the time series. Thus, at this step p = 0, the second
symbol in the time series, and q = 2, the third symbol in the time series. Again, we concatenate pq and
check if the resulting codeword pq = 02 is already in the dictionary. For this example, the three next steps
will generate the dictionary CD = {0 : 0, 1 : 1, 2 : 2, 3 : 3, 4 : 30, 5 : 02, 6 : 21, 7 : 13} and TS = {3, 0, 2, 1}.
After appending the codeword 13 to the dictionary, we have p = 3, the fifth symbol in the time series,
and q = 0, the sixth symbol in the time series. Now the concatenated codeword pq = 30 is not a novel
codeword, i.e., it is already included in the dictionary.

Codewords which are not novel require a different strategy. We set p = pq and let q be the next symbol
in the time series. That is, p = 30 and q = 3 the seventh symbol in the symbolic time series. Now we
proceed similarly as before, we concatenate p and q and check if pq = 303 is a novel codeword. In this case
pq = 303 is not in the dictionary, so the codeword 303 is added to the dictionary and we emit the codeword
label corresponding to p = 30, which is 4. At this point, CD = {0 : 0, 1 : 1, 2 : 2, 3 : 3, 4 : 30, 5 : 02, 6 :
21, 7 : 13, 8 : 303}, and TS = {3, 0, 2, 1, 4}. We also note an important feature of the content of symbolic
codewords in the compression dictionary. The codeword 303 only appears in the dictionary if all of its
prefixes are already in the dictionary. That is, 30 must appear in the dictionary before 303, which it does,
and, similarly, 3 must appear before 30 which it also does being a symbol of the alphabet. To continue, p
is updated to p = q = 3 and q = 0, the eighth symbol in the time series.

This process continues until we reach the end of the symbolic time series. At each step, the dictionary
of codewords is updated whenever a novel codeword is observed and the codeword labels are emitted to
form the new compressed (emitted) time series. At the end of the time series, we emit the codeword label
corresponding to the dictionary codeword that matches our final pq symbol sequence. Figure 2 presents
the final codewords and emitted time series for the time series resulting from the forward and backward
ordinal encoding as presented in the previous section (Figure 1).

An inspection of the final dictionary revels that some codewords introduced to the dictionary are never
emitted. They represent the codewords which are seen only once in the symbolic time series, meaning that
they are not a prefix code for another novel sequence. The compression of longer symbolic time series
with this Lempel-Ziv-Welch-like algorithm is achieved from the compressed time series of the emitted
codeword labels. As the codewords, independently of their variable length, are replaced by smaller labels
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in the emitted time series, the emitted time series is shorter than the original time series. Moreover, given
that the codeword dictionary is communicated only once, it is plausible to think that the code length of
[dictionary + emitted time series] will be shorter than the code length of [original symbolic time series].
Indeed for binary encoded iid noise time series, it can be shown that the amount of compression achieved
is related to the entropy of the underlying source [Cover & Thomas, 2006]. In [Walker et al., 2018] the size
of the compression network in terms the number of vertices V tracked the sample entropy of time series
as it changed with respect to a bifurcation parameter.

Forward time series: 
s = 3 0 2 1 3 0 3 0 3 0 2 1 3 0 2 1 3 0 3 0

Codeword dictionary:
Codeword label Codeword

0 0

1 1

2 2

3 3

4 30

5 02

6 21

7 13

8 303

9 3030

10 021

11 130

12 0213

Emitted	time	series:
{3,0,2,1,4,8,5,7,10,9}

Codeword dictionary:

Emitted	time	series:
{0,3,1,2,6,4,8,5,7,12,4}

Reverse time series: 
s = 0 3 1 2 1 2 0 3 1 2 0 3 1 2 1 2 1 2 0 3

Codeword label Codeword

0 0

1 1

2 2

3 3

4 03

5 31

6 12

7 21

8 120

9 031

10 1203

11 312

12 212

13 2120

Network	- reverse

Network	- forward

Fig. 2. The final dictionaries of codewords and the emitted time series of codeword labels for the symbolic sequences repre-
senting the forward and reverse ordinal encoding of the time series in Figure 1. We see that the forward ordinal compression
network has 12 vertices while the reserve network has 13 vertices. We also observe that the reverse network contains a con-
nected component represented by one 5-cycle including the vertices {4, 8, 5, 7, 12}. We show in the following that this difference
in structure is informative of the underlying dynamics of the time series.

2.3. Ordinal compression networks

We convert the original time series to a complex network by examining the emitted time series produced by
the compression algorithm applied to the symbolic sequence resulting from the forward or reverse ordinal
encoding. Specifically, the network vertices represent the codewords, or their labels, and we connect network
vertices with (directed) network edges if two codewords appear successively in the emitted time series. We
refer to such a network, or its undirected binary reduction, as an ordinal compression network.

The compression network is, by construction, a directed network as it respects the sequence of successive
codewords and hence also obeys causality in the original time series. It is also possible for two successive
codewords to appear more than once in the emitted time series, whence the compression network can also
be regarded as a weighted network. Indeed the directed version of the compression network is a form of
transition network [McCullough et al., 2015]. Many properties, however, of undirected complex networks
translate to the directed case, and so it is often convenient to convert a directed network to an undirected
network and study the properties of the transformed network. In particular, studying a binary reduction
of the transformed weighted directed network expands the number of properties we can employ to help
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characterize compression networks and understand the underlying source system. This is the strategy we
employ when we study properties of the largest connected component of the compression networks.

We observed that, for the symbolic sequence resulting from the forward ordinal encoding we used
to describe the compression algorithm, the dictionary of codewords contains thirteen codewords (see,
Figure 2). Thus, the forward ordinal compression network for this symbolic time series has thirteen vertices
labelled from 0 to 12. The emitted time series was TS = {3, 0, 2, 1, 4, 8, 5, 7, 10, 9} which corresponds to the
edge set E = {3 → 0, 0 → 2, 2 → 1, 1 → 4, 4 → 8, 8 → 5, 5 → 7, 7 → 10, 10 → 9}. For the reverse ordinal
encoding, the dictionary of codewords contains fourteen codewords and the emitted time series resulted
from the compression algorithm is TS = {0, 3, 1, 2, 6, 4, 8, 5, 7, 12, 4}. A rendering of the (directed) forward
and reverse ordinal compression networks is shown in Figure 2.

As expected, the forward and reverse emitted time series resulted in ordinal compression networks
with distinct structures and features (see, Figure 2). The forward ordinal compression network has three
isolated or zero-degree vertices, while the reverse compression network has four isolated vertices. In both
cases, the isolated vertices represent the codewords that are never revisited during the execution of the
compression algorithm. In earlier work [Walker et al., 2018] we demonstrated the usefulness of using a
census count of these nodes for surrogate data hypothesis testing. Moreover, the connected component of
the reverse directed network contains one 5-cycle comprising the vertices {4, 8, 5, 7, 12}; while the forward
network has no cycles.

As we can see from this small example the structure of the compression network is informative of the
complexity underlying the original time series. The purpose of the rest of this paper is to examine the use-
fulness of topological properties of ordinal compression networks that arise from applying the compression
algorithm to symbolic encodings of nonlinear deterministic time series.

3. Results

3.1. Forbidden patterns

The data compression algorithm we use to construct the compression network is sequential and creates
a dictionary of codewords and an emitted time series detailing which codeword succeeds another. In the
compression network we assign a vertex to each codeword and a (directed) edge captures the successiveness.
The codewords themselves, however, exhibit complexity and contain additional information. In addition to
the alphabet of the symbolic encoding which initializes the data compression dictionary, each codeword in
the dictionary is a word of the alphabet. Furthermore, since the compression algorithm is sequential, by
construction, a particular codeword only appears in the data compression dictionary if all of its prefixes are
already in the dictionary. For example, the codeword 011 will only appear in the dictionary if codewords
01 and 0 are already there. Or equivalently, if codeword 011 is in the dictionary then so to must 01 and 0.
Similarly, if the system dynamics forbids the sequence 00 then all longer sequences which contain 00 are
also forbidden and will not appear as a codeword in the data compression dictionary.

It is expected that for a binary encoding of iid noise all sequences of 0’s and 1’s are permitted and so
eventually for a long enough time series all sequences would appear as codewords. In contrast, a chaotic dy-
namical system possesses its own grammar encapsulating the prohibition of certain sequences. For example,
consider a chaotic system which exhibits a first return map where a binary encoding geometrically-based
on the maximum of the map can be assigned. Suppose we find 00 is a forbidden pattern then a data
compression dictionary formed by applying the compression algorithm to such a symbol sequence will not
contain codewords with two or more consecutive 0 symbols. We can examine the codewords present in
data compression dictionaries and form a statistic which measures absence of these (potentially) forbidden
patterns. This has been the approach taken to detect determinism in time series using an ordinal partition
framework [Amigo, 2010].

One such statistic is the percentage of forbidden patterns of a given length, say m, that are absent
from the data compression dictionary. For example, consider a binary alphabet and words of length 2.
There are four possible patterns 00, 01, 10 and 11. If, as for the description above, 00 is forbidden then
only three of the four possible patterns will appear in the data compression dictionary (provided the time
series is sufficiently long). Thus the percentage of forbidden patterns of length 2 is (1−3/4)×100% = 25%.
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drops to 25% as expected for λ = 4, since an ordinal 00 pattern is forbidden.
In general, for short codeword lengths (so that |A|m is not too large) we would expect iid noise to

register zero percent according to this statistic—all patterns are permitted—chaotic behaviour to register
a non-zero percentage between 0 and 100—some patterns are forbidden—but typically lower than the
percentage registered by periodic behaviour—only a few patterns are generated. Thus, as for the ordinal
partition framework the absence of codewords of a given length in a data compression dictionary compared
to all codewords that could arise is a practicable method of detecting determinism, or at the very least,
distinguishing dynamics from iid noise.

3.2. Forbidden patterns and time irreversibility

To further test the ability of a sequential data compression algorithm subject to ordinal-based encoding
to expose forbidden patterns in time series data, we consider an example of time-asymmetrical data given
in Kennel [2004]. We consider two independent samples of length N from the logistic map, restated here,

xt+1 = λxt(1− xt) (2)

with λ = 4, i.e., {xi,1}Ni=1 and {xi,2}Ni=1. By themselves xi,1 and xi,2 exhibit time-asymmetrical chaotic
dynamics with the set of forbidden patterns for any reasonable encoding being non-empty. Consider the
mixture

yi = xi,1 + αxN−i,2 (3)

with α ∈ [0, 1], i.e., yi is formed from a mixture of an independent sample of chaotic dynamics and a
time-reversed independent sample of chaotic dynamics. We can tune, via α, the level of time-asymmetry
and the size of the set of forbidden patterns. When α = 0 we simply have an independent chaotic orbit
with non-empty set of forbidden patterns. When α = 1, by construction, yi is statistically reversible and
all patterns are permissible but all may not appear (modulo length of time series and ordinal window size).
Reducing α from 1 to 0 thus increases the time-irreversibility of the series yi and increases the population
of forbidden patterns.

In Figure 4 we show how the percentage of forbidden patterns changes for varying values of α from
α = 1 to α = 0. Samples of length 98000 points were used in an attempt to ensure time series long enough
to capture all permissible patterns up to length m = 7. That is, for an encoding with |A| symbols there
are a possible |A|7 codewords of length 7 and so we require longer time series so each permitted codeword
has a chance to appear in the data compression dictionaries. We used ordinal-based encoding of lengths
|A| = 2 and |A| = 4. We see that for α = 1 no forbidden patterns are detected (for low m, m ≤ 5)
with the percentage of forbidden patterns of the specified lengths gradually increasing to the expected
values for α = 0. Increasing the symbolic ordinal window length from 2 symbols to 4 symbols (left panel
to right panel) does not appear to have a noticeable effect (for low m) for such long time series—we still
see more forbidden patterns as time irreversibility increases for decreasing α—but the increased alphabet
size serves to make the behaviour appear more graceful. We note that reducing the length of the time
series or increasing the codeword length would naturally introduce more volatility in the forbidden pattern
detection abilities of the compression algorithm.

The above example has demonstrated that, in addition to the approach of Kennel [2004] in using
compression algorithms to detect time irreversibility, data compression dictionaries and the precise form
of the compression codewords can also detect the absence of forbidden patterns in data and hence be able
to detect nonlinear determinism. A question that arises in consequence is can the structure of the largest
connected component of the compression network, which captures the sequential transitions of codewords
in a time series, also be used to detect determinism or time irreversibility?

3.3. Time irreversibility

The structure of the largest connected component of (a binary reduction of) a compression network con-
structed from an ordinal-based symbolic encoding can be used to discern time irreversibility of a system
from time series. The structural property of the largest connected component that we use to demonstrate
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were significant for low-order cycles, i.e., cycles of lengths 3, 4, 5, etc. In that study we used a percentile-
based symbolic encoding to drive the compression algorithm. Although not reported, we investigated if
the structure summarized by a minimal cycle basis of the largest connected component of compression
networks could detect time irreversibility. In that instance, percentile-based symbolic encodings of forward
and reverse scans of a chaotic time series were considered. We found no evidence for differences in the
cycle length distribution of compression networks of forward and reverse scans of time series that are
irreversible. That is, subject to percentile-based symbolic encoding the minimal cycle basis structure of
the largest connected component of compression networks is unable to detect time irreversibility. This
conclusion changes if we apply ordinal-based encoding. An explanation may be, that for coarse-graining
based on percentiles, the symbolization depends on the global behaviour and so detailed local dynamics
are lost. In contrast, the ordinal approach can capture local fluctuations and therefore codewords obtained
by the compression algorithm are sensitive enough to provide accurate results for such tests.

To demonstrate we consider two case examples. The first one considers time series of iid noise which
are reversible, and time series of orbits of the chaotic logistic map (λ = 4) which are irreversibile. For
each class of time series we consider 100 simulations of length 2000 points. For each time series, we
symbolically encode using an ordinal-based encoding of window length 4 both forward and reverse scans.
The resulting symbolic sequences are compressed using the sequential compression algorithm to construct
two compression networks; one for the forward scan and one for the reverse scan. A minimal cycle basis
is calculated for the largest connected component of each compression network and the distribution of
cycle lengths stored. Once every simulation is processed in this way we obtain for each cycle length k,
k = 3, 4, . . . , an empirical distribution of the number of 3-cycles, 4-cycles, etc. in the compression networks
for forward scans and reverse scans. For each of these empirical distributions we compare if there are
significant differences between those obtained for forward scans and those obtained for reverse scans. A
Kolmogorov-Smirnov (KS) test is used to assess significance at p-value equal to 0.05.

In Figure 6 we show the result of the above procedure. For iid noise the empirical distribution of the
cycle lengths for forward and reverse scans of the time series do not show any visual differences (top left
panel). This is confirmed in the right panel which shows the p-values obtained for each KS-test of cycle
length k. In contrast, the empirical distribution of cycle lengths for the chaotic logistic map orbits suggests
differences in the two distributions (forward and reverse). The p-values presented in the corresponding
right panel show that for most low-order cycles there are significant differences in these distributions.
Thus, with an ordinal-based symbolic encoding the structure (of binary reductions) of compression networks
summarized by a minimal cycle basis is capable of detecting evidence for time irreversibility. We considered
window lengths longer than 4 and produced similar results for the chaotic logistic map. Longer window
lengths also produced similar results for iid noise, i.e., no evidence for time irreversibility was detected as
expected. We also considered ordinal windows of length 2 together with increasing lengths of time series,
2000, 4000, 8000 and 16000 points, but were unable to detect irreversibility for the logistic map. It appears
that longer ordinal windows are important for successfully detecting time irreversibility using minimal
cycle basis of binary reductions of compression networks.

Our second example considers scalar observations (xt) from the chaotic Ikeda map:

xt+1 = a+ b(xt cos θt + yt sin θt) (4)

yt+1 = b(xt sin θt + yt cos θt) (5)

where θt = k − η/(1 + x2t + y2t ) and (a, b, k, η) = (1.0, 0.9, 0.4, 6.0). Figure 7 shows the KS tests for time
irreversibility for the Ikeda map considering an ordinal-based encoding with window length 4. In this case,
we used time series with N = 16000 data points — there was no evidence for time irreversibility for shorter
time series. Comparing the distribution of cycles over forward and reverse scans of the time series with the
KS test, we find p-values lower than 0.05 for cycle lengths in the range k = 5 − 7 and for cycle lengths
k = 12, k = 13 and k = 16. The statistical evidence indicates that the topological properties of the largest
connected components of the compression networks can be used towards detecting time irreversibility of
time series for more complicated dynamics.








