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Abstract

The Lorenz-96 model is widely used as a test model for various ap-
plications, such as data assimilation methods. This symmetric model
has the forcing F ∈ R and the dimension n ∈ N as parameters and
is Zn-equivariant. In this paper, we unravel its dynamics for F < 0
using equivariant bifurcation theory. Symmetry gives rise to invariant
subspaces, that play an important role in this model. We exploit them
in order to generalise results from a low dimension to all multiples of
that dimension. We discuss symmetry for periodic orbits as well.

Our analysis leads to proofs of the existence of pitchfork bifurca-
tions for F < 0 in specific dimensions n: In all even dimensions, the
equilibrium (F, . . . , F ) exhibits a supercritical pitchfork bifurcation. In
dimensions n = 4k, k ∈ N, a second supercritical pitchfork bifurcation
occurs simultaneously for both equilibria originating from the previous
one.

Furthermore, numerical observations reveal that in dimension n =
2qp, where q ∈ N ∪ {0} and p is odd, there is a finite cascade of
exactly q subsequent pitchfork bifurcations, whose bifurcation values
are independent of n. This structure is discussed and interpreted in
light of the symmetries of the model.

1 Introduction

1.1 Setting of the problem

Equivariant dynamical systems It was not until the late 1970s that the
study of symmetric dynamical systems gained great interest, when it was
discovered that the symmetries of a system can have a big impact on its dy-
namics. Since then, a considerable amount of literature has been published
on symmetry and bifurcations resulting in a rich extension of bifurcation
theory, called equivariant bifurcation theory. In this field a group-theoretic
formalism is used to classify bifurcations and to describe solutions and other
phenomena of a system. One of its most powerful results of this so-called
equivariant bifurcation theory is the equivariant branching lemma, formu-
lated first by Vanderbauwhede (1982) and Cicogna (1981) independently. A
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few years later a detailed overview of the theory of local equivariant bifurca-
tions appeared in (Golubitsky & Schaeffer, 1985; Golubitsky, et al., 1988),
which is still a standard reference in this field. This is followed in more
recent years by other works with an overview of the new state-of-the-art,
e.g. (Chossat & Lauterbach, 2000) with an applied mathematics approach
and the more advanced and theoretical work (Field, 2007).

Knowing the symmetries of a model can provide a lot of insight in the
dynamics via equivariant bifurcation theory. This includes the occurrence
of certain bifurcations, symmetry-related solutions, pattern formation and
invariant manifolds (see for many concrete examples (Chossat & Lauter-
bach, 2000; Golubitsky et al., 1988) and references therein). Also, there
are many examples of phenomena in nature that have some symmetry. To
illustrate: the Rayleigh-Bénard convection possesses a reflection symmetry,
which leads to a pitchfork bifurcation (among others), as can be concluded
by the equivariant branching lemma (Golubitsky, et al., 1984). Likewise,
the Lorenz-63 model exhibits a pitchfork bifurcation due to symmetry, as it
is derived from the Rayleigh-Bénard convection (Lorenz, 1963).

Lorenz-96 model This paper concentrates on another model of Lorenz,
namely, his 1996 model (Lorenz, 2006a). Already in 1984 he studied a 4-
dimensional version of this model in his search for the simplest nontrivial
forced dissipative system that is capable of exhibiting chaotic behaviour
(Lorenz, 1984b). By imposing symmetry conditions on the equations, he in-
troduced the monoscale version of the n-dimensional Lorenz-96 model. The
equations of this model are equivariant with respect to a cyclic permutation
of the variables and so the system is completely determined by the equation
for the j-th variable, which is given by

ẋj = xj−1(xj+1 − xj−2)− xj + F, j = 1, . . . , n, (1a)

and a ‘boundary condition’

xj−n = xj+n = xj . (1b)

Here, the variables xj can be associated to values of some atmospheric quan-
tity (e.g. temperature) measured along a circle of constant latitude of the
earth (Lorenz, 2006a). The latitude circle is divided into n equal parts such
that the index j = 1, . . . , n denotes the longitude of a particular variable.
The number n ∈ N is the dimension of the system, while the forcing F ∈ R
can be used as a bifurcation parameter.

The Lorenz-96 model is used by Lorenz to study the atmosphere and
related problems (Lorenz & Emanuel, 1998; Lorenz, 2006a; Lorenz, 2006b).
The simplicity of the model makes it also attractive and useful for various
other applications, such as to test data assimilation methods (De Leeuw, et al.,
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2018; Ott, et al., 2004; Trevisan & Palatella, 2011) and to study spatiotem-
poral chaos (Pazó, et al., 2008). For a more complete overview of studies
that exploit the Lorenz-96 model for applications, we refer to our papers
(Van Kekem & Sterk, 2018a; Van Kekem & Sterk, 2018b).

Table 1.1 lists a selection of papers that investigate part of the dynamics
of the Lorenz-96 model. In a recent article, we have proven analytically some
basic properties for all dimensions (but mainly for positive parameter values)
and the existence of Hopf and Hopf-Hopf bifurcations and we have studied
numerically the routes to chaos for F > 0 (Van Kekem & Sterk, 2018a).
However, there are only two papers that focus on the dynamics for negative
parameter values F : in (Lorenz, 1984b) the chaotic attractor is studied
for F = −100. In (Van Kekem & Sterk, 2018b) we have investigated the
spatiotemporal properties of waves for both F > 0 and F < 0 and showed
mostly numerically that the dynamics for F < 0 depends on the parity of
the dimension. A systematic understanding of how the symmetry influences
the dynamics of the Lorenz-96 model is however still lacking. Therefore,
we continue in this paper by using an analytical approach to examine the
nature of the symmetry of the Lorenz-96 model and their implications for
bifurcation sequences. We mainly focus on negative parameter values F ,
since for those values the symmetry has a larger influence on the dynamics,
due to the existence of pitchfork bifurcations that are induced by symmetry
as well. Whenever relevant, we will also discuss the implications of our
findings on symmetry for the case of positive F .

Table 1: Overview of the research into the dynamics of the monoscale Lorenz-96
model (1) and the main values of the parameter F that were used. In most cases,
only the range for positive F has been analysed.

Reference Subject F

Lorenz (1984a) Chaotic attractor −100
Orrell & Smith (2003) Spectral bifurcation diagram [0, 17)
Lorenz (2005) Designing chaotic models 2.5, 5, 10, 20, 40
Pazó et al. (2008) Lyapunov vectors 8
Karimi & Paul (2010) Extensive chaos [5, 30]
Van Kekem & Sterk (2018a) Travelling waves & bifurcations [0, 13)
Van Kekem & Sterk (2018b) Wave propagation (−4, 4)

1.2 Summary of the results

The main results of this paper can be summarised as follows: first of all, for
any n ∈ N the n-dimensional Lorenz-96 model is equivariant with respect to
a cyclic left shift of the coordinates (denoted by γn), i.e. the model has a Zn-
symmetry. It is well-known that equivariance gives rise to invariant linear
subspaces. These invariant subspaces turn out to have very important im-

3



plications for the dynamics of the model. We show how they can be utilised
in extrapolating established facts in a certain dimension to all multiples of
that dimension and exploit them to clarify the dynamical structure.

The trivial equilibrium xF = (F, . . . , F ), which exists for all n ≥ 1
and all F ∈ R, is invariant under γn. Of particular interest is when the

dimension n is even, in which case Z2-symmetry can be realised by γ
n/2
n .

Equivariant bifurcation theory then shows that the equilibrium xF exhibits
a pitchfork bifurcation. The emerging stable equilibria both exhibit again
a pitchfork bifurcation if n is a multiple of four. Both cases will be proven
for the smallest possible dimension (i.e. n = 2, resp. n = 4) using a theorem
from Kuznetsov (2004) on bifurcations for systems with Z2-symmetry. A
generalisation to all dimensions n = 2k, resp. n = 4k, is then provided by
the invariant manifolds.

Furthermore, a supercritical Hopf bifurcation destabilises all present sta-
ble equilibria after at most two pitchfork bifurcations, as is shown numeri-
cally in (Van Kekem & Sterk, 2018b). Therefore, the dynamical structure for
n ≥ 4 and F < 0 can be divided in general into three classes, depending on
the dimension n (see also Figures 1–3 for schematic bifurcation scenarios):

1. If n is odd, then the first bifurcation of the equilibrium xF is a super-
critical Hopf bifurcation.

2. If n = 4k + 2, k ∈ N, then only one pitchfork bifurcation takes place,
followed by a Hopf bifurcation on each branch. This leads to two stable
periodic orbits that coexists for the same parameter values F .

3. If n = 4k, k ∈ N, then all four stable equilibria generated by the
second pitchfork bifurcation exhibit a Hopf bifurcation simultaneously,
resulting in four coexisting stable periodic orbits.

Of particular interest is the observation that in the last case there can be
even more pitchfork bifurcations, that however occur after the equilibria un-
dergo the Hopf bifurcations. We conjecture that the number of subsequent
pitchfork bifurcations depends on the dimension n as follows: let n = 2qp,
where q ∈ N ∪ {0} and p is odd, then the number of successive pitchfork
bifurcations is exactly equal to q. This finite cascade of q pitchfork bifurca-
tions leads to a structure of 2q+1 − 1 equilibria that are mutually conjugate
by a power of γn. An example of such a structure is given by the schematic
bifurcation diagram in Figure 9 for n = 24p.

For positive forcing the first bifurcation is a Hopf or Hopf-Hopf bifur-
cation, which is not induced by symmetry. However, it turns out that the
generated periodic orbits can be symmetric if their wave number has a com-
mon divisor with the dimension. Here, the wave number should be inter-
preted as the spatial frequency of the wave, which measures the number
of ‘highs’ or ‘lows’ on the latitude circle, see for example (Van Kekem &
Sterk, 2018a; Van Kekem & Sterk, 2018b; Lorenz & Emanuel, 1998).
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1.3 Overview

This paper has been divided into two parts. The first part, section 2, deals
with the analytical results of the research. We give an exposition of the
symmetries of the Lorenz-96 model and corresponding invariant manifolds,
using concepts from equivariant bifurcation theory. These results are used
to prove the existence of a pitchfork bifurcation in all even dimensions and
a second occurrence of pitchfork bifurcations in all dimensions of the form
n = 4k.

The second part of this paper, section 3, is devoted to a further, nu-
merical exploration of the dynamics for all dimensions. First, we will see
that the periodic orbits after a supercritical Hopf bifurcation still have some
symmetry. Secondly, we investigate numerically and explain by our exposi-
tion of symmetry the existence of the structure with exactly q subsequent
pitchfork bifurcations in dimension n = 2qp.

2 Analytical results

In this section we will describe the symmetry of the Lorenz-96 model using
concepts from equivariant dynamical systems theory. For a detailed and
clear overview of this field, we refer to the standard textbooks on bifurca-
tion theory for symmetric systems (Golubitsky & Schaeffer, 1985; Golubit-
sky et al., 1988). The symmetry also gives rise to invariant manifolds, that
turn out to be very important in our model. We will show how these invari-
ant manifolds can be exploited. Lastly, we show that the symmetry of the
model leads to subsequent pitchfork bifurcations for particular dimensions.

2.1 Zn-symmetry and invariant manifolds

Cyclic symmetry Let n ∈ N be arbitrary and denote the right-hand-side
of system (1a) with dimension n by fn(x, F ), such that fn : Rn × R → Rn.
Consider the following n-dimensional permutation matrix:

γn =


0 1 0 · · · 0

0 1
...

. . .
. . .

...
0 · · · 0 1
1 0 · · · 0

 . (2)

It is obvious that the linear mapping γn : Rn → Rn acts like a cyclic left
shift and that γnn = Idn, the n-dimensional identity matrix. We define the
cyclic group generated by γn as

Γn := 〈γn〉 ,
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which is isomorphic to the additive group Z/nZ. A key observation is that

fn(γjnx, F ) = γjnfn(x, F )

holds for any j ∈ N and any n ∈ N. This immediately implies the following
result:

Proposition 1 (Zn-symmetry). For any dimension n ≥ 1 the Lorenz-96
model is Γn-equivariant.

Furthermore, powers of γn generate subgroups of Γn, namely,

Gmn = 〈γmn 〉 < Γn, 0 < m ≤ n, m|n. (3)

The order of a subgroup Gmn is n/m and it is isomorphic to Z/(n/m)Z.
These subgroups Gmn are isotropy subgroups of special equilibrium solutions
that are of the form

xm = (Am, . . . , Am), Am = (a0, . . . , am−1), 0 < m ≤ n, m|n, (4)

where aj ∈ R. The coordinates of xm have n/m repetitions of the block
Am and, hence, γkmn xm = xm for all k ∈ N. Later on, we will encounter
equilibria of system (1) which have indeed such a structure (see sections 2.2
and 3.2).

Invariant manifolds Associated to an isotropy subgroup G < Γn is the
fixed-point subspace Fix(G), i.e. an invariant linear subspace consisting of all
points in Rn that satisfy γx = x for any element γ ∈ G. It is a well-known
result that such a fixed-point subspace is an invariant set of the dynamical
system (Golubitsky et al., 1988). Here, the fixed-point subspace which is
fixed by the complete subgroup Gmn is given by

Fix(Gmn ) = {x ∈ Rn : x = xm}, (5)

where xm is as in equation (4).
The fixed-point subspace (5) is an invariant manifold of dimension m.

Also, each invariant manifold of dimension m|n contains all of its ‘predeces-
sors’ with dimension m′ such that m′|m:

Fix(Γn) = Fix(G1
n) ⊂ Fix(Gm

′
n ) ⊂ Fix(Gmn ) ⊂ Fix(Gnn) = Rn.

These invariant subspaces constitute nested families of subspaces which are
all invariant under the flow of the Lorenz-96 model.

Equivariance also implies that if x(t) is a solution of the Lorenz-96 model,
then its conjugate solutions, γjnx(t), are solutions as well for any j ∈ N.
Moreover, for each equilibrium solution xm ∈ Fix(Gmn ) all conjugate solu-
tions γjnxm with 0 ≤ j < m are elements of the same fixed-point subspace
Fix(Gmn ) and have the same properties1 (up to symmetry) as xm by permu-
tation of the governing equations. This fact allows us to study only one of
the equilibria in the group orbit {x : x = γjnxm, 0 ≤ j < m} of xm.

1For example, the eigenvalues of conjugate solutions are equal.
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Reduction of dimension The preceding observation, together with the
fact that the coordinates of points xm have repetitions when m < n, sim-
plifies our analysis a lot. In particular, it implies that we can reduce the
number of governing equations of the system inside Fix(Gmn ). In fact, we
have the following important result:

Proposition 2. Let m ∈ N and let n = km be any multiple of m. The
dynamics of the n-dimensional Lorenz-96 model restricted to the invariant
manifold Fix(Gmn ) is topologically equivalent to the Lorenz-96 model of di-
mension m.

Proof. Let n ∈ N be as given and restrict the n-dimensional Lorenz-96
model to the invariant manifold Fix(Gmn ). By definition (5) we have that
the entries of any x ∈ Fix(Gmn ) repeat as xj+m = xj with the index modulo
n. It follows immediately that equation (1a) for the (j + m)-th coordinate
equals that for the j-th coordinate. Hence, we are left with n/m copies of
an m-dimensional Lorenz-96 model on Fix(Gmn ).

Furthermore, since Fix(Gmn ) and each of its copies have dimension m,
the dynamics on Fix(Gmn ) is governed by m equations only and hence by the
Lorenz-96 model of dimension m. Hence, on Fix(Gmn ) we can reduce to a
lower dimensional model. As homeomorphism between the invariant man-
ifold Fix(Gmn ) and Rm (the space of the m-dimensional Lorenz-96 system)
one can take the function which selects the first m coordinates and drops the
remaining coordinates, leaving us with the m-dimensional Lorenz-96 model.
Its inverse is then the map which duplicates the given m coordinates n/m
times.

Remark 3. Proposition 2 enables us to generalise results from low dimensions
to higher dimensions. For example, when in the m-dimensional Lorenz-
96 model a certain bifurcation occurs, then generically for every multiple
n = km, k ∈ N, the same bifurcation occurs in the n-dimensional model.
This vastly reduces the proof of facts that occur in many dimensions, since
it comes down to search for the lowest possible dimension to occur and to
prove it for that particular dimension. By Proposition 2 then, this proves
the property for infinitely many dimensions.

A note of caution is due here, since two problems can occur:

1. It might happen that another bifurcation will take place before the
phenomena extrapolated from a lower dimension and thus a different
attractor gains stability, resulting in a different route to chaos.

2. Besides that, another attractor can exist with no or different symmetry
(i.e. in another subspace than Fix(Gmn )) and whose route to chaos is
different.
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In both cases, chaos possibly occurs for smaller parameter values. What the
method of Proposition 2 does provide, are the features and bifurcations of
the attractors inside the subspace Fix(Gmn ), for any n that is a multiple of
m. 4

2.2 First pitchfork bifurcation

System (1) has in any dimension the trivial equilibrium

xF = (F, . . . , F ), F ∈ R. (6)

The eigenvalues of this equilibrium can be determined easily using the cir-
culant nature of the Jacobian matrix. Let

ρj = exp
(
−2πi jn

)
,

then it is shown in (Van Kekem & Sterk, 2018a) that these eigenvalues are
given by

λj(F, n) = −1 + Fρ1j − Fρn−2j (7)

for all j = 0, . . . , n − 1. We omit the dependence on n from now on and
write λj or λj(F ) for λj(F, n). The eigenvector corresponding to λj can be
expressed in terms of ρj as well:

vj =
1√
n

(
1 ρj ρ2j · · · ρn−1j

)>
. (8)

Observe that the eigenvalue λ0 equals −1. Due to the fact that ρn−j =
ρ̄j , all the other eigenvalues and eigenvectors form conjugate pairs as

λj = λ̄n−j , (9)

vj = v̄n−j ,

except when n is even, in which case the eigenvalue for j = n
2 is real and

equals λn/2 = −1 − 2F . This is the only eigenvalue that depends on the
parameter F and is purely real and thus plays a key role in this study. We
can have more real eigenvalues when n is a multiple of 3, in which case the
eigenvalues for j = n

3 ,
2n
3 are both fixed and equal to −1.

For every even dimension n the eigenvalue λn/2 equals 0 at F = −1
2 .

This gives rise to the first of our main results:

Theorem 4 (First pitchfork bifurcation). Let n ∈ N be even. Then the
trivial equilibrium xF exhibits a supercritical pitchfork bifurcation at the pa-
rameter value FP,1 := −1

2 .
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Note that the index 1 of FP anticipates the possibility of more pitchfork
bifurcations, of which this is the first one in line for decreasing F . We prove
Theorem 4 using the symmetries of the model. By Proposition 2, proving
the theorem boils down to proving the existence of a pitchfork bifurcation in
the case n = 2 and subsequently generalise it to any even dimension n. The
same procedure will be applied to prove the existence of a second occurrence
of pitchfork bifurcations in section 2.3.

The proof of Theorem 4 (and also that of the second pitchfork bifurca-
tion) rely on a theorem taken from (Kuznetsov, 2004). Before we state this
result, let us first introduce some notation. Let Rn be an n× n matrix that
defines a symmetry transformation x 7→ Rnx. Furthermore, we decompose
Rn into a direct sum Rn = X+

n ⊕X−n , where

X+
n := {x ∈ Rn : Rnx = x},

X−n := {x ∈ Rn : Rnx = −x}.

Theorem 5 (Kuznetsov, 2004). Suppose that a Z2-equivariant system

ẋ = f(x, α), x ∈ Rn, α ∈ R1,

with smooth f , Rnf(x, α) = f(Rnx, α) and R2
n = Idn, has at α = 0 the fixed

equilibrium x0 = 0 with simple zero eigenvalue λ1 = 0, and let v ∈ Rn be
the corresponding eigenvector.

Then the system has a 1-dimensional Rn-invariant center manifold W c
α

and one of the following alternatives generically takes place:

(i) (fold) If v ∈ X+
n , then W c

α ⊂ X+
n for all sufficiently small |α| and the

restriction of the system to W c
α is locally topologically equivalent near

the origin to the normal form

ξ̇ = β ± ξ2;

(ii) (pitchfork) If v ∈ X−n , then W c
α∩X+

n = x0 for all sufficiently small |α|
and the restriction of the system to W c

α is locally topologically equiva-
lent near the origin to the normal form

ξ̇ = βξ ± ξ3.

Remark 6. At the pitchfork bifurcation the equilibrium that satisfies Rnx0 =
x0 changes stability, while two Rn-conjugate equilibria appear (Kuznetsov,
2004). In terms of the fixed-point subspaces, this means that the resulting
Rn-conjugate equilibria are contained in a larger subspace than the original.
In section 3.2 we will elaborate further on this.

The proofs below of the first, resp. the second (in the next section),
pitchfork bifurcation are based on the lowest possible dimensions, i.e. m = 2
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and m = 4. In both cases we start with equilibria in Fix(G
m/2
m ) and Z2-

symmetry is realised by γ
m/2
m . Consequently, we will set

Rm := γm/2m , (10)

and the pitchfork bifurcation will result in two extra γ
m/2
m -conjugate equi-

libria in Fix(Gmm). Likewise, we have that X+
m = Fix(G

m/2
m ) and X−m =

Fix(G
m/2
m )⊥.

For general dimensions n = km we can extend these results according
to Proposition 2 which yields that the equilibria after the first pitchfork

bifurcation (for which m = 2) are γ
m/2
km = γ1n-conjugate and contained in

Fix(G2
n). Similarly, for the second pitchfork bifurcation we have m = 4,

so here the resulting equilibria will be pairwise γ
m/2
km = γ2n-conjugate and

contained in Fix(G4
n). 4

In order to prove the existence of a pitchfork bifurcation in the 2-dimensional
Lorenz-96 model, it suffices to show that it satisfies the second case of The-
orem 5. This is in brief how the following lemma is proven:

Lemma 7. Let n = 2, then the equilibrium xF of the Lorenz-96 model
exhibits a pitchfork bifurcation at the parameter value FP,1 = −1

2 .

Proof. The eigenvalues of xF are given by equation (7), so that in the 2-
dimensional case we have

λ0 = −1, λ1 = −1− 2F.

Therefore, λ1 = 0 at F = FP,1 and a bifurcation takes place. An eigenvector
at FP,1 corresponding to λ1 is given by

v1 = (−1, 1).

By Proposition 1 system (1) with n = 2 has a Z2-equivariance with
symmetry transformation

R2 := γ2 =

(
0 1
1 0

)
, (11)

as defined by formula (10). From section 2.1 it follows that this matrix
satisfies the following:

1. R2
2 = Id2;

2. R2 defines a symmetry transformation on R2 = X+
2 ⊕X

−
2 with

X+
2 = Fix(G1

2),

X−2 = Fix(G1
2)
⊥ = {x ∈ R2 : x0 = −x1}.
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With these preliminaries the conditions of Theorem 5 are satisfied (up to a
transformation to the origin). In addition, it is easy to see that we are in
the pitchfork-case, since we have

R2v1 = −v1,

i.e. the eigenvector with respect to λ1(FP,1) lies in X−2 . Hence, by Theorem 5
the 2-dimensional Lorenz-96 model has a 1-dimensional R2-invariant center
manifold W c

F with W c
F ∩ X

+
2 = xF for all F sufficiently close to FP,1 and

the restriction of the system to W c
F is locally topologically equivalent near

xF to the normal form of a pitchfork bifurcation.

Proof of Theorem 4. The result of Lemma 7 extends to all dimensions n =
2k, k ∈ N by Proposition 2.

Remark 8. Theorem 4 can also be proven via a center manifold reduction
(Guckenheimer & Holmes, 1983; Kuznetsov, 2004; Wiggins, 2003), which
gives the following form of system (1a) (up to linear transformations), re-
stricted to its center manifold:

u̇ = −2αu− 4

n
u3 +O(‖u, α‖4), (12)

where α = F + 1
2 . This is the normal form of the supercritical pitchfork

bifurcation and implies that the equilibrium xF is stable for F > FP,1 and
loses stability at F = FP,1, while two other stable equilibria exist for F <
FP,1. 4

At the supercritical pitchfork bifurcation the equilibrium xF ∈ Fix(G1
n)

loses stability and gives rise to two stable equilibria ξ1j ∈ Fix(G2
n), j = 0, 1,

that exist for F < −1
2 . These new equilibria are given by

ξ10(F ) = (a+, a−, . . . , a+, a−), a± = −1
2 ±

1
2

√
−1− 2F , (13)

while ξ11 is obtained by swapping the indices + and −. So, each ξ1j has a
structure like the equilibria xm in formula (4) with m = 2 and they are
indeed γn-conjugate as predicted by Remark 6. In other words: applying
the matrix γn means geometrically a switch from one branch of equilibria
to the other.

2.3 Second pitchfork bifurcation

The pitchfork bifurcation described in the previous section is followed by a
second subsequent pitchfork bifurcation for F < FP,1 when the dimension
is a multiple of 4. This time, there are two simultaneous bifurcations, each
of which takes place at a different branch of equilibria (13) that emanated
from the first pitchfork bifurcation of Theorem 4.
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Theorem 9 (Second pitchfork bifurcation). Let n = 4k with k ∈ N. Then
both equilibria ξ10,1(F ) emanating from the pitchfork bifurcation at FP,1 = −1

2
exhibit a supercritical pitchfork bifurcation at the parameter value FP,2 :=
−3.

The proof goes in exactly the same way as the proof for the first pitchfork
bifurcation. Again, we first prove a lemma that describes the occurrence of
a second pitchfork bifurcation in the lowest possible dimension:

Lemma 10. Let n = 4, then the equilibria ξ10,1(F ) emanating from the

pitchfork bifurcation at FP,1 = −1
2 both exhibit a pitchfork bifurcation at the

parameter value FP,2 := −3.

Proof. The eigenvalues of both equilibria ξ1j , j = 0, 1 are given by:

λ10,1 = 1
2(−1±

√
9 + 16F ),

λ12,3 = 1
2(−3±

√
−3− 4F ). (14)

Since λ12 = 0 when F = FP,2, a bifurcation takes place. An eigenvector
corresponding to λ12(FP,2) is given by

v12 = (2 +
√

5,−1,−2−
√

5, 1).

To show that system (1) with n = 4 is Z2-equivariant we recall that

R4 := γ24 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (15)

as defined by formula (10). Again, this matrix satisfies the requirements of
Theorem 5, since

1. R2
4 = Id4;

2. R4f4(x, F ) = f4(R4x, F ), by Proposition 1;

3. R4 defines a symmetry transformation on R4 = X+
4 ⊕X

−
4 , where

X+
4 = Fix(G2

4),

X−4 = Fix(G2
4)
⊥ = {x ∈ R4 : x0 = −x2, x1 = −x3}.

Note that the group {Id4, R4} has Fix(G2
n) as its fixed-point subspace, so it

contains all the symmetries of ξ1 ∈ Fix(G2
n) (i.e. R4ξ

1 = ξ1). In contrast, it
holds that

R4v
1
2 = −v12,
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i.e. the eigenvector with respect to λ12(FP,2) lies in X−4 . By Theorem 5
this implies that a pitchfork bifurcation takes place and the 4-dimensional
Lorenz-96 model has a 1-dimensional R4-invariant center manifold W c

F with
W c
F ∩X

+
4 = ξ1j for all F sufficiently close to FP,2.

Remark 11. Lemma 10 can be proven by a center manifold reduction, like
Theorem 4 for dimensions n = 2k. For n = 4, this gives the following normal
form of a pitchfork bifurcation:

u̇ = a(α)u+ b(α)u3,

with

a(α) =
α(18

√
5
√

5− 2α+ α)

54(−5 + 2α)
,

b(α) =
450(145 + 61

√
5) + α(

√
5− 2α(854 + 406

√
5)− 180(145 + 61

√
5))

135(23 + 3
√

5)(−5 + 2α)
.

where α = F − FP,2 = F + 3. The function b(α) is negative for values
of α around 0, hence both pitchfork bifurcations at FP,2 for n = 4 are
supercritical. 4

Proof of Theorem 9. The result of Lemma 10 extends to all dimensions n =
4k, k ∈ N by Proposition 2.

Remark 12. A generalisation to all n = 4k − 2 is not provided by Proposi-
tion 2. Indeed, the second pair of eigenvalues λ12,3 of (13) occurs only in the
form of equation (14) when the dimension is of the form n = 4k. If instead
the dimension equals n = 2 then there are no more eigenvalues that can
cross the imaginary axis, whereas for n = 4k−2, k ≥ 2, the eigenvalue pairs
are different from the case n = 4k, as numerical computations show (Van
Kekem & Sterk, 2018b). Therefore, in dimensions n = 4k − 2, k ∈ N, there
will not be an additional pitchfork bifurcation, but the next bifurcation after
the first pitchfork bifurcation will be a Hopf bifurcation, as we will see in
section 3.1. 4

At the second pitchfork bifurcations the equilibria ξ1j ∈ Fix(G2
n), with

j = 0, 1, lose stability and four stable equilibria ξ2j ∈ Fix(G4
n), 0 ≤ j ≤ 3

appear that exist for F < −3. In contrast with ξ1j it is not feasible to derive

analytic expressions for the equilibria ξ2j . By Remark 6, we know that in
the 4-dimensional case these new equilibria are pairwise R4-conjugate in
the following way: ξ2j = R4ξ

2
j+2 (with the index modulo 4); that is, the

equilibria with index j and j + 2 emanate from the same equilibrium ξ1j for

j = 0, 1. By equivariance, the conjugate solutions γ4ξ
2
j are equilibria as well

for all 0 ≤ j ≤ 3. In fact, we observe numerically that this gives precisely
the solutions from the other R4-conjugate pair of solutions (see section 3.2),
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i.e. we can switch between all four equilibria by subsequently applying γ4,
e.g. ξ2j = γj4ξ

2
0 .

For general dimensions n = 4k similar statements hold: the new equi-
libria satisfy ξ2j = γ2nξ

2
j+2 (with the index modulo n) and they are of the

form (4) with m = 4. This gives an extra argument why a symmetry break-
ing by a pitchfork bifurcation is not possible in dimensions n = 4k−2: since
n is not divisible by 4, we cannot ‘fill’ the n coordinates of an equilibrium
in Rn completely by blocks of four and the invariant subspace Fix(G4

n) does
not exist.

3 Numerical results

In specific dimensions of the Lorenz-96 model we observed more than two
subsequent pitchfork bifurcations with a nice structure. In this section we
will give a more detailed exposition on this symmetric dynamical structure.
We mainly concentrate on the bifurcation pattern for F < 0 by describing
the codimension 1 bifurcations of the equilibria that are generated via one
or more pitchfork bifurcations.

Firstly, we discuss the occurrence of a supercritical Hopf bifurcation for
F < 0, which is preceded by at most two pitchfork bifurcations. Since these
results are already presented in (Van Kekem & Sterk, 2018a) and (Van
Kekem & Sterk, 2018b) together with the spatiotemporal properties of the
resulting periodic orbit, we focus here on their symmetrical properties. By
analysing the dimension of their containing invariant subspace we can clarify
the existence (and non-existence) of patterns in the dynamics.

Secondly, we show that in specific dimensions it is possible to have more
subsequent pitchfork bifurcations after the Hopf bifurcation and the two
proven pitchfork bifurcations. We discuss how many of them can be ex-
pected in each dimension. These consecutive pitchfork bifurcations then
also generate a lot of unstable equilibria that may influence the dynamics.

Most of these results follow from numerical observations. We will inter-
pret these observations by means of the theoretical exposition of the symme-
try in section 2.1 without aiming to be complete. Especially, proving facts
after many pitchfork bifurcations will become increasingly difficult, since the
lowest dimension needed increases exponentially.

3.1 Symmetric periodic orbits

Destabilising Hopf bifurcations Recall that for n = 2 only one pitch-
fork bifurcation is possible and no further bifurcation can happen. Moreover,
in dimensions n = 1 and 3 all eigenvalues are equal to −1, so that no bi-
furcation is possible at all. Apart from that, we show below that in any
dimension n ≥ 4 the stable equilibria for negative parameter values F even-
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tually lose stability through a supercritical Hopf bifurcation and one or more
stable periodic orbits will appear.

In (Van Kekem & Sterk, 2018b) we have shown that this will happen after
at most two subsequent pitchfork bifurcations. Therefore, the bifurcation
pattern can be divided into three different cases according to the number of
pitchfork bifurcations that occur before the Hopf bifurcation:

Case 1: no pitchfork bifurcations For odd n, no pitchfork bifurcation
will occur, but the first bifurcation of the trivial equilibrium (6) for
F < 0 is a Hopf bifurcation at FH(j, n) := 1/(cos 2πj

n − cos 4πj
n ) with

j = n−1
2 . In (Van Kekem & Sterk, 2018a), we have proven that this

first Hopf bifurcation is supercritical, which implies that the stable
equilibrium xF loses stability and a stable periodic orbit appears after
the bifurcation; see Figure 1.

Case 2: one pitchfork bifurcation For n = 4k + 2, k ∈ N, Remark 12
states that only one pitchfork bifurcation occurs in this case, whose
existence is proven by Theorem 4. In (Van Kekem & Sterk, 2018b), we
have demonstrated numerically that both equilibria exhibit a super-
critical Hopf bifurcation simultaneously. Hence, for parameter values
F below the corresponding Hopf bifurcation value F ′H the two equilib-
ria ξ1j , j = 0, 1, are unstable and two stable periodic orbits coexist; see
Figure 2.

Case 3: two pitchfork bifurcations For n = 4k, k ∈ N, Theorems 4
and 9 guarantee the occurrence of two pitchfork bifurcations subse-
quently. By numerical continuation we observed that the resulting
four stable equilibria exhibit supercritical Hopf bifurcations simulta-
neously (Van Kekem & Sterk, 2018b). Thus, in this case four stable
periodic orbits coexist for parameter values F < F ′′H; see Figure 3.

Symmetry for periodic solutions Recall from section 2.1 that whenever
x(t) is a solution of the Lorenz-96 model, then γjnx(t) is a solution as well
for any 1 ≤ j ≤ n. This also holds for a periodic solution P (t) of system (1).
The orbits of P (t) and γjnP (t) are either identical or disjoint by uniqueness
of solutions. In the first case both orbits differ at most by a phase shift in
time; in the second case we obtain a new periodic solution γjnP (t) but whose
spatiotemporal properties (i.e. the period and wave number) are the same
as that of P (t) (Golubitsky et al., 1988).

In the Lorenz-96 model we observed numerically that the two or four
periodic orbits, generated through the Hopf bifurcations after one or two
pitchfork bifurcations, are indeed γn-conjugate to each other. Because they
all emerge from a different equilibrium, their orbits must be disjoint, but
they share the same spatiotemporal properties. Hence, due to the symmetry
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F 0

ξ0 = xF

FH

H

Figure 1: Schematic representation of the attractors for negative F in an n-
dimensional Lorenz-96 model with odd n > 3, so without any pitchfork bifurca-
tion. The label H stands for a (supercritical) Hopf bifurcation and occurs for
−0.894427 ≤ FH < − 1

2 . The only equilibrium is given by ξ0 ≡ xF ∈ Fix(G1
n). A

solid line represents a stable attractor; a dashed line represents an unstable one.

F 0

ξ0

FP,1

ξ10

ξ11

F ′
H

H

H

PF1

Figure 2: Schematic bifurcation diagram of a 21p-dimensional Lorenz-96 model
with p > 1 odd and for negative F . The label PF1 denotes the only (supercritical)
pitchfork bifurcation with bifurcation value FP,1 = − 1

2 ; H stands for a (supercrit-
ical) Hopf bifurcation with bifurcation value −3.5 ≤ F ′H ≤ −3, depending on n.
The equilibria are ξ0 ≡ xF ∈ V 0 and ξ1j ∈ V 1, j = 0, 1 given by equation (13). A
solid line represents a stable equilibrium; a dashed line represents an unstable one.

the periodic orbits for F < 0 are related to each other by conjugacy as
follows: Hopf bifurcation for negative F :

Case 1 (n odd) There is only one periodic orbit P (t) that satisfies γnP (t) =
P (t + jT/n), where T is the period and 1 ≤ j < n; i.e. applying γn
results in a phase shift proportional to T/n such that after n iterations
we retrieve the orbit without phase shift.
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F 0

ξ0

FP,1

ξ10

ξ11

FP,2

ξ20

ξ22

ξ21

ξ23

F ′′
H

H

H

H

H

PF1

PF2

PF2

Figure 3: Schematic bifurcation diagram of a 22p-dimensional Lorenz-96 model
with p > 1 odd and for negative F . The label PF1, resp. PF2, denotes the first,
resp. second, (supercritical) pitchfork bifurcation with bifurcation value FP,1 = − 1

2 ,
resp. FP,2 = −3; H stands for a (supercritical) Hopf bifurcation with bifurcation
value −3.9 < F ′′H < −3.5, depending on n. The equilibria are given by ξ0 = xF ∈
Fix(G1

n) and by equation (13) for ξ1j ∈ Fix(G2
n), j = 0, 1, while ξ2j ∈ Fix(G4

n),
j = 0, . . . , 3. A solid line represents a stable equilibrium; a dashed line represents
an unstable one.

Case 2 (n = 4k + 2, k ∈ N) The two disjoint periodic orbits are γn-conjugate.
Applying γn twice returns the original periodic orbit but with a phase
shift equal to 2jT/n, where 1 ≤ j < n. See Figure 4 for an example
of the smallest dimension, n = 6.

Case 3 (n = 4k) Four different periodic orbits exist of which three can be
obtained from one by applying γn subsequently one, two or three times
as in dimension 4. Moreover, when we apply γn four times, then the
original periodic orbit reappears with a phase shift equal to 4jT/n,
1 ≤ j < n. See Figure 5 for an example of the smallest dimension,
n = 4.

More details about the spatiotemporal properties of the periodic attractors

17



after the Hopf bifurcation in each of the cases listed above can be found in
(Van Kekem & Sterk, 2018b).
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x
j

Figure 4: Time series of all coordinates xj of the two different periodic attractors
for n = 6 and F = −3.6, i.e. after the Hopf bifurcation following the first and
only pitchfork bifurcation. The coordinates xj , with j = 1, . . . , 6 are coloured blue,
light-blue, red, purple, dark-green and yellow-green, respectively. The similarities
between both periodic attractors are clear. A comparison of their coordinates shows
that those of the right figure are shifted one place to the left with respect to the
left one, which implies that the periodic orbits are γ6-conjugate.

In order to check the symmetry of these periodic orbits, we perform the
following numerical experiment. For a given dimension n we follow the stable
attractor for increasing or decreasing F . We fix the value of the parameter
F and integrate the system long enough to obtain an attractor. After that,
we check for repetition of the coordinates of the attractor. The number of
different coordinates is then the dimension of the invariant subspace that
contains the stable attractor. Finally, we raise or lower F with a small step.

Using this method, we observe that, in general, the periodic orbits do not
belong to any fixed-point subspace other than Fix(Idn) = Rn, for dimensions
up to 100. This might be due to the fact that the Hopf bifurcation values F ′H
and F ′′H are different for each dimension (Van Kekem & Sterk, 2018b), which
leads to different periodic orbits that do not inherit their properties from a
lower dimension. However, in dimensions that are multiples of 6 we observe
a tendency for periodic attractors in Fix(G6

n) to become stable after a while;
see Figure 6. This is observed in both dimensions of the form n = 4k and
n = 4k + 2, so it could be the case that (even in dimensions n = 4k) this
symmetric attractor originates (via a Hopf bifurcation) from the equilibria
directly after the first pitchfork bifurcation.
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Figure 5: Time series of all coordinates xj of two periodic attractors for n = 4 and
F = −4.0, i.e. after the Hopf bifurcation following the second pitchfork bifurcation.
The coordinates xj , with j = 1, 2, 3, 4 are coloured blue, red, green and black,
respectively. Observe that the periodic orbits are disjoint and γ4-conjugate to each
other, which means that they originate from the branches ξ2k (left) and ξ2k+1 (right)
with k ∈ {0, 1, 2, 3}. The disjoint periodic orbits from the two other branches,
ξ2k+2 and ξ2k+3, are obtained similarly, i.e. by applying γ4 two and three times
to the periodic orbit in the left figure, in agreement with the analytical results
(section 2.3).
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Figure 6: Plot of the dimension m of the invariant subspace Fix(Gm
n ) that contains

the global attractor for various dimensions n = 6k, k = 1, . . . , 5, and negative F (see
text for the description of the method). In any dimension, after one or two pitchfork
bifurcations a periodic orbit is generated with no symmetry (i.e. contained only in
Fix(Gn

n)). For slightly smaller F , a symmetric attractor gains stability, which is
any case contained in Fix(G6

n).

Positive F The trivial equilibrium xF is of the form x1 ∈ Fix(G1
n) and

exists in any dimensions and for all F ∈ R. However, for positive forcing
the first bifurcation for this equilibrium is not induced by symmetry, but it
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is either a supercritical Hopf bifurcation or a double-Hopf bifurcation, as we
have shown in (Van Kekem & Sterk, 2018a). This bifurcation happens at
FH(l1, n) := 1/(cos 2πl1

n − cos 4πl1
n ), where l1 denotes the index of the first

eigenpair 9 crossing the imaginary axis, and results in one or more stable
periodic orbits. Note that the index l1 (which also represents the wave
number of the periodic orbit (Van Kekem & Sterk, 2018a)) varies with the
dimension. This results in a lot of different periodic orbits that can have
various or no symmetry and their own route to chaos. Below, we will give a
condition for which a periodic orbit has symmetry.

We investigated a few particular cases where it is observed that the
periodic orbit is symmetric, using the same numerical experiment as above.
For instance, for dimensions n = 5k, k = 1, . . . , 10 a pattern of attractors is
observed that are all invariant under γ5n (Van Kekem & Sterk, 2018a), which
implies that they are contained in Fix(G5

n) and inherit their properties partly
from the attractor of n = 5. This is confirmed by the plots in Figure 7,
that shows the symmetry of the periodic orbits for dimensions n = 5k,
k = 1, . . . , 12. It can be seen that for n = 55 and 60 a symmetric attractor
in Fix(G5

n) becomes stable after a non-symmetric attractor has disappeared.
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Figure 7: As Figure 6, but with dimensions n = 5k, k = 1, . . . , 12, and positive F .
In any dimension up to n = 50 an attractor is generated through a Hopf bifurcation
which is contained in Fix(G5

n). For n = 55 and 60 first an attractor without
symmetry dominates, but for some larger values of F an attractor in Fix(G5

n)
becomes globally stable again.

Similarly, in e.g. n = 8, resp. n = 12 periodic orbits are observed with
wave number l = 2, resp. l = 2 and 3 that are contained in Fix(G4

8), resp.
Fix(G6

12) and Fix(G4
12) (see Figure 8). In the same figure we show that for

n = 28 an attractor, with wave number l = 6, exists that is contained in
Fix(G14

28).
We therefore conjecture that when the spatial wave number l of a pe-

riodic orbit P (t) and the dimension n satisfy gcd(l, n) = g > 1, then

P (t) ∈ Fix(G
n/g
n ), i.e. the periodic orbit generated through the first Hopf
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Figure 8: As Figure 6, but with various dimensions and positive F . For n = 8 and
12 the global attractor corresponds to the one for n = 4. A similar phenomenon
occurs for dimensions n = 14 and 28.

bifurcation is symmetric. This phenomenon can be explained by the fact
that such a wave splits into g parts, where each part constitutes a wave
with wave number l/g that corresponds to the wave in dimension n/g. Note
that this also includes the case where gcd(l, n) = l, which is mentioned
in (Lorenz, 2006b). Periodic orbits with such a feature can arise in many
dimensions, even if they are unstable as they emerge from a later Hopf bi-
furcation of the trivial equilibrium. A further discussion of this phenomenon
lies beyond the scope of this article, but will be investigated in forthcoming
work.

3.2 Multiple pitchfork bifurcations

In section 2 we have proven that it is possible to have two pitchfork bifur-
cation after each other, namely, when n is a multiple of 4. Numerically,
we observe that there can be even more subsequent pitchfork bifurcations
after these two bifurcations. Even though these additional bifurcations hap-
pen after the Hopf bifurcations of Case 3 in the previous subsection (and
therefore they occur for unstable equilibria and generate unstable equilib-
ria), they can entail large groups of symmetries, an exponentially increasing
number of equilibria and they show a beautiful structure. Since this pos-
sibly influences the dynamical structure for smaller F , we will discuss here
the appearance of multiple pitchfork bifurcations and explain their presence
using the exposition of symmetry from section 2.

In the following exposition we write the dimension uniquely as n = 2qp,
with q ∈ N∪{0} arbitrary and p odd. One should bear in mind that the cases
q = 1 and q = 2 are completely covered by the results proven in sections 2.2
and 2.3. Consequently, we assume q ≥ 3 in the following, which enables
the occurrence of more than two subsequent pitchfork bifurcations. and are
complementary to the analytical results. Let us start with some notation
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that anticipates the results later on.

Notation First of all, we call the pitchfork bifurcation which is the l-th in
the row the l-th pitchfork bifurcation and denote its bifurcation value as FP,l.
Clearly, FP,l < FP,l−1 and by definition the l-th pitchfork bifurcation occurs
for equilibria generated through the (l − 1)-th bifurcation. In the previous
sections we have already used this nomenclature for the cases l = 1, 2.

Furthermore, we will introduce some notation that anticipates the results
later on. The groups (3) and invariant subspaces (5) with m = 2l such that
0 ≤ l ≤ q are of particular importance in the description of the symmetry
and related pitchfork bifurcations. Therefore, we define the special invariant
subspace Fix(G2l

n ) ⊂ Rn of system (1) as

V l := Fix(G2l

n ) = {x ∈ Rn : xj+2l = xj for all 0 ≤ j ≤ n− 1}, (16)

where 0 ≤ l ≤ q and the index of x has to be taken modulo n. Note
that these invariant manifolds also played a crucial role in the proofs of
Theorems 4 and 9.

By the discussion in section 2.1 it is easy to see that each invariant
manifold V l contains all of its ‘predecessors’:

V l′ ⊂ V l, 0 ≤ l′ ≤ l.

Also, by the definition of V l, Proposition 2 immediately implies the following
result:

Corollary 13. Let n = 2qp and 0 ≤ l ≤ q. Then the dynamics of the
n-dimensional Lorenz-96 model restricted to the invariant manifold V l is
topologically equivalent to the Lorenz-96 model of dimension 2l.

Furthermore, inspired by Remark 6 and equation (13) we also define

ξlj ∈ V l, 0 ≤ j ≤ 2l − 1, (17)

to be the equilibria generated by the l-th pitchfork bifurcation, which have
the same symmetry as equilibria of the form x2

l
. Similarly, let ξl be the

collection of all equilibria ξlj ,

ξl := {ξlj ∈ V l, 0 ≤ j ≤ 2l − 1} ⊂ V l,

which turns out to contain all equilibria that share the same properties.
Accordingly, for l = 1 we have ξ1 = {ξ10 , ξ11} ⊂ V 1 as defined in equation (13).
Likewise, we can define ξ0 ≡ xF ∈ V 0, for convenience.
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Numerical observations In Table 2 we list the numbers of successive
pitchfork bifurcations that are observed for specific even dimensions as well
as the total number of equilibria generated through these bifurcations in-
cluding the trivial equilibrium xF (right column). The number of pitchfork
bifurcations for a specific dimension n = 2qp, as above, turns out to be
precisely the exponent q. Accordingly, we assume in the following that
0 ≤ l ≤ q, which coincides with the restriction for V l in equation (16).

Table 2: The number of successive pitchfork bifurcations and the corresponding
total number of (possibly unstable) equilibria after the last pitchfork bifurcation as
observed in selected even dimensions.

n #PF’s #equilibria

2 1 3
4 2 7
6 1 3
8 3 15

10 1 3
12 2 7
14 1 3
16 4 31
20 2 7
24 3 15
32 5 63
36 2 7
64 6 127

128 7 255
256 8 511
512 9 1023

Besides, the bifurcation values FP,l are independent of n for all l. These
fixed values FP,l are listed in Table 3 for l ≤ 9 and are obtained by numerical
continuation in the dimensions n = 2l using the software packages Auto-
07p (Doedel & Oldeman, 2012) and MatCont (Dhooge, et al., 2011). In
addition, the l-th pitchfork bifurcation occurs for all equilibria ξl−1j (F ) at
exactly the same bifurcation value FP,l. So, when we speak about ‘the
l-th pitchfork bifurcation’ there are actually 2l−1 simultaneous pitchfork
bifurcations of conjugate equilibria, generating in total 2l new equilibria.

Even more, we observed that all these new equilibria have the same
entries in the same order but shifted, which justifies our notation of the
equilibria (17). Therefore, the equilibria ξlj ∈ V l satisfy in general

γknξ
l
j = ξlj+k, for all 0 ≤ j, k ≤ 2l − 1, (18)

where the lower index of ξ should be taken modulo 2l. As described in sec-
tion 2.1, all these conjugate solutions have the same properties and therefore
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it suffices to study only one copy of them, say ξl0. We will often just refer to
the set ξl (so, without index) when we describe their common properties.

Table 3: List of bifurcation values FP,l for the l-th pitchfork bifurcation, which
are known up to l = 9 and that are independent of the dimension n. The two right
columns give the distances between the successive pitchfork bifurcations and their
ratios rl = (FP,l−1 − FP,l−2)/(FP,l − FP,l−1).

l FP,l Distance to FP,l−1 rl
1 −0.5 – –
2 −3 2.5 –
3 −6.6 3.6 0.694444
4 −8.0107123 1.41071 2.55190
5 −8.4360408 0.425329 3.31676
6 −8.5275625 0.0915217 4.64730
7 −8.5474569 0.0198944 4.60037
8 −8.5517234 4.2665× 10−3 4.66289
9 −8.5526377 9.143× 10−4 4.66681

Table 3 also shows that the distance between successive pitchfork bifur-
cations decreases as l increases. The values of their ratios rl suggest that

lim
l→∞

rl = lim
l→∞

FP,l−1 − FP,l−2
FP,l − FP,l−1

= δ,

where δ ≈ 4.66920 is Feigenbaum’s constant. Therefore, the q-th and last
pitchfork bifurcation of a specific dimension n will be expected for the bi-
furcation value FP,q ≥ FP,∞ ≈ −8.55289.

Visualisation of structure The structure of pitchfork bifurcations and
equilibria that we observed by numerical analysis is summarised in Figure 9,
which we will now explain. The figure presents a schematic view for the case
n = 2qp with q = 4 and gives an indication for the bifurcation structure for
general q ≥ 3. First of all, the horizontal line in the middle represents the
trivial equilibrium ξ0 = xF which is stable for F > FP,1. At the point PF1

we see that two stable equilibria ξ10,1 emerge, while ξ0 becomes unstable: the
first supercritical pitchfork bifurcation.

Secondly, both equilibria ξ10,1 exhibit a pitchfork bifurcation PF2 at FP,2.

In both cases a pair of stable, γ2n-conjugate equilibria appear, i.e. ξ22 = γ2nξ
2
0

and ξ23 = γ2nξ
2
1 . Moreover, by formula (18) these pairs are also γn-conjugate

to each other, which means that we can switch between the branches origi-
nating from ξ10 and those from ξ11 by applying γn.

Next, all four equilibria from ξ2 exhibit a supercritical Hopf bifurca-
tion, by Case 3 of section 3.1. As a result, ξ2 and all successive equilibria
ξl, 2 < l ≤ q are unstable for F < F ′′H. Thereafter, the third pitchfork
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Figure 9: Schematic bifurcation diagram of a 2qp-dimensional Lorenz-96 model for
negative F with q = 4 subsequent pitchfork bifurcations. The label PFl, 1 ≤ l ≤ q,
denotes the l-th (supercritical) pitchfork bifurcation with bifurcation value FP,l as
in Table 3; H stands for a (supercritical) Hopf bifurcation with bifurcation value
−3.9 < F ′′H < −3.5. Each branch of equilibria is labelled with ξlj according to
equation (17), where l indicates that the branch is generated by the l-th pitchfork
bifurcation and contained in V l and j denotes how often we have to apply γn to ξl0 to
obtain this branch, as in equation (18). A solid line represents a stable equilibrium;
a dashed line represents an unstable one. The arrows in gray indicate the relation
between the mutual branches. Similar diagrams can be obtained for any q ≥ 3.

25



bifurcation PF3 occurs at FP,3 and generates 23 unstable and pairwise γ4n-
conjugate equilibria ξ3. Finally, the fourth pitchfork bifurcation generates
the equilibria ξ4 ⊂ V 4. This completes the full structure with 25−1 unstable
equilibria.

Explanation by symmetry The preceding phenomena can be explained
using the concepts introduced in section 2.1. In general, at a pitchfork bifur-
cation there is a breaking of the symmetry: before the bifurcation there ex-
ist an equilibrium x0 satisfying Rx0 = x0, where R represents Z2-symmetry,
while after the bifurcation two additional equilibria x1,2 appear that satisfy
Rx1 = x2 (Kuznetsov, 2004). So, the new equilibria x1,2 after the bifurca-
tion have a lower order of symmetry than the bifurcating equilibrium x0, as
explained by Remark 6. In terms of the invariant subspaces, this means that
the smallest invariant subspace containing x1,2 should be larger than the one
containing x0. More explicitly: if x0 ∈ Fix(Gmn ), with m ≤ n

2 minimized,

then the two resulting equilibria x1,2 are in Fix(Gm
′

n ) with m′ = 2m (due to
Z2-symmetry).

In section 2.2 we have demonstrated that the equilibrium ξ0 = xF ∈
V 0 exhibits the first pitchfork bifurcation and that two stable equilibria
ξ1 ⊂ V 1 appear. The second pitchfork bifurcation occurs for both equilibria
ξ1 simultaneously and generates stable equilibria ξ2 ⊂ Fix(G4

n) = V 2, as
shown in section 2.3. In general, assuming that l ≤ q and that the equilibria
ξl−1 ⊂ V l−1 generated through the (l − 1)-th pitchfork bifurcation again
exhibit a pitchfork bifurcation, then the l-th pitchfork bifurcation generates
2l new branches of equilibria ξlj(F ) ∈ V l, 0 ≤ j ≤ 2l − 1, where F < FP,l.
Thus, the total number of equilibria for dimension n generated by the q
pitchfork bifurcations (including the trivial equilibrium) is equal to 2q+1−1,
which is confirmed by the right column of Table 2.

The observation that the l-th pitchfork bifurcation consists of 2l−1 si-
multaneous pitchfork bifurcations of conjugate equilibria can be explained
by noting that all equilibria ξl−1 satisfy the relation (18) and therefore share
the same properties and, in particular, the same eigenvalues. The fact that
the bifurcation values FP,l do not depend on the dimension is a direct con-
sequence of Proposition 2.

In particular, the q-th pitchfork bifurcation generates equilibria ξq ⊂
V q = Fix(G2q

n ). Consequently, there cannot be more than q subsequent
pitchfork bifurcations because this requires the resulting equilibria to be in
Fix(G2q+1

n ), which does not exist. Hence, for any dimension n = 2qp there
can be at most q pitchfork bifurcations.

Based on these numerical observations and their interpretation in terms
of symmetry, the following conjecture seems plausible:

Conjecture 14. The number of subsequent pitchfork bifurcations in the
Lorenz-96 model of dimension n = 2qp, where q ∈ N ∪ {0} and p odd, is
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exactly equal to q.

In summary, the results in this section show that in each dimension n =
2qp there are exactly q pitchfork bifurcations for F < 0 and the phenomenon
fits well into the theoretical description given in section 2.1.

4 Conclusions and outlook

In this investigation, the aim was to unravel the symmetrical nature of the
Lorenz-96 model and to understand its dynamics better with this informa-
tion, building on (Van Kekem & Sterk, 2018a). The model is equivariant in
any dimension with respect to a cyclic left shift γn and the groups of sym-
metries give rise to invariant manifolds for each divisor m of the dimension
n. One of the major findings of this paper was that the invariant mani-
folds allow us to extrapolate results that are proven for a certain dimension
n to all multiples of n. These findings enhance our understanding of the
Lorenz-96 model.

In the present study we exploited the symmetry mainly to study and
explain the dynamics for negative parameter values, where symmetry turns
out to play an important role. We have proven analytically the existence of
one, resp. two, pitchfork bifurcations in dimension n = 2, resp. n = 4, each

of which gives rise to γ
n/2
n -conjugate equilibria. Consequently, in any even

dimension a pitchfork bifurcation takes place, with an additional subsequent
pitchfork bifurcation when the dimension equals n = 4k, k ∈ N.

Numerical investigation shows another significant finding of this study:
in any dimension n the number of successive pitchfork bifurcations is ex-
actly equal to q, where q is the nonnegative integer such that the dimension
n is uniquely given by n = 2qp, with p odd. However, to establish this
result analytically is a nontrivial task, since the Jacobian is no longer circu-
lant for the nontrivial equilibria that arise from each pitchfork bifurcation.
Moreover, to prove other facts beyond the l-th pitchfork bifurcation will
become increasingly difficult, since the lowest dimension needed is n = 2l

and thus increases exponentially with l. On the other hand, once we have
found an equilibrium ξlj in a certain invariant subspace V l, the relation (18)

guarantees that the 2l − 1 other equilibria have the same properties. This
finding together with the Zn-symmetry may have important implications
for the dynamics after the cascade of pitchfork bifurcations. Although the
periodic orbit that emerges from the supercritical Hopf bifurcation is the
stable attractor for F < F ′′H (see section 3.1), the cascade-like pitchfork bi-
furcations can have a big influence on the dynamics via the large number
of generated equilibria. Such an influence has been observed in dimension
n = 4 for positive F , where 4 unstable and γ4-conjugate equilibria give rise
to a heteroclinic structure that causes the dynamics on the chaotic attractor
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to return to nearly periodic behaviour repeatedly, i.e. the classical type 1
intermittency scenario (Van Kekem & Sterk, 2018a).

The influence of the symmetry on the Lorenz-96 model for F > 0 is less
clear. We have shown in (Van Kekem & Sterk, 2018a) that the first bifurca-
tions for the trivial equilibrium are always Hopf or Hopf-Hopf bifurcations.
The emerging periodic orbits have symmetries under certain circumstances,
namely when their wave number has a divisor in common with the dimen-
sion of the model. However, further work needs to be done to establish this
conjecture. More symmetries might be found via other equilibria than the
trivial one, but it is in general nontrivial to locate them.

Furthermore, a pattern of attractors for n = 5m, m = 1, . . . , 10 is dis-
cussed in (Van Kekem & Sterk, 2018a). This phenomenon can be explained
by the invariant manifolds which allow us to extrapolate the results for low
dimension to higher dimensions. However, as explained in Remark 3, this
method does not guarantee to give the complete bifurcation pattern and
route to chaos for any multiple of the lowest possible dimension, but only
the dynamics restricted to the corresponding invariant manifold. It is also
possible that another bifurcation will take place before the phenomena ex-
trapolated from low dimension and thus a different attractor gains stability.
Such an event is indeed observed in the example of the pattern for the di-
mensions n = 5m, where the pattern is interrupted at m = 11.

Altogether, the results in this paper provide important insights into the
symmetrical structure of the Lorenz-96 model. This also helps to under-
stand the bigger dynamical structure and its travelling waves, partly de-
scribed in (Van Kekem & Sterk, 2018a; Van Kekem & Sterk, 2018b; Orrell
& Smith, 2003). Further studies need to be carried out in order to unravel
the bifurcations and routes to chaos of the stable attractors for negative
F . An interesting question in this context is how the symmetry influences
the dynamics for parameter values beyond the pitchfork bifurcations or for
larger dimensions. The attractor for n = 4 and large negative F is stud-
ied in (Lorenz, 1984a), although without taking into account its potential
symmetry. In particular, note that for F < 0 the bifurcation patterns up
to and including the Hopf bifurcation can be divided into three different
cases, which might have consequences for the number of different routes to
chaos. In our future research we will therefore include a further analysis of
the bifurcation structure in combination with the symmetry of the model
and explore the routes to chaos for F < 0.
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